Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 22, Issue 11 (November 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-206
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

Open AccessFeature PaperEditorial Atomic Sulfur: An Element for Adaptation to an Oxidative Environment
Molecules 2017, 22(11), 1821; doi:10.3390/molecules22111821
Received: 23 October 2017 / Accepted: 24 October 2017 / Published: 26 October 2017
PDF Full-text (743 KB) | HTML Full-text | XML Full-text
Abstract
During the period of rising oxygen concentration in the Earth’s atmosphere (Figure 1), sulfur atoms were incorporated into proteins as redox-active cysteine residues [1] and antioxidant molecules such as thioredoxin, glutathione, and glutaredoxin appeared [...]
Full article
(This article belongs to the Special Issue Sulfur Atom: Element for Adaptation to an Oxidative Environment 2016)
Figures

Figure 1

Research

Jump to: Editorial, Review, Other

Open AccessArticle Chokeberry Pomace as a Determinant of Antioxidant Parameters Assayed in Blood and Liver Tissue of Polish Merino and Wrzosówka Lambs
Molecules 2017, 22(11), 1461; doi:10.3390/molecules22111461
Received: 12 October 2017 / Revised: 30 October 2017 / Accepted: 3 November 2017 / Published: 7 November 2017
PDF Full-text (256 KB) | HTML Full-text | XML Full-text
Abstract
Despite being a plant by-product, chokeberry pomace is believed to exert some therapeutic effects because it is one of the richest sources of highly bioavailable non-enzymatic antioxidants. The aim of this study was to determine the functionality of bioactive compounds present in the
[...] Read more.
Despite being a plant by-product, chokeberry pomace is believed to exert some therapeutic effects because it is one of the richest sources of highly bioavailable non-enzymatic antioxidants. The aim of this study was to determine the functionality of bioactive compounds present in the Aronia melanocarpa pomace (chokeberry) based on enzymatic and non-enzymatic parameters related to the active defence of liver and blood against the effects of oxidative stress. The experiment was conducted with 48 lambs of two breeds—Polish Merino and Wrzosówka. Experimental groups were administered the basic feed with the addition of 150 g or 300 g of black chokeberry pomace per each kg of the complete feed. The activities of antioxidative enzymes (superoxide dismutase, glutathione peroxidase), peptides (glutathione, glutathione disulfide), and a lipid peroxidation indicator (malondialdehyde), as well as the capacity of non-enzymatic antioxidants were investigated. The results proved a strong effect of bioactive compounds contained in the black chokeberry pomace on the estimated parameters. The inclusion of chokeberry pomace in feed mixtures brought many benefits linked with the antioxidative protection. Parameters responsible for the oxidative status were significantly modified despite the commonly-held view about a limited possibility of transferring phenolic compounds to the organs. Full article
Open AccessArticle Green Ultrasound versus Conventional Synthesis and Characterization of Specific Task Pyridinium Ionic Liquid Hydrazones Tethering Fluorinated Counter Anions: Novel Inhibitors of Fungal Ergosterol Biosynthesis
Molecules 2017, 22(11), 1532; doi:10.3390/molecules22111532
Received: 27 September 2017 / Accepted: 3 November 2017 / Published: 7 November 2017
PDF Full-text (2292 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of specific task ionic liquids (ILs) based on a pyridiniumhydrazone scaffold in combination with hexafluorophosphate (PF6), tetrafluoroboron (BF4) and/or trifluoroacetate (CF3COO) counter anion, were designed and characterized by IR, NMR and
[...] Read more.
A series of specific task ionic liquids (ILs) based on a pyridiniumhydrazone scaffold in combination with hexafluorophosphate (PF6), tetrafluoroboron (BF4) and/or trifluoroacetate (CF3COO) counter anion, were designed and characterized by IR, NMR and mass spectrometry. The reactions were conducted under both conventional and green ultrasound procedures. The antifungal potential of the synthesized compounds 225 was investigated against 40 strains of Candida (four standard and 36 clinical isolates). Minimum inhibitory concentrations (MIC90) of the synthesized compounds were in the range of 62.5–2000 μg/mL for both standard and oral Candida isolates. MIC90 results showed that the synthesized 1-(2-(4-chlorophenyl)-2-oxoethyl)-4-(2-(4-fluorobenzylidene)hydrazinecarbonyl)-pyridin-1-ium hexafluorophosphate (11) was found to be most effective, followed by 4-(2-(4-fluorobenzylidene)hydrazinecarbonyl)-1-(2-(4-nitrophenyl)-2-oxoethyl)-pyridin-1-ium hexafluorophosphate (14) and 1-(2-ethoxy-2-oxoethyl)-4-(2-(4-fluorobenzylidene)hydrazinecarbonyl)pyridin-1-ium hexafluorophosphate (8). All the Candida isolates showed marked sensitivity towards the synthesized compounds. Ergosterol content was drastically reduced by more active synthesized compounds, and agreed well with MIC90 values. Confocal scanning laser microscopy (CLSM) results showed that the red colored fluorescent dye enters the test agent treated cells, which confirms cell wall and cell membrane damage. The microscopy results obtained suggested membrane-located targets for the action of these synthesized compounds. It appears that the test compounds might be interacting with ergosterol in the fungal cell membranes, decreasing the membrane ergosterol content and ultimately leading to membrane disruption as visible in confocal results. The present study indicates that these synthesized compounds show significant antifungal activity against Candida which forms the basis to carry out further in vivo experiments before their clinical use. Full article
Figures

Open AccessArticle Preparation and Bioactivity Assessment of Chitosan-1-Acetic Acid-5-Flurouracil Conjugates as Cancer Prodrugs
Molecules 2017, 22(11), 1629; doi:10.3390/molecules22111629
Received: 22 August 2017 / Accepted: 25 September 2017 / Published: 8 November 2017
PDF Full-text (2705 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
5-fluorouracil (5-FU) is a specific anti-cancer agent that is generally used to treat gastrointestinal, colorectal, and breast cancer. In this work, chitosan (CS) was extracted from local fish scales using an established method. 5-FU was then converted to 1-acetic acid-5-fluorouracil (FUAC) and reacted
[...] Read more.
5-fluorouracil (5-FU) is a specific anti-cancer agent that is generally used to treat gastrointestinal, colorectal, and breast cancer. In this work, chitosan (CS) was extracted from local fish scales using an established method. 5-FU was then converted to 1-acetic acid-5-fluorouracil (FUAC) and reacted with this CS to prepare chitosan-1-acetic acid-5-fluorouracil (CS-FUAC) conjugates as a colon-specific prodrug. All compounds were characterized by Proton nuclear magnetic resonance (1H-NMR), Fourier-transform infrared (FTIR), and UV-visible spectroscopy. The synthesized compound was subjected to a chemical stability study in phosphate buffer (0.2 M, pH 7.4) and in KCl/HCl buffer (0.2 M, pH 1.2) at different time intervals (0–240 min) and incubation at 37 °C. This revealed a significantly greater stability and a longer half-life for the CS-FUAC than for FUAC. Hemolytic activity results indicated a much lower toxicity for CS-FUAC than for 5-FU and supported consideration of CS-FUAC for further biological screening and application trials. The percentage of FUAC in the conjugates was determined by subjecting the prodrug to treatment in basic media to hydrolyze the amide bond, followed by absorbency measurements at 273 nm. The cytotoxicity studies of the conjugates were also evaluated on human colorectal cancer cell line (HT-29), which showed that the conjugates are more cytotoxic than the free drug. Therefore, CS-FUAC conjugates can be considered to represent potential colon-specific drug delivery agents, with minimal undesirable side effects, for colon cancer therapy. Full article
(This article belongs to the Special Issue Synthesis and Biological Applications of Glycoconjugates)
Figures

Open AccessArticle Synthesis, Cytotoxicity and Molecular Docking Studies of the 9-Substituted 5-Styryltetrazolo[1,5-c]quinazoline Derivatives
Molecules 2017, 22(11), 1719; doi:10.3390/molecules22111719
Received: 4 August 2017 / Revised: 9 October 2017 / Accepted: 12 October 2017 / Published: 26 October 2017
PDF Full-text (2351 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this paper, we describe the synthesis of the 5-styryltetrazolo[1,5-c]quinazolines substituted at the 9-position with a 4-fluorophenyl ring directly or via a conjugated π-spacer (C=C or C≡C bond) based on the 6-bromo-4-chloro-2-styrylquinazoline scaffold. The structures of the synthesized compounds were characterized
[...] Read more.
In this paper, we describe the synthesis of the 5-styryltetrazolo[1,5-c]quinazolines substituted at the 9-position with a 4-fluorophenyl ring directly or via a conjugated π-spacer (C=C or C≡C bond) based on the 6-bromo-4-chloro-2-styrylquinazoline scaffold. The structures of the synthesized compounds were characterized based on a combination of 1H-NMR, 13C-NMR, IR and high resolution mass spectral data as well as microanalyses. The tetrazoloquinazolines were evaluated for potential in vitro cytotoxicity against the human breast adenocarcinoma (MCF-7) and cervical cancer (HeLa) cells. The anti-proliferative assays demonstrated that the 9-bromo-5-styryltetrazolo[1,5-c]quinazoline 3a and 9-bromo-5-(4-fluorostyryl)tetrazolo[1,5-c]quinazoline 3b exhibit significant cytotoxicity against both cell lines. A carbon-based substituent at the 9-position resulted in complete loss of cytotoxicity against both cell lines except for the 5,9-bis((E)-4-fluorostyryl)tetrazolo[1,5-c]quinazoline 4e, which was found to exhibit comparable cytotoxicity to that of Melphalan (IC50 = 61 μM) against the MCF-7 cell line with IC50 value of 62 μM. Molecular docking against tubulin (PDB:1TUB) showed that compounds 3a, 3b and 4e bind to the tubulin heterodimer. Binding involves hydrogen bonding for 3a and 3b and halogen interactions for 4e. Full article
Figures

Open AccessArticle Additivity vs Synergism: Investigation of the Additive Interaction of Cinnamon Bark Oil and Meropenem in Combinatory Therapy
Molecules 2017, 22(11), 1733; doi:10.3390/molecules22111733
Received: 25 August 2017 / Revised: 6 October 2017 / Accepted: 11 October 2017 / Published: 4 November 2017
PDF Full-text (2562 KB) | HTML Full-text | XML Full-text
Abstract
Combinatory therapies have been commonly applied in the clinical setting to tackle multi-drug resistant bacterial infections and these have frequently proven to be effective. Specifically, combinatory therapies resulting in synergistic interactions between antibiotics and adjuvant have been the main focus due to their
[...] Read more.
Combinatory therapies have been commonly applied in the clinical setting to tackle multi-drug resistant bacterial infections and these have frequently proven to be effective. Specifically, combinatory therapies resulting in synergistic interactions between antibiotics and adjuvant have been the main focus due to their effectiveness, sidelining the effects of additivity, which also lowers the minimal effective dosage of either antimicrobial agent. Thus, this study was undertaken to look at the effects of additivity between essential oils and antibiotic, via the use of cinnamon bark essential oil (CBO) and meropenem as a model for additivity. Comparisons between synergistic and additive interaction of CBO were performed in terms of the ability of CBO to disrupt bacterial membrane, via zeta potential measurement, outer membrane permeability assay and scanning electron microscopy. It has been found that the additivity interaction between CBO and meropenem showed similar membrane disruption ability when compared to those synergistic combinations which was previously reported. Hence, results based on our studies strongly suggest that additive interaction acts on a par with synergistic interaction. Therefore, further investigation in additive interaction between antibiotics and adjuvant should be performed for a more in depth understanding of the mechanism and the impacts of such interaction. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle Design, Synthesis and Evaluation of Novel 2-Hydroxypyrrolobenzodiazepine-5,11-dione Analogues as Potent Angiotensin Converting Enzyme (ACE) Inhibitors
Molecules 2017, 22(11), 1739; doi:10.3390/molecules22111739
Received: 27 September 2017 / Revised: 9 October 2017 / Accepted: 9 October 2017 / Published: 3 November 2017
PDF Full-text (4568 KB) | HTML Full-text | XML Full-text
Abstract
Under the guidance of combination of traditional Chinese medicine chemistry (CTCMC), this study describes the preparation of a phenolic acid/dipeptide/borneol hybrid consisting of phenolic acid and a bornyl moiety connected to the dipeptide N-terminal and C-terminal respectively. It also evaluates their
[...] Read more.
Under the guidance of combination of traditional Chinese medicine chemistry (CTCMC), this study describes the preparation of a phenolic acid/dipeptide/borneol hybrid consisting of phenolic acid and a bornyl moiety connected to the dipeptide N-terminal and C-terminal respectively. It also evaluates their angiotensin converting enzyme (ACE) inhibitory and synergistic antihypertensive activities. Briefly, a series of novel 2-hydroxypyrrolobenzodiazepine-5,11-dione analogues were prepared and investigated for their ability to inhibit ACE. The influence of the phenolic acid and bornyl moiety on subsite selectivity is also demonstrated. Among all the new compounds, two compounds—7a and 7g—reveal good inhibition potency in in vitro ACE-inhibitory tests. Interestingly, favorable binding results in molecular docking studies also supported the in vitro results. Additionally, the bioassay showed that oral administration of the two compounds displayed high and long-lasting antihypertensive activity both in acute antihypertensive tests and in therapeutic antihypertensive tests by non-invasive blood pressure measurements in spontaneously hypertensive rats. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle Anti-HIV Activity of Ocimum labiatum Extract and Isolated Pheophytin-a
Molecules 2017, 22(11), 1763; doi:10.3390/molecules22111763
Received: 10 September 2017 / Accepted: 16 October 2017 / Published: 6 November 2017
PDF Full-text (1221 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Ocimum plants are traditionally used to manage HIV/AIDS in various African countries. The effects of Ocimum labiatum extract on HIV-1 protease (PR) and reverse transcriptase (RT) is presented here along with characterization of an identified bioactive compound, achieved through 1H- and 13
[...] Read more.
Ocimum plants are traditionally used to manage HIV/AIDS in various African countries. The effects of Ocimum labiatum extract on HIV-1 protease (PR) and reverse transcriptase (RT) is presented here along with characterization of an identified bioactive compound, achieved through 1H- and 13C-NMR. The extract’s effect on HIV-1 replication was assessed by HIV-1 p24 antigen capture. Cytotoxicity of samples was evaluated using tetrazolium dyes and real-time cell electronic sensing (RT-CES). Ocimum labiatum inhibited HIV-1 PR with an IC50 value of 49.8 ± 0.4 μg/mL and presented weak inhibition (21%) against HIV-1 RT. The extract also reduced HIV-1 replication in U1 cells at a non-cytotoxic concentration (25 μg/mL). The CC50 value of the extract in U1 cells was 42.0 ± 0.13 μg/mL. The HIV-1 PR inhibiting fraction was purified using prep-HPLC and yielded a chlorophyll derivative, pheophytin-a (phy-a). Phy-a inhibited HIV-1 PR with an IC50 value of 44.4 ± 1.5 μg/mL (51 ± 1.7 μM). The low cytotoxicity of phy-a in TZM-bl cells was detected by RT-CES and the CC50 value in U1 cells was 51.3 ± 1.0 μg/mL (58.9 ± 1.2 μM). This study provides the first in vitro evidence of anti-HIV activity of O. labiatum and isolated phy-a, supporting further investigation of O. labiatum for lead compounds against HIV-1. Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Figure 1

Open AccessArticle Dimethyl Sulfoxide (DMSO) Decreases Cell Proliferation and TNF-α, IFN-γ, and IL-2 Cytokines Production in Cultures of Peripheral Blood Lymphocytes
Molecules 2017, 22(11), 1789; doi:10.3390/molecules22111789
Received: 6 September 2017 / Revised: 18 October 2017 / Accepted: 18 October 2017 / Published: 10 November 2017
PDF Full-text (1645 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Dimethylsulfoxide (DMSO) is an amphipathic molecule composed of a polar domain characterized by the sulfinyl and two nonpolar methyl groups, for this reason it is able to solubilize polar and nonpolar substances and transpose hydrophobic barriers. DMSO is widely used to solubilize drugs
[...] Read more.
Dimethylsulfoxide (DMSO) is an amphipathic molecule composed of a polar domain characterized by the sulfinyl and two nonpolar methyl groups, for this reason it is able to solubilize polar and nonpolar substances and transpose hydrophobic barriers. DMSO is widely used to solubilize drugs of therapeutic applications and studies indicated that 10% v/v concentration did not modify culture viability when used to treat human peripheral blood mononuclear cells (PBMC). However, some DMSO concentrations could influence lymphocyte activation and present anti-inflammatory effects. Therefore, the objective of this study was to evaluate the effect of DMSO on lymphocyte activation parameters. Cell viability analysis, proliferation, and cytokine production were performed on PBMC from six healthy subjects by flow cytometry. The results indicated that 2.5% v/v DMSO concentrations did not modify lymphocytes viability. DMSO at 1% and 2% v/v concentrations reduced the relative proliferation index of lymphocytes and at 5% and 10% v/v concentrations reduced the percentage of total lymphocytes, cluster of differentiation 4+ (CD4+) T lymphocytes and CD8+ T lymphocytes interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2) producers. Thus, it was concluded that DMSO has an in vitro anti-inflammatory effect by reducing lymphocyte activation demonstrated with proliferation reduction and the decrease of cytokine production. Full article
(This article belongs to the Special Issue Anti-inflammatory Agents)
Figures

Open AccessArticle Encapsulation Mechanism of Oxyresveratrol by β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin and Computational Analysis
Molecules 2017, 22(11), 1801; doi:10.3390/molecules22111801
Received: 19 September 2017 / Accepted: 19 October 2017 / Published: 31 October 2017
PDF Full-text (2408 KB) | HTML Full-text | XML Full-text
Abstract
In this study, the encapsulation mechanism of oxyresveratrol and β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) was studied. As this research shows, oxyresveratrol and two cyclodextrins (CDs) were able to form inclusion complexes in a 1:1 stoichiometry. However, the interaction with HP-β-CD was more efficient,
[...] Read more.
In this study, the encapsulation mechanism of oxyresveratrol and β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) was studied. As this research shows, oxyresveratrol and two cyclodextrins (CDs) were able to form inclusion complexes in a 1:1 stoichiometry. However, the interaction with HP-β-CD was more efficient, showing up as higher encapsulation constant (KF) (35,864.72 ± 3415.89 M−1). The KF values exhibited a strong dependence on temperature and pH, which decreased as they increased. From the thermodynamic parameters (ΔH0, ΔS0, and ΔG0) of the oxyresveratrol loaded β-CD (oxyresveratrol-β-CD) and HP-β-CD (oxyresveratrol-HP-β-CD), it could be seen that the complexation process was spontaneous and exothermic, and the main driving forces between oxyrsveratrol and CDs were hydrogen bonding and van der waals force. Besides, molecular docking combined with 1H-NMR were used to explain the most possible mode of interactions between oxyresveratrol and CDs. Full article
Figures

Open AccessArticle Simultaneous Determination of Seven Anthraquinone Aglycones of Crude and Processed Semen Cassiae Extracts in Rat Plasma by UPLC–MS/MS and Its Application to a Comparative Pharmacokinetic Study
Molecules 2017, 22(11), 1803; doi:10.3390/molecules22111803
Received: 28 September 2017 / Revised: 17 October 2017 / Accepted: 22 October 2017 / Published: 28 October 2017
PDF Full-text (1437 KB) | HTML Full-text | XML Full-text
Abstract
Semen cassiae is the ripe seed of Cassia obtusifolia L. or Cassia tora L. of the family Leguminosae. In traditional Chinese medicine, the two forms of Semen cassiae are raw Semen cassiae (R-SC) and parched Semen cassiae (P-SC). To clarify the processing mechanism
[...] Read more.
Semen cassiae is the ripe seed of Cassia obtusifolia L. or Cassia tora L. of the family Leguminosae. In traditional Chinese medicine, the two forms of Semen cassiae are raw Semen cassiae (R-SC) and parched Semen cassiae (P-SC). To clarify the processing mechanism of Semen cassiae, the pharmacokinetics of R-SC and P-SC extracts were examined. A simple, rapid, sensitive ultra-high-performance liquid chromatography–tandem mass spectroscopy (UPLC-MS/MS) method was developed and validated for the simultaneous determination of seven anthraquinone aglycones of Semen cassiae (aurantio-obtusin, obtusifolin, questin, 2-hydroxyemodin-1-methyl-ether, rhein, emodin, 1,2,7-trimethoxyl-6,8-dihydroxy-3-methylanthraquinone) to compare the pharmacokinetics of raw and parched Semen cassiae in rat plasma. Compared with the R-SC group, Cmax and AUC0-12 tended to be higher in the P-SC group. In particular, Cmax values for aurantio-obtusin, obtusifolin, questin, 2-hydroxyemodin-1-methyl-ether and rhein were significantly higher in the P-SC group (p < 0.05). Meanwhile, Tmax and MRT0-12 tended to be lower in the P-SC group. Specifically, Tmax for aurantio-obtusin and 2-hydroxyemodin-1-methyl-ether and MRT0-12 for obtusifolin and rhein were significantly higher in the P-SC group (p < 0.05). Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Open AccessArticle A Search for Dual Action HIV-1 Reverse Transcriptase, Bacterial RNA Polymerase Inhibitors
Molecules 2017, 22(11), 1808; doi:10.3390/molecules22111808
Received: 4 October 2017 / Revised: 19 October 2017 / Accepted: 22 October 2017 / Published: 25 October 2017
PDF Full-text (1516 KB) | HTML Full-text | XML Full-text
Abstract
Using molecular modeling approach, potential antibacterial agents with triazole core were proposed. A moderate to weak level of antibacterial activity in most of the compounds have been observed, with best minimal inhibitory concentration (MIC) value of 0.003 mg/mL, as shown by the 15
[...] Read more.
Using molecular modeling approach, potential antibacterial agents with triazole core were proposed. A moderate to weak level of antibacterial activity in most of the compounds have been observed, with best minimal inhibitory concentration (MIC) value of 0.003 mg/mL, as shown by the 15 against S. epidermidis. Studied compounds were also submitted to the antifungal assay. The best antifungal activity was detected for 16 with MIC at 0.125 and 0.25 mg/mL against C. albicans and C. parapsilosis, respectively. Full article
Figures

Figure 1

Open AccessArticle Hepatotoxicity Induced by Sophora flavescens and Hepatic Accumulation of Kurarinone, a Major Hepatotoxic Constituent of Sophora flavescens in Rats
Molecules 2017, 22(11), 1809; doi:10.3390/molecules22111809
Received: 20 September 2017 / Accepted: 23 October 2017 / Published: 25 October 2017
PDF Full-text (4598 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Our previous study showed that kurarinone was the main hepatotoxic ingredient of Sophora flavescens, accumulating in the liver. This study characterized the mechanism of Sophora flavescens extract (ESF) hepatotoxicity and hepatic accumulation of kurarinone. ESF impaired hepatic function and caused fat accumulation
[...] Read more.
Our previous study showed that kurarinone was the main hepatotoxic ingredient of Sophora flavescens, accumulating in the liver. This study characterized the mechanism of Sophora flavescens extract (ESF) hepatotoxicity and hepatic accumulation of kurarinone. ESF impaired hepatic function and caused fat accumulation in the liver after oral administration (1.25 and 2.5 g/kg for 14 days in rats). Serum metabolomics evaluation based on high-resolution mass spectrometry was conducted and real-time PCR was used to determine the expression levels of CPT-1, CPT-2, PPAR-α, and LCAD genes. Effects of kurarinone on triglyceride levels were evaluated in HL-7702 cells. Tissue distribution of kurarinone and kurarinone glucuronides was analyzed in rats receiving ESF (2.5 g/kg). Active uptake of kurarinone and kurarinone glucuronides was studied in OAT2-, OATP1B1-, OATP2B1-, and OATP1B3-transfected HEK293 cells. Our results revealed that after oral administration of ESF in rats, kurarinone glucuronides were actively transported into hepatocytes by OATP1B3 and hydrolyzed into kurarinone, which inhibited fatty acid β-oxidation through the reduction of l-carnitine and the inhibition of PPAR-α pathway, ultimately leading to lipid accumulation and liver injury. These findings contribute to understanding hepatotoxicity of kurarinone after oral administration of ESF. Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Figure 1

Open AccessArticle Synthesis, Structure, Surface and Antimicrobial Properties of New Oligomeric Quaternary Ammonium Salts with Aromatic Spacers
Molecules 2017, 22(11), 1810; doi:10.3390/molecules22111810
Received: 12 October 2017 / Revised: 22 October 2017 / Accepted: 24 October 2017 / Published: 25 October 2017
PDF Full-text (5893 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
New dimeric, trimeric and tetrameric quaternary ammonium salts were accomplished by reaction of tertiary alkyldimethyl amines with appropriate bromomethylbenzene derivatives. A series of new cationic surfactants contain different alkyl chain lengths (C4–C18), aromatic spacers and different numbers of quaternary nitrogen atoms. The structure
[...] Read more.
New dimeric, trimeric and tetrameric quaternary ammonium salts were accomplished by reaction of tertiary alkyldimethyl amines with appropriate bromomethylbenzene derivatives. A series of new cationic surfactants contain different alkyl chain lengths (C4–C18), aromatic spacers and different numbers of quaternary nitrogen atoms. The structure of the products was confirmed by spectral analysis (FT-IR, 1H-NMR, 13C-NMR and 2D-NMR), mass spectroscopy (ESI-MS), elemental analysis, as well as PM5 semiempirical methods. Compound (21) was also analyzed using X-ray crystallography. Critical micelle concentration (CMC) of 1,4-bis-[N-(1-alkyl)-N,N-dimethylammoniummethyl]benzene dibromides (39) was determined to characterize the aggregation behavior. The antimicrobial properties of novel QACs (Quaternary Ammonium Salts) were examined to set their minimal inhibitory concentration (MIC) values against fungi Aspergillus niger, Candida albicans, Penicillium chrysogenum and bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Figure 1

Open AccessArticle Design, Synthesis and Bioactivity Evaluation of Novel β-carboline 1,3,4-oxadiazole Derivatives
Molecules 2017, 22(11), 1811; doi:10.3390/molecules22111811
Received: 4 October 2017 / Revised: 15 October 2017 / Accepted: 19 October 2017 / Published: 29 October 2017
PDF Full-text (2728 KB) | HTML Full-text | XML Full-text
Abstract
A series of novel β-carboline 1,3,4-oxadiazole derivatives were designed and synthesized, and the in vitro cytotoxic activity against Sf9 cells and growth inhibitory activity against Spodoptera litura were evaluated. Bioassay results showed that most of these compounds exhibited excellent in vitro cytotoxic activity.
[...] Read more.
A series of novel β-carboline 1,3,4-oxadiazole derivatives were designed and synthesized, and the in vitro cytotoxic activity against Sf9 cells and growth inhibitory activity against Spodoptera litura were evaluated. Bioassay results showed that most of these compounds exhibited excellent in vitro cytotoxic activity. Especially, compound 37 displayed the best efficacy in vitro (IC50 = 3.93 μM), and was five-fold more potent than camptothecin (CPT) (IC50 = 18.95 μM). Moreover, compounds 5 and 37 could induce cell apoptosis and cell cycle arrest and stimulate Sf-caspase-1 activation in Sf9 cells. In vivo bioassay also demonstrated that compounds 5 and 37 could significantly inhibit larvae growth of S. litura with decreasing the weight of larvae and pupae. Based on these bioassay results, compounds 5 and 37 emerged as lead compounds for the development of potential insect growth inhibitions. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Solvent and Copper Ion-Induced Synthesis of Pyridyl–Pyrazole-3-One Derivatives: Crystal Structure, Cytotoxicity
Molecules 2017, 22(11), 1813; doi:10.3390/molecules22111813
Received: 12 September 2017 / Revised: 19 October 2017 / Accepted: 24 October 2017 / Published: 25 October 2017
PDF Full-text (2489 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Five novel compounds, methyl 5-(acetyloxy)-1-(6-bromo-2-pyridinyl)-1H-pyrazole-3-carboxylate (1), methyl 1-(6-bromo-2-pyridinyl)-5-hydroxy-1H-pyrazole-3-carboxylate (2), Trimethyl 1,1′,1′′-tris(6-bromo-2-pyridinyl)-5,5′′-dihydroxy-5′-oxo-1′,5′-dihydro-1H,1′′H-4,4′: 4′,4′′-terpyrazole-3,3′,3′′-tricarboxylate (H2L1, 3), [Cu2(L2)2]·CH3OH (4), H2L2A·CH3
[...] Read more.
Five novel compounds, methyl 5-(acetyloxy)-1-(6-bromo-2-pyridinyl)-1H-pyrazole-3-carboxylate (1), methyl 1-(6-bromo-2-pyridinyl)-5-hydroxy-1H-pyrazole-3-carboxylate (2), Trimethyl 1,1′,1′′-tris(6-bromo-2-pyridinyl)-5,5′′-dihydroxy-5′-oxo-1′,5′-dihydro-1H,1′′H-4,4′: 4′,4′′-terpyrazole-3,3′,3′′-tricarboxylate (H2L1, 3), [Cu2(L2)2]·CH3OH (4), H2L2A·CH3CN (5) were synthesized. Compounds 15 characterized by elemental analysis, IR, and X-ray single-crystal diffraction. And 13 were also characterized by 1H NMR, 13C NMR and ESI-MS. The H2L1, H2L2 were formed by in-situ reaction. H2L2 and H2L2A are mesomer compounds which have two chiral carbons. The antitumor activity of compounds 15 against BEL-7404, HepG2, NCI-H460, T-24, A549 tumor cell lines were screened by methylthiazolyl tetrozolium (MTT) assay. The compounds 1, 2 showed weakly growth inhibition on the HepG2 cell lines. The HepG2 and A549 cell lines showed higher sensitivity to compound 4, while the IC50 values are 10.66, 28.09 μM, respectively. It is worth noting that compounds 15 did not show cytotoxicity to human normal liver cell line HL-7702, suggesting its cytotoxic selectivity on these tumor cell lines. Full article
(This article belongs to the Special Issue Pyrazole Derivatives)
Figures

Open AccessArticle Anticancer Effects of Resveratrol-Loaded Solid Lipid Nanoparticles on Human Breast Cancer Cells
Molecules 2017, 22(11), 1814; doi:10.3390/molecules22111814
Received: 16 September 2017 / Accepted: 21 October 2017 / Published: 25 October 2017
PDF Full-text (3170 KB) | HTML Full-text | XML Full-text
Abstract
In this study, resveratrol-loaded solid lipid nanoparticles (Res-SLNs) were successfully designed to treat MDA-MB-231 cells. The Res-SLNs were prepared using emulsification and low-temperature solidification method. The Res-SLNs were spherical, with small size, negative charge, and narrow size distribution. Compared with free resveratrol, the
[...] Read more.
In this study, resveratrol-loaded solid lipid nanoparticles (Res-SLNs) were successfully designed to treat MDA-MB-231 cells. The Res-SLNs were prepared using emulsification and low-temperature solidification method. The Res-SLNs were spherical, with small size, negative charge, and narrow size distribution. Compared with free resveratrol, the Res-SLNs displayed a superior ability in inhibiting the proliferation of MDA-MB-231 cells. In addition, Res-SLNs exhibited much stronger inhibitory effects on the invasion and migration of MDA-MB-231 cells. Western blot analysis revealed that Res-SLNs could promote the ratio of Bax/Bcl-2 but decreased the expression of cyclinD1 and c-Myc. These results indicate that the Res-SLN may have great potential for breast cancer treatment. Full article
Figures

Figure 1

Open AccessArticle Studies on the Synthesis, Photophysical and Biological Evaluation of Some Unsymmetrical Meso-Tetrasubstituted Phenyl Porphyrins
Molecules 2017, 22(11), 1815; doi:10.3390/molecules22111815
Received: 6 September 2017 / Revised: 18 October 2017 / Accepted: 22 October 2017 / Published: 25 October 2017
PDF Full-text (4059 KB) | HTML Full-text | XML Full-text
Abstract
Abstract: We designed three unsymmetrical meso-tetrasubstituted phenyl porphyrins for further development as theranostic agents for cancer photodynamic therapy (PDT): 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (P2.2), Zn(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Zn(II)2.2) and Cu(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Cu(II)2.2). The porphyrinic compounds were synthesized and their structures were confirmed by elemental analysis, FT-IR, UV-Vis, EPR
[...] Read more.
Abstract: We designed three unsymmetrical meso-tetrasubstituted phenyl porphyrins for further development as theranostic agents for cancer photodynamic therapy (PDT): 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (P2.2), Zn(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Zn(II)2.2) and Cu(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Cu(II)2.2). The porphyrinic compounds were synthesized and their structures were confirmed by elemental analysis, FT-IR, UV-Vis, EPR and NMR. The compounds had a good solubility in polar/nonpolar media. P2.2 and, to a lesser extent, Zn(II)2.2 were fluorescent, albeit with low fluoresence quantum yields. P2.2 and Zn(II)2.2 exhibited PDT-acceptable values of singlet oxygen generation. A “dark” cytotoxicity study was performed using cells that are relevant for the tumor niche (HT-29 colon carcinoma cells and L929 fibroblasts) and for blood (peripheral mononuclear cells). Cellular uptake of fluorescent compounds, cell viability/proliferation and death were evaluated. P2.2 was highlighted as a promising theranostic agent for PDT in solid tumors considering that P2.2 generated PDT-acceptable singlet oxygen yields, accumulated into tumor cells and less in blood cells, exhibited good fluorescence within cells for imagistic detection, and had no significant cytotoxicity in vitro against tumor and normal cells. Complexing of P2.2 with Zn(II) or Cu(II) altered several of its PDT-relevant properties. These are consistent arguments for further developing P2.2 in animal models of solid tumors for in vivo PDT. Full article
Figures

Open AccessArticle Synthesis, Crystal Structure, and Photoluminescent Properties of 3,3′,4,4′-Tetraethyl-5,5′-divinyl-2,2′-bipyrrole Derivatives
Molecules 2017, 22(11), 1816; doi:10.3390/molecules22111816
Received: 13 September 2017 / Revised: 12 October 2017 / Accepted: 23 October 2017 / Published: 26 October 2017
PDF Full-text (2152 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Photoluminescent divinylbipyrroles were synthesized from 3,3′,4,4′-tetraetyl-2,2′-bipyrrole-5,5′-dicarboxaldehyde and activated methylene compounds via aldol condensation. For mechanistic clarity, molecular structures of Meldrum’s acid- and 1,3-dimethylbarbituric acid-derived divinylbipyrroles were determined by single-crystal X-ray diffraction. Photoluminescent properties of the synthesized divinylbipyrroles in dichloromethane were found to be
[...] Read more.
Photoluminescent divinylbipyrroles were synthesized from 3,3′,4,4′-tetraetyl-2,2′-bipyrrole-5,5′-dicarboxaldehyde and activated methylene compounds via aldol condensation. For mechanistic clarity, molecular structures of Meldrum’s acid- and 1,3-dimethylbarbituric acid-derived divinylbipyrroles were determined by single-crystal X-ray diffraction. Photoluminescent properties of the synthesized divinylbipyrroles in dichloromethane were found to be dependent on the presence of electron withdrawing groups at the vinylic terminal. The divinylbipyrroles derived from malononitrile, Meldrum’s acid, and 1,3-dimethylbarbituric acid showed fluorescent peaks at 553, 576, and 602 nm respectively. Computational studies indicated that the alkyl substituents on the bipyrrole 3 and 3′ positions increased energy level of the highest occupied molecular orbital (HOMO) compared to the unsubstituted derivatives and provided rationale for the bathochromic shift of the ultraviolet-visible (UV-Vis) spectra compared to the previously reported analogs. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Open AccessArticle Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria
Molecules 2017, 22(11), 1817; doi:10.3390/molecules22111817
Received: 2 October 2017 / Revised: 25 October 2017 / Accepted: 25 October 2017 / Published: 26 October 2017
PDF Full-text (1756 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A library of 66 cyclic decapeptides incorporating a Trp residue was synthesized on solid phase and screened against the phytopathogenic bacteria Pseudomonas syringae pv. syringae, Xanthomonas axonopodis pv. vesicatoria, and Erwinia amylovora. The hemolytic activity of these peptides was also evaluated.
[...] Read more.
A library of 66 cyclic decapeptides incorporating a Trp residue was synthesized on solid phase and screened against the phytopathogenic bacteria Pseudomonas syringae pv. syringae, Xanthomonas axonopodis pv. vesicatoria, and Erwinia amylovora. The hemolytic activity of these peptides was also evaluated. The results obtained were compared with those of a collection of Phe analogues previously reported. The analysis of the data showed that the presence of the Trp improved the antibacterial activity against these three pathogens. In particular, 40 to 46 Trp analogues displayed lower minimum inhibitory concentration (MIC) values than their corresponding Phe counterparts. Interestingly, 26 Trp-containing sequences exhibited MIC of 0.8 to 3.1 μM against X. axonopodis pv. vesicatoria, 21 peptides MIC of 1.6 to 6.2 μM against P. syringae pv. syringae and six peptides MIC of 6.2 to 12.5 μM against E. amylovora. Regarding the hemolysis, in general, Trp derivatives displayed a percentage of hemolysis comparable to that of their Phe analogues. Notably, 49 Trp-containing cyclic peptides showed a hemolysis ≤ 20% at 125 μM. The peptides with the best biological activity profile were c(LKKKLWKKLQ) (BPC086W) and c(LKKKKWLLKQ) (BPC108W), which displayed MIC values ranging from 0.8 to 12.5 μM and a hemolysis ≤ 8% at 125 μM. Therefore, it is evident that these Trp sequences constitute promising candidates for the development of new agents for use in plant protection. Full article
(This article belongs to the Special Issue Antimicrobial Peptides and Peptidomimetics)
Figures

Figure 1

Open AccessArticle Synthesis and 2D-QSAR Study of Active Benzofuran-Based Vasodilators
Molecules 2017, 22(11), 1820; doi:10.3390/molecules22111820
Received: 18 September 2017 / Accepted: 22 October 2017 / Published: 26 October 2017
PDF Full-text (893 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A new series of 2-alkyloxy-pyridine-3-carbonitrile-benzofuran hybrids (4ax) was synthesized. All the new derivatives were examined via the standard technique for their vasodilation activity. Some of the investigated compounds exhibited a remarkable activity, with compounds 4w, 4e, 4r
[...] Read more.
A new series of 2-alkyloxy-pyridine-3-carbonitrile-benzofuran hybrids (4ax) was synthesized. All the new derivatives were examined via the standard technique for their vasodilation activity. Some of the investigated compounds exhibited a remarkable activity, with compounds 4w, 4e, 4r, 4s, 4f and 4g believed to be the most active hits in this study with IC50 values 0.223, 0.253, 0.254, 0.268, 0.267 and 0.275 mM, respectively, compared with amiodarone hydrochloride, the reference standard used (IC50 = 0.300 mM). CODESSA PRO was employed to obtain a statistically significant 2-Dimensional Quantitative Structure Activity Relationship (2D-QSAR) model describing the bioactivity of the newly synthesized analogs (N = 24, n = 4, R2 = 0.816, R2cvOO = 0.731, R2cvMO = 0.772, F = 21.103, s2 = 6.191 × 10−8). Full article
(This article belongs to the Section Bioorganic Chemistry)
Figures

Open AccessArticle The Novel Triazolonaphthalimide Derivative LSS-11 Synergizes the Anti-Proliferative Effect of Paclitaxel via STAT3-Dependent MDR1 and MRP1 Downregulation in Chemoresistant Lung Cancer Cells
Molecules 2017, 22(11), 1822; doi:10.3390/molecules22111822
Received: 19 September 2017 / Revised: 15 October 2017 / Accepted: 23 October 2017 / Published: 26 October 2017
PDF Full-text (4636 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Multidrug resistance (MDR) is a major cause of the inefficacy and poor response to paclitaxel-based chemotherapy. The combination of conventional cytotoxic drugs has been a plausible strategy for overcoming paclitaxel resistance. Herein, we investigated the cytotoxic effects and underlying mechanism of LSS-11,
[...] Read more.
Multidrug resistance (MDR) is a major cause of the inefficacy and poor response to paclitaxel-based chemotherapy. The combination of conventional cytotoxic drugs has been a plausible strategy for overcoming paclitaxel resistance. Herein, we investigated the cytotoxic effects and underlying mechanism of LSS-11, a novel naphthalimide derivative-based topoisomerase inhibitor, in paclitaxel-resistant A549 (A549/T) lung cancer cells. LSS-11 enhanced cell death in A549/T cells by inducing apoptosis through increasing the DR5 protein level and PARP1 cleavage. Importantly, LSS-11 dose-dependently reduced STAT3 phosphorylation and downregulated its target genes MDR1 and MRP1, without affecting P-gp transport function. Chromatin coimmunoprecipitation (ChIP) assay further revealed that LSS-11 hindered the binding of STAT3 to the MDR1 and MRP1 promoters. Additionally, pharmacological inhibition of p-STAT3 by sulforaphane downregulated MDR1 and MRP1, resulting in A549/T cell death by triggering apoptosis. Collectively, our data show that LSS-11 is a potent naphthalimide-based chemosensitizer that could enhance cell death in paclitaxel-resistant lung cancer cells through the DR5/PARP1 pathway and STAT3/MDR1/MRP1 STAT3 inhibition. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle Asperflavin, an Anti-Inflammatory Compound Produced by a Marine-Derived Fungus, Eurotium amstelodami
Molecules 2017, 22(11), 1823; doi:10.3390/molecules22111823
Received: 21 September 2017 / Revised: 15 October 2017 / Accepted: 24 October 2017 / Published: 29 October 2017
PDF Full-text (1842 KB) | HTML Full-text | XML Full-text
Abstract
In the present study, 16 marine-derived fungi were isolated from four types of marine materials including float, algae, animals and drift woods along with the coast of Jeju Island, Korea and evaluated for anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW 24.7 cells. The broth
[...] Read more.
In the present study, 16 marine-derived fungi were isolated from four types of marine materials including float, algae, animals and drift woods along with the coast of Jeju Island, Korea and evaluated for anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW 24.7 cells. The broth and mycelium extracts from the 16 fungi were prepared and the broth extract (BE) of Eurotium amstelodami (015-2) inhibited nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells without cytotoxicity. By further bioassay-guided isolation, three compounds including asperflavin, neoechinulin A and preechinulin were successfully isolated from the BE of E. amstelodami. It was revealed that asperflavin showed no cytotoxicity up to 200 μM and significantly inhibited LPS-induced NO and PGE2 production in a dose-dependent manner. In the western blot results, asperflavin suppressed only inducible NOS (iNOS), but COX-2 were slightly down-regulated. Asperflavin was also observed to inhibit the production of pro-inflammatory cytokines including TNF-α, IL-1β, and IL-6. In conclusion, this study reports a potential use of asperflavin isolated from a marine fungus, E. amstelodami as an anti-inflammatory agent via suppression of iNOS and pro-inflammatory cytokines as well as no cytotoxicity. Full article
(This article belongs to the Special Issue Biological Activity of Secondary Metabolites)
Figures

Figure 1

Open AccessArticle Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue
Molecules 2017, 22(11), 1824; doi:10.3390/molecules22111824
Received: 19 September 2017 / Revised: 16 October 2017 / Accepted: 24 October 2017 / Published: 26 October 2017
PDF Full-text (1815 KB) | HTML Full-text | XML Full-text
Abstract
By using cyclodextrin (α-CD) self-assembly into a hydrogel with the triblock copolymer Pluronic F127, nanomicrocrystalline cellulose was introduced into a gel system to form a composite CNC-β-CD/α-CD/Pluronic F127 hydrogel (CCH). CCH was modified further by grafting acrylic acid to form a novel acrylated
[...] Read more.
By using cyclodextrin (α-CD) self-assembly into a hydrogel with the triblock copolymer Pluronic F127, nanomicrocrystalline cellulose was introduced into a gel system to form a composite CNC-β-CD/α-CD/Pluronic F127 hydrogel (CCH). CCH was modified further by grafting acrylic acid to form a novel acrylated composite hydrogel (ACH). The swelling degree of ACH was 156 g/g. Adsorption isotherms show that the adsorption process for methylene blue proximity fitted the Freundlich model. The adsorption kinetics showed that ACH followed a quasi-second-order kinetic model. Methylene blue desorption showed that ACH was a temperature- and pH-dependent gel. Repeated adsorption and desorption experiments were carried out three times, and the removal rate of methylene blue at 75 mg/L was still 70.1%. Full article
Figures

Figure 1

Open AccessArticle Chemical Constituents from the Flower of Hosta plantaginea with Cyclooxygenases Inhibition and Antioxidant Activities and Their Chemotaxonomic Significance
Molecules 2017, 22(11), 1825; doi:10.3390/molecules22111825
Received: 29 September 2017 / Revised: 20 October 2017 / Accepted: 25 October 2017 / Published: 26 October 2017
PDF Full-text (835 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Two new phenolic glucosides, hostaflavanone A (1) and anti-1-phenylpropane-1,2-diol-2-O-β-d-glucopyranoside (2), together with six known compounds, anti-1-phenylpropane-1,2-diol (3), phenethyl-O-β-d-glucopyranoside (4), phenethanol-β-d-gentiobioside (5),
[...] Read more.
Two new phenolic glucosides, hostaflavanone A (1) and anti-1-phenylpropane-1,2-diol-2-O-β-d-glucopyranoside (2), together with six known compounds, anti-1-phenylpropane-1,2-diol (3), phenethyl-O-β-d-glucopyranoside (4), phenethanol-β-d-gentiobioside (5), phenethyl-O-rutinoside (6), (1S, 3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (7), and (1R, 3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (8), were isolated from the flower of Hosta plantaginea, and their structures were elucidated by nuclear magnetic resonance (NMR), high resolution electrospray ionization mass spectroscopy (HRESIMS), and circular dichroism (CD) analyses. The cyclooxygenases (COX-1 and COX-2) inhibition and antioxidant activities of compounds 1 and 46 were investigated, and they showed moderate cyclooxygenases inhibition activities. Moreover, only compound 1 exhibited moderate antioxidant activity, with an IC50 value of 83.2 μM, while 46 showed insignificant activity with IC50 values of 282, 257, and 275 μM, respectively. This is the first report of compounds 3 and 58 from the Liliaceae family. The chemotaxonomic significance of the isolated compounds was also summarized. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle Spectrum-Effect Relationships between Fingerprints of Caulophyllum robustum Maxim and Inhabited Pro-Inflammation Cytokine Effects
Molecules 2017, 22(11), 1826; doi:10.3390/molecules22111826
Received: 2 September 2017 / Revised: 21 October 2017 / Accepted: 22 October 2017 / Published: 26 October 2017
PDF Full-text (1913 KB) | HTML Full-text | XML Full-text
Abstract
Caulophyllum robustum Maxim (CRM) is a Chinese folk medicine with significant effect on treatment of rheumatoid arthritis (RA). This study was designed to explore the spectrum-effect relationships between high-performance liquid chromatography (HPLC) fingerprints and the anti-inflammatory effects of CRM. Seventeen common peaks were
[...] Read more.
Caulophyllum robustum Maxim (CRM) is a Chinese folk medicine with significant effect on treatment of rheumatoid arthritis (RA). This study was designed to explore the spectrum-effect relationships between high-performance liquid chromatography (HPLC) fingerprints and the anti-inflammatory effects of CRM. Seventeen common peaks were detected by fingerprint similarity evaluation software. Among them, 15 peaks were identified by Liquid Chromatography-Mass Spectrometry (LC-MS). Pharmacodynamics experiments were conducted in collagen-induced arthritis (CIA) mice to obtain the anti-inflammatory effects of different batches of CRM with four pro-inflammation cytokines (TNF-α, IL-β, IL-6, and IL-17) as indicators. These cytokines were suppressed at different levels according to the different batches of CRM treatment. The spectrum-effect relationships between chemical fingerprints and the pro-inflammation effects of CRM were established by multiple linear regression (MLR) and gray relational analysis (GRA). The spectrum-effect relationships revealed that the alkaloids (N-methylcytisine, magnoflorine), saponins (leiyemudanoside C, leiyemudanoside D, leiyemudanoside G, leiyemudanoside B, cauloside H, leonticin D, cauloside G, cauloside D, cauloside B, cauloside C, and cauloside A), sapogenins (oleanolic acid), β-sitosterols, and unknown compounds (X3, X17) together showed anti-inflammatory efficacy. The results also showed that the correlation between saponins and inflammatory factors was significantly closer than that of alkaloids, and saponins linked with less sugar may have higher inhibition effect on pro-inflammatory cytokines in CIA mice. This work provided a general model of the combination of HPLC and anti-inflammatory effects to study the spectrum-effect relationships of CRM, which can be used to discover the active substance and to control the quality of this treatment. Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Figure 1a

Open AccessArticle New 2-Phenylthiazoles as Potential Sortase A Inhibitors: Synthesis, Biological Evaluation and Molecular Docking
Molecules 2017, 22(11), 1827; doi:10.3390/molecules22111827
Received: 5 October 2017 / Accepted: 22 October 2017 / Published: 27 October 2017
PDF Full-text (3319 KB) | HTML Full-text | XML Full-text
Abstract
Sortase A inhibition is a well establish strategy for decreasing bacterial virulence by affecting numerous key processes that control biofilm formation, host cell entry, evasion and suppression of the immune response and acquisition of essential nutrients. A meta-analysis of structures known to act
[...] Read more.
Sortase A inhibition is a well establish strategy for decreasing bacterial virulence by affecting numerous key processes that control biofilm formation, host cell entry, evasion and suppression of the immune response and acquisition of essential nutrients. A meta-analysis of structures known to act as Sortase A inhibitors provided the starting point for identifying a new potential scaffold. Based on this template a series of new potential Sortase A inhibitors, that contain the 2-phenylthiazole moiety, were synthesized. The physicochemical characterisation confirmed the identity of the proposed structures. Antibacterial activity evaluation showed that the new compounds have a reduced activity against bacterial cell viability. However, the compounds prevent biofilm formation at very low concentrations, especially in the case of E. faecalis. Molecular docking studies performed estimate that this is most likely due to the inhibition of Sortase A. The new compounds could be used as add-on therapies together with known antibacterial agents in order to combat multidrug-resistance enterococcal infections. Full article
(This article belongs to the Special Issue Focusing on Sulfur in Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Bacterial Expression of Human Butyrylcholinesterase as a Tool for Nerve Agent Bioscavengers Development
Molecules 2017, 22(11), 1828; doi:10.3390/molecules22111828
Received: 11 October 2017 / Accepted: 23 October 2017 / Published: 27 October 2017
PDF Full-text (3474 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Human butyrylcholinesterase is a performant stoichiometric bioscavenger of organophosphorous nerve agents. It is either isolated from outdated plasma or functionally expressed in eukaryotic systems. Here, we report the production of active human butyrylcholinesterase in a prokaryotic system after optimization of the primary sequence
[...] Read more.
Human butyrylcholinesterase is a performant stoichiometric bioscavenger of organophosphorous nerve agents. It is either isolated from outdated plasma or functionally expressed in eukaryotic systems. Here, we report the production of active human butyrylcholinesterase in a prokaryotic system after optimization of the primary sequence through the Protein Repair One Stop Shop process, a structure- and sequence-based algorithm for soluble bacterial expression of difficult eukaryotic proteins. The mutant enzyme was purified to homogeneity. Its kinetic parameters with substrate are similar to the endogenous human butyrylcholinesterase or recombinants produced in eukaryotic systems. The isolated protein was prone to crystallize and its 2.5-Å X-ray structure revealed an active site gorge region identical to that of previously solved structures. The advantages of this alternate expression system, particularly for the generation of butyrylcholinesterase variants with nerve agent hydrolysis activity, are discussed. Full article
Figures

Open AccessArticle Inhibition of Human Kallikrein 5 Protease by Triterpenoids from Natural Sources
Molecules 2017, 22(11), 1829; doi:10.3390/molecules22111829
Received: 29 September 2017 / Revised: 16 October 2017 / Accepted: 24 October 2017 / Published: 27 October 2017
PDF Full-text (2303 KB) | HTML Full-text | XML Full-text
Abstract
Stratum corneum tryptic enzyme kallikrein 5 (KLK5) is a serine protease that is involved in the cell renewal and maintenance of the skin barrier function. The excessive activation of KLK5 causes an exacerbation of dermatoses, such as rosacea and atopic dermatitis. Some triterpenoids
[...] Read more.
Stratum corneum tryptic enzyme kallikrein 5 (KLK5) is a serine protease that is involved in the cell renewal and maintenance of the skin barrier function. The excessive activation of KLK5 causes an exacerbation of dermatoses, such as rosacea and atopic dermatitis. Some triterpenoids are reported to suppress the serine proteases. We aimed to investigate whether bioactive triterpenoids modulate the KLK5 protease. Nineteen triterpenoids occurring in medicinal crude drugs were evaluated using an enzymatic assay to measure the anti-KLK5 activity. The KLK5-dependent cathelicidin peptide LL-37 production in human keratinocytes was examined using immunoprecipitation and Western blotting. Screening assays for evaluating the anti-KLK5 activity revealed that ursolic acid, oleanolic acid, saikosaponin b1, tumulosic acid and pachymic acid suppressed the KLK5 protease activity, although critical molecular moieties contributing to anti-KLK5 activity were unclarified. Ursolic acid and tumulosic acid suppressed the proteolytic processing of LL-37 in keratinocytes at ≤10 μM; no cytotoxicity was observed. Both triterpenoids were detected in the plasma of rats administered orally with triterpenoid-rich crude drug Jumihaidokuto. Our study reveals that triterpenoids, such as ursolic acid and tumulosic acid, modulate the KLK5 protease activity and cathelicidin peptide production. Triterpenoids may affect the skin barrier function via the regulation of proteases. Full article
(This article belongs to the Special Issue Biological Activity of Secondary Metabolites)
Figures

Open AccessArticle Stenotrophomonas maltophilia: A Gram-Negative Bacterium Useful for Transformations of Flavanone and Chalcone
Molecules 2017, 22(11), 1830; doi:10.3390/molecules22111830
Received: 3 October 2017 / Accepted: 22 October 2017 / Published: 27 October 2017
PDF Full-text (1792 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A group of flavones, isoflavones, flavanones, and chalcones was subjected to small-scale biotransformation studies with the Gram-negative Stenotrophomonas maltophilia KB2 strain in order to evaluate the capability of this strain to transform flavonoid compounds and to investigate the relationship between compound structure and
[...] Read more.
A group of flavones, isoflavones, flavanones, and chalcones was subjected to small-scale biotransformation studies with the Gram-negative Stenotrophomonas maltophilia KB2 strain in order to evaluate the capability of this strain to transform flavonoid compounds and to investigate the relationship between compound structure and transformation type. The tested strain transformed flavanones and chalcones. The main type of transformation of compounds with a flavanone moiety was central heterocyclic C ring cleavage, leading to chalcone and dihydrochalcone structures, whereas chalcones underwent reduction to dihydrochalcones and cyclisation to a benzo-γ-pyrone moiety. Substrates with a C-2–C-3 double bond (flavones and isoflavones) were not transformed by Stenotrophomonas maltophilia KB2. Full article
(This article belongs to the Section Bioorganic Chemistry)
Figures

Open AccessArticle Binding of Harmine Derivatives to DNA: A Spectroscopic Investigation
Molecules 2017, 22(11), 1831; doi:10.3390/molecules22111831
Received: 28 September 2017 / Revised: 20 October 2017 / Accepted: 24 October 2017 / Published: 27 October 2017
PDF Full-text (5333 KB) | HTML Full-text | XML Full-text
Abstract
Harmine belongs to a group of β-carboline alkaloids endowed with antitumor properties. Harmine and its derivatives are thought to bind to DNA and interfere with topoisomerase activities. We investigated the base-dependent binding of harmine, and three of its synthetic anticancer-active derivatives to the
[...] Read more.
Harmine belongs to a group of β-carboline alkaloids endowed with antitumor properties. Harmine and its derivatives are thought to bind to DNA and interfere with topoisomerase activities. We investigated the base-dependent binding of harmine, and three of its synthetic anticancer-active derivatives to the genomic DNA from calf thymus and two synthetic 20-mer double helices, the poly(dG-dC)·poly(dG-dC) and the poly(dA-dT)·poly(dA-dT), by means of UV-Vis and circular dichroism (CD) spectroscopies. The data show that the DNA binding and stabilising properties of the investigated derivatives are base pair-dependent. These results could be used as a guide to design and develop further bioactive analogues. Full article
(This article belongs to the collection New Frontiers in Nucleic Acid Chemistry)
Figures

Figure 1

Open AccessArticle UPLC-PDA-Q/TOF-MS Profile of Polyphenolic Compounds of Liqueurs from Rose Petals (Rosa rugosa)
Molecules 2017, 22(11), 1832; doi:10.3390/molecules22111832
Received: 13 October 2017 / Revised: 24 October 2017 / Accepted: 25 October 2017 / Published: 27 October 2017
PDF Full-text (734 KB) | HTML Full-text | XML Full-text
Abstract
Polyphenolic compounds, as a secondary metabolite of plants, possess great nutritional and pharmacological potential. Herein, we applied the green analytical method to study the nutrient profile of Rosa rugosa petals and liqueurs manufactured from them. Using the fast and validated ultra performance liquid
[...] Read more.
Polyphenolic compounds, as a secondary metabolite of plants, possess great nutritional and pharmacological potential. Herein, we applied the green analytical method to study the nutrient profile of Rosa rugosa petals and liqueurs manufactured from them. Using the fast and validated ultra performance liquid chromatography-photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method, we confirm the presence of the following compounds: phenolic acids, flavonols, flavan-3-ols and hydrolisable tannins (gallotannins and ellagitannins). R. rugosa petals contains up to 2175.43 mg polyphenols per 100 g fresh weight, therein 1517.01 mg ellagitannins per 100 g fresh weight. Liqueurs, traditionally manufactured from said petals using a conventional extraction method (maceration), also contain polyphenols in significant amounts (from 72% to 96% corresponding to percentage of theoretical polyphenol content in the used petals), therein ellagitannins amount to 69.7% on average. We confirmed that traditional maceration, most common for the isolation of polyphenols, is still suitable for the food industry due to its using aqueous ethanol, a common bio-solvent, easily available in high purity and completely biodegradable. Therefore R. rugosa used as a food may be considered as an ellagitannin-rich plant of economic importance. Manufactured rose liqueurs were stable and kept all their properties during the whole period of aging. Full article
Figures

Figure 1

Open AccessArticle ‘Click Chemistry’ Synthesis of Novel Natural Product-Like Caged Xanthones Bearing a 1,2,3-Triazole Moiety with Improved Druglike Properties as Orally Active Antitumor Agents
Molecules 2017, 22(11), 1834; doi:10.3390/molecules22111834
Received: 12 October 2017 / Revised: 26 October 2017 / Accepted: 26 October 2017 / Published: 27 October 2017
PDF Full-text (1997 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
DDO-6101, a natural-product-like caged xanthone discovered previously in our laboratory based on the pharmacophoric scaffold of the Garcinia natural product gambogic acid (GA), shows potent cytotoxicity in vitro, but poor efficacy in vivo due to its poor druglike properties. In order to
[...] Read more.
DDO-6101, a natural-product-like caged xanthone discovered previously in our laboratory based on the pharmacophoric scaffold of the Garcinia natural product gambogic acid (GA), shows potent cytotoxicity in vitro, but poor efficacy in vivo due to its poor druglike properties. In order to improve the druglike properties and in vivo antitumor potency, a novel series of ten triazole-bearing caged xanthone derivatives of DDO-6101 has been efficiently synthesized by ‘click chemistry’ and evaluated for their in vitro antitumor activity and druglike properties. Most of the target compounds have sustained cytotoxicity against A549, HepG2, HCT116, and U2OS cancer cells and possess improved aqueous solubility, as well as permeability. Notably, these caged xanthones are also active towards taxol-resistant or cisplatin-resistant A549 cancer cells. Taking both the in vitro activities and druglike properties into consideration, compound 8g has been advanced into in vivo efficacy experiments. The results reveal that 8g (named as DDO-6318), both by intravenous or per os administration, are much more potent than the lead DDO-6101 in A549-transplanted mice models and it could be a promising antitumor candidate for further evaluation. Full article
(This article belongs to the Special Issue Natural Products: Anticancer Potential and Beyond)
Figures

Open AccessArticle Semisynthesis, an Anti-Inflammatory Effect of Derivatives of 1β-Hydroxy Alantolactone from Inula britannica
Molecules 2017, 22(11), 1835; doi:10.3390/molecules22111835
Received: 14 September 2017 / Revised: 20 October 2017 / Accepted: 22 October 2017 / Published: 27 October 2017
PDF Full-text (1431 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
1β-hydroxy alantolactone, a sesquiterpene lactone mainly isolated from Inula genus plants, exhibits potent anti-inflammatory and anticancer activities. In this work, 1β-hydroxy alantolactone was isolated and five derivatives were prepared through different reactions at the C1-OH and C13-methylene motifs. The structure–activity relationships (SAR) of
[...] Read more.
1β-hydroxy alantolactone, a sesquiterpene lactone mainly isolated from Inula genus plants, exhibits potent anti-inflammatory and anticancer activities. In this work, 1β-hydroxy alantolactone was isolated and five derivatives were prepared through different reactions at the C1-OH and C13-methylene motifs. The structure–activity relationships (SAR) of anti-inflammatory effects against NO production in RAW264.7 cells showed that the α-methylene-γ-butyrolactone motif was essential for NO production suppression and that retaining the C1-OH group can remarkably improve this effect. The NF-κB signaling pathway plays a pivotal role in the regulation of NO expression. Moreover, the levels of p65 and p50 phosphorylation were investigated and active compound 1 inhibited phosphorylation of p65 and p50 in TNF-α-induced NF-κB signaling. Further molecular docking suggested that 1 may target the p65 of NF-κB. Full article
Figures

Figure 1

Open AccessArticle Determination of the Bridging Ligand in the Active Site of Tyrosinase
Molecules 2017, 22(11), 1836; doi:10.3390/molecules22111836
Received: 29 September 2017 / Revised: 23 October 2017 / Accepted: 25 October 2017 / Published: 28 October 2017
PDF Full-text (2553 KB) | HTML Full-text | XML Full-text
Abstract
Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In
[...] Read more.
Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA) calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule. Full article
(This article belongs to the Section Theoretical Chemistry)
Figures

Figure 1

Open AccessArticle A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria
Molecules 2017, 22(11), 1837; doi:10.3390/molecules22111837
Received: 20 September 2017 / Revised: 16 October 2017 / Accepted: 23 October 2017 / Published: 1 November 2017
PDF Full-text (3964 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional
[...] Read more.
Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of PfCSP, STARP; MSA1 and Pf155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei-ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems. Full article
(This article belongs to the Special Issue Peptide Therapeutics)
Figures

Open AccessArticle In-Silico UHPLC Method Optimization for Aglycones in the Herbal Laxatives Aloe barbadensis Mill., Cassia angustifolia Vahl Pods, Rhamnus frangula L. Bark, Rhamnus purshianus DC. Bark, and Rheum palmatum L. Roots
Molecules 2017, 22(11), 1838; doi:10.3390/molecules22111838
Received: 7 September 2017 / Revised: 20 October 2017 / Accepted: 22 October 2017 / Published: 27 October 2017
PDF Full-text (3157 KB) | HTML Full-text | XML Full-text
Abstract
For the European Pharmacopoeia (Ph. Eur.) herbal monograph draft of Cassia angustifolia Vahl. and Cassia senna L. leaves and pods, a safety limitation of aloe-emodin and rhein was proposed, due to toxicological concerns. A quantitative, analytical method of the anthraquinone aglycones in all
[...] Read more.
For the European Pharmacopoeia (Ph. Eur.) herbal monograph draft of Cassia angustifolia Vahl. and Cassia senna L. leaves and pods, a safety limitation of aloe-emodin and rhein was proposed, due to toxicological concerns. A quantitative, analytical method of the anthraquinone aglycones in all Ph. Eur. monographed herbal laxatives is of interest. A rational method development for the aglycones aloe-emodin, rhein, emodin, chrysophanol, and physcion in five herbal drugs was realized by using 3D chromatographic modelling (temperature, solvent, and gradient time) and design of experiment (DOE) software (DryLab® 4). A methodical approach suitable for the challenging peak tracking in the chromatograms of the herbal drugs in dependence on the changes in the chromatographic conditions is described by using a combination of mass spectroscopy (MS) data (UHPLC-QDa), UV/Vis-spectra, and peak areas. The model results indicate a low robust range and showed that with the selected chromatographic system, small interferences could not be averted. The separation achieved shows a pure UV/Vis spectrum for all aglycones except for chrysophanol in Aloe barbadensis and emodin in Cassia angustifolia fruit. A gradient with the best resolution of the aglycones in all five drugs is proposed, and its suitability demonstrated for the quantification of aglycones in these herbal drugs. Full article
Figures

Figure 1

Open AccessArticle Identification for the First Time of Cyclo(d-Pro-l-Leu) Produced by Bacillus amyloliquefaciens Y1 as a Nematocide for Control of Meloidogyne incognita
Molecules 2017, 22(11), 1839; doi:10.3390/molecules22111839
Received: 23 September 2017 / Revised: 19 October 2017 / Accepted: 21 October 2017 / Published: 27 October 2017
PDF Full-text (2294 KB) | HTML Full-text | XML Full-text
Abstract
The aim of the current study was to describe the role and mechanism of Bacillus amyloliquefaciens Y1 against the root-knot nematode, Meloidogyne incognita, under in vitro and in vivo conditions. Initially, the exposure of the bacterial culture supernatant and crude extract of Y1
[...] Read more.
The aim of the current study was to describe the role and mechanism of Bacillus amyloliquefaciens Y1 against the root-knot nematode, Meloidogyne incognita, under in vitro and in vivo conditions. Initially, the exposure of the bacterial culture supernatant and crude extract of Y1 to M. incognita significantly inhibited the hatching of eggs and caused the mortality of second-stage juveniles (J2), with these inhibitory effects depending on the length of incubation time and concentration of the treatment. The dipeptide cyclo(d-Pro-l-Leu) was identified in B. amyloliquefaciens culture for the first time using chromatographic techniques and nuclear magnetic resonance (NMR 1H, 13C, H-H COSY, HSQC, and HMBC) and recognized to have nematocidal activity. Various concentrations of cyclo(d-Pro-l-Leu) were investigated for their effect on the hatching of eggs and J2 mortality. Moreover, the in vivo nematocidal activity of the Y1 strain was investigated by conducting pot experiments in which tomato plants were inoculated with M. incognita. Each and every pot was amended 50 mL of fertilizer media (F), or Y1 culture, or nematicide (N) (only once), or fertilizer media with N (FN) at 1, 2, 3, 4 and 5 weeks after transplantation. The results of the pot experiments demonstrated the antagonistic effect of B. amyloliquefaciens Y1 against M. incognita as it significantly decreases the count of eggs and galls per root of the tomato plant as well as the population of J2 in the soil. Besides, the investigation into the growth parameters, such as the length of shoot, shoot fresh and dry weights of the tomato plants, showed that they were significantly higher in the Y1 strain Y1-treated plants compared to F-, FN- and N-treated plants. Therefore, the biocontrol repertoire of this bacterium opens a new insight into the applications in crop pest control. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Open AccessArticle Design of Tail-Clamp Peptide Nucleic Acid Tethered with Azobenzene Linker for Sequence-Specific Detection of Homopurine DNA
Molecules 2017, 22(11), 1840; doi:10.3390/molecules22111840
Received: 12 September 2017 / Revised: 18 October 2017 / Accepted: 21 October 2017 / Published: 27 October 2017
PDF Full-text (1668 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
DNA carries genetic information in its sequence of bases. Synthetic oligonucleotides that can sequence-specifically recognize a target gene sequence are a useful tool for regulating gene expression or detecting target genes. Among the many synthetic oligonucleotides, tail-clamp peptide nucleic acid (TC-PNA) offers advantages
[...] Read more.
DNA carries genetic information in its sequence of bases. Synthetic oligonucleotides that can sequence-specifically recognize a target gene sequence are a useful tool for regulating gene expression or detecting target genes. Among the many synthetic oligonucleotides, tail-clamp peptide nucleic acid (TC-PNA) offers advantages since it has two homopyrimidine PNA strands connected via a flexible ethylene glycol-type linker that can recognize complementary homopurine sequences via Watson-Crick and Hoogsteen base pairings and form thermally-stable PNA/PNA/DNA triplex structures. Here, we synthesized a series of TC-PNAs that can possess different lengths of azobenzene-containing linkers and studied their binding behaviours to homopurine single-stranded DNA. Introduction of azobenzene at the N-terminus amine of PNA increased the thermal stability of PNA-DNA duplexes. Further extension of the homopyrimidine PNA strand at the N-terminus of PNA-AZO further increased the binding stability of the PNA/DNA/PNA triplex to the target homopurine sequence; however, it induced TC-PNA/DNA/TC-PNA complex formation. Among these TC-PNAs, 9W5H-C4-AZO consisting of nine Watson-Crick bases and five Hoogsteen bases tethered with a beta-alanine conjugated azobenzene linker gave a stable 1:1 TC-PNA/ssDNA complex and exhibited good mismatch recognition. Our design for TC-PNA-AZO can be utilized for detecting homopurine sequences in various genes. Full article
(This article belongs to the Special Issue Molecular Properties and the Applications of Peptide Nucleic Acids)
Figures

Figure 1

Open AccessArticle Herbicidal Activities of Some Allelochemicals and Their Synergistic Behaviors toward Amaranthus tricolor L.
Molecules 2017, 22(11), 1841; doi:10.3390/molecules22111841
Received: 10 October 2017 / Revised: 24 October 2017 / Accepted: 26 October 2017 / Published: 27 October 2017
PDF Full-text (3529 KB) | HTML Full-text | XML Full-text
Abstract
Seven allelochemicals, namely R-(+)-limonene (A), vanillin (B), xanthoxyline (C), vanillic acid (D), linoleic acid (E), methyl linoleate (F), and (±)-odorine (G), were investigated for their herbicidal activities on
[...] Read more.
Seven allelochemicals, namely R-(+)-limonene (A), vanillin (B), xanthoxyline (C), vanillic acid (D), linoleic acid (E), methyl linoleate (F), and (±)-odorine (G), were investigated for their herbicidal activities on Chinese amaranth (Amaranthus tricolor L.). At 400 μM, xanthoxyline (C) showed the greatest inhibitory activity on seed germination and seedling growth of the tested plant. Both vanillic acid (D) and (±)-odorine (G) inhibited shoot growth, however, apart from xanthoxyline (C), only vanillic acid (D) could inhibit root growth. Interestingly, R-(+)-limonene (A) lightly promoted root length. Other substances had no allelopathic effect on seed germination and seedling growth of the tested plant. To better understand and optimize the inhibitory effects of these natural herbicides, 21 samples of binary mixtures of these seven compounds were tested at 400 μM using 0.25% (v/v) Tween® 80 as a control treatment. The results showed that binary mixtures of R-(+)-limonene:xanthoxyline (A:C), vanillin:xanthoxyline (B:C), and xanthoxyline:linoleic acid (C:E) exhibited strong allelopathic activities on germination and seedling growth of the tested plant, and the level of inhibition was close to the effect of xanthoxyline (C) at 400 µM and was better than the effect of xanthoxyline (C) at 200 µM. The inhibition was hypothesized to be from a synergistic interaction of each pair of alleochemicals. Mole ratios of each pair of allelochemicals ((A:C), (B:C), and (C:E)) were then evaluated, and the best ratios of the binary mixtures A:C, B:C and C:E were found to be 2:8, 2:8, and 4:6 respectively. These binary mixtures significantly inhibited germination and shoot and root growth of Chinese amaranth at low concentrations. The results reported here highlight a synergistic behavior of some allelochemicals which could be applied in the development of potential herbicides. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Fluorescent “Turn-Off” Detection of Fluoride and Cyanide Ions Using Zwitterionic Spirocyclic Meisenheimer Compounds
Molecules 2017, 22(11), 1842; doi:10.3390/molecules22111842
Received: 27 September 2017 / Revised: 25 October 2017 / Accepted: 26 October 2017 / Published: 27 October 2017
PDF Full-text (5021 KB) | HTML Full-text | XML Full-text
Abstract
Stable zwitterionic spirocyclic Meisenheimer compounds were synthesized using a one-step reaction between picric acid and diisopropyl (ZW1) or dicyclohexyl (ZW3) carbodiimide. A solution of these compounds displays intense orange fluorescence upon UV or visible light excitation, which can be quenched or “turned-off” by
[...] Read more.
Stable zwitterionic spirocyclic Meisenheimer compounds were synthesized using a one-step reaction between picric acid and diisopropyl (ZW1) or dicyclohexyl (ZW3) carbodiimide. A solution of these compounds displays intense orange fluorescence upon UV or visible light excitation, which can be quenched or “turned-off” by adding a mole equivalent amount of F or CN ions in acetonitrile. Fluorescence is not quenched in the presence of other ions such as Cl, Br, I, NO2, NO3, or H2PO4. These compounds can therefore be utilized as practical colorimetric and fluorescent probes for monitoring the presence of F or CN anions. Full article
(This article belongs to the Special Issue Advances in Spiro Compounds)
Figures

Figure 1

Open AccessArticle Thymosin α1 Interacts with Hyaluronic Acid Electrostatically by Its Terminal Sequence LKEKK
Molecules 2017, 22(11), 1843; doi:10.3390/molecules22111843
Received: 1 October 2017 / Revised: 19 October 2017 / Accepted: 24 October 2017 / Published: 27 October 2017
PDF Full-text (2240 KB) | HTML Full-text | XML Full-text
Abstract
Thymosin α1 (Tα1), is a peptidic hormone, whose immune regulatory properties have been demonstrated both in vitro and in vivo and approved in different countries for treatment of several viral infections and cancers. Tα1 assumes a conformation in negative membranes upon insertion into
[...] Read more.
Thymosin α1 (Tα1), is a peptidic hormone, whose immune regulatory properties have been demonstrated both in vitro and in vivo and approved in different countries for treatment of several viral infections and cancers. Tα1 assumes a conformation in negative membranes upon insertion into the phosphatidylserine exposure as found in several pathologies and in apoptosis. These findings are in agreement with the pleiotropy of Tα1, which targets both normal and tumor cells, interacting with multiple cellular components, and have generated renewed interest in the topic. Hyaluronan (HA) occurs ubiquitously in the extracellular matrix and on cell surfaces and has been related to a variety of diseases, and developmental and physiological processes. Proteins binding HA, among them CD44 and the Receptor for HA-mediated motility (RHAMM) receptors, mediate its biological effects. NMR spectroscopy indicated preliminarily that an interaction of Tα1 with HA occurs specifically around lysine residues of the sequence LKEKK of Tα1 and is suggestive of a possible interference of Tα1 in the binding of HA with CD44 and RHAMM. Further studies are needed to deepen these observations because Tα1 is known to potentiate the T-cell immunity and anti-tumor effect. The binding inhibitory activity of Tα1 on HA-CD44 or HA-RHAMM interactions can suppress both T-cell reactivity and tumor progression. Full article
(This article belongs to the Special Issue Hyaluronic Acid and its Derivatives for Biomedical Applications)
Figures

Open AccessArticle Surface-Relief Gratings in Halogen-Bonded Polymer–Azobenzene Complexes: A Concentration-Dependence Study
Molecules 2017, 22(11), 1844; doi:10.3390/molecules22111844
Received: 10 October 2017 / Revised: 25 October 2017 / Accepted: 26 October 2017 / Published: 28 October 2017
PDF Full-text (1790 KB) | HTML Full-text | XML Full-text
Abstract
In recent years, supramolecular complexes comprising a poly(4-vinylpyridine) backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs). The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing
[...] Read more.
In recent years, supramolecular complexes comprising a poly(4-vinylpyridine) backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs). The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing the polymer–azobenzene noncovalent interaction for efficient surface patterning. They have been conducted using systems with relatively low azobenzene content, and little is known about the concentration dependence of SRG formation in halogen-bonded polymer–azobenzene complexes. Herein, we bridge this gap, and study the concentration dependence of SRG formation using two halogen-bond-donating azobenzene derivatives, one functionalized with a tetrafluoroiodophenyl and the other with an iodoethynylphenyl group. Both have been previously identified as efficient molecules in driving the SRG formation. We cover a broad concentration range, starting from 10 mol % azobenzene content and going all the way up to equimolar degree of complexation. The complexes are studied as spin-coated thin films, and analyzed by optical microscopy, atomic force microscopy, and optical diffraction arising during the SRG formation. We obtained diffraction efficiencies as high as 35%, and modulation depths close to 400 nm, which are significantly higher than the values previously reported for halogen-bonded polymer–azobenzene complexes. Full article
(This article belongs to the Special Issue Photoresponsive Polymers)
Figures

Figure 1

Open AccessArticle Margination of Fluorescent Polylactic Acid–Polyaspartamide based Nanoparticles in Microcapillaries In Vitro: the Effect of Hematocrit and Pressure
Molecules 2017, 22(11), 1845; doi:10.3390/molecules22111845
Received: 11 October 2017 / Revised: 27 October 2017 / Accepted: 27 October 2017 / Published: 28 October 2017
PDF Full-text (3049 KB) | HTML Full-text | XML Full-text
Abstract
The last decade has seen the emergence of vascular-targeted drug delivery systems as a promising approach for the treatment of many diseases, such as cardiovascular diseases and cancer. In this field, one of the major challenges is carrier margination propensity (i.e., particle migration
[...] Read more.
The last decade has seen the emergence of vascular-targeted drug delivery systems as a promising approach for the treatment of many diseases, such as cardiovascular diseases and cancer. In this field, one of the major challenges is carrier margination propensity (i.e., particle migration from blood flow to vessel walls); indeed, binding of these particles to targeted cells and tissues is only possible if there is direct carrier–wall interaction. Here, a microfluidic system mimicking the hydrodynamic conditions of human microcirculation in vitro is used to investigate the effect of red blood cells (RBCs) on a carrier margination in relation to RBC concentration (hematocrit) and pressure drop. As model drug carriers, fluorescent polymeric nanoparticles (FNPs) were chosen, which were obtained by using as starting material a pegylated polylactic acid–polyaspartamide copolymer. The latter was synthesized by derivatization of α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) with Rhodamine (RhB), polylactic acid (PLA) and then poly(ethyleneglycol) (PEG) chains. It was found that the carrier concentration near the wall increases with increasing pressure drop, independently of RBC concentration, and that the tendency for FNP margination decreases with increasing hematocrit. This work highlights the importance of taking into account RBC–drug carrier interactions and physiological conditions in microcirculation when planning a drug delivery strategy based on systemically administered carriers. Full article
(This article belongs to the Special Issue Biomedical Applications of Polylactide (PLA) and its Copolymers)
Figures

Figure 1

Open AccessArticle Disrupting VEGF–VEGFR1 Interaction: De Novo Designed Linear Helical Peptides to Mimic the VEGF13-25 Fragment
Molecules 2017, 22(11), 1846; doi:10.3390/molecules22111846
Received: 9 October 2017 / Revised: 20 October 2017 / Accepted: 26 October 2017 / Published: 28 October 2017
PDF Full-text (888 KB) | HTML Full-text | XML Full-text
Abstract
The interaction between vascular endothelial growth factor (VEGF) and its receptors (VEGFR) has important implications in angiogenesis and cancer, which moved us to search for peptide derivatives able to block this protein–protein interaction. In a previous work we had described a collection of
[...] Read more.
The interaction between vascular endothelial growth factor (VEGF) and its receptors (VEGFR) has important implications in angiogenesis and cancer, which moved us to search for peptide derivatives able to block this protein–protein interaction. In a previous work we had described a collection of linear 13-mer peptides specially designed to adopt helical conformations (Ac-SSEEX5ARNX9AAX12N-NH2), as well as the evaluation of seven library components for the inhibition of the interaction of VEGF with its Receptor 1 (VEGFR1). This study led to the discovery of some new, quite potent inhibitors of this protein–protein system. The results we found prompted us to extend the study to other peptides of the library. We describe here the evaluation of a new selection of peptides from the initial library that allow us to identify new VEGF-VEGFR1 inhibitors. Among them, the peptide sequence containing F, W, and I residues at the 5, 9, and 12 positions, show a very significant nanomolar IC50 value, competing with VEGF for its receptor 1, VEGFR1 (Flt-1), which could represent a new tool within the therapeutic arsenal for cancer detection and therapy. Full article
(This article belongs to the Special Issue Peptide Therapeutics)
Figures

Figure 1

Open AccessArticle Berberine Activates Aryl Hydrocarbon Receptor but Suppresses CYP1A1 Induction through miR-21-3p Stimulation in MCF-7 Breast Cancer Cells
Molecules 2017, 22(11), 1847; doi:10.3390/molecules22111847
Received: 4 October 2017 / Revised: 19 October 2017 / Accepted: 25 October 2017 / Published: 28 October 2017
PDF Full-text (1745 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Berberine and the methylenedioxy ring-opening derivatives palmatine and jatrorrhizine are active ingredients in immunomodulatory plants, such as goldenseal. This study aimed to illustrate the effects of protoberberines on aryl hydrocarbon receptor (AhR) activation and cytochrome P450 (CYP) 1 in the estrogen receptor (ER)α(+)
[...] Read more.
Berberine and the methylenedioxy ring-opening derivatives palmatine and jatrorrhizine are active ingredients in immunomodulatory plants, such as goldenseal. This study aimed to illustrate the effects of protoberberines on aryl hydrocarbon receptor (AhR) activation and cytochrome P450 (CYP) 1 in the estrogen receptor (ER)α(+) MCF-7 breast cancer cells. Among protoberberines at non-cytotoxic concentrations (≤10 μM), berberine had the most potent and statistically significant effects on AhR activation and CYP1A1/1A2/1B1 mRNA induction. The 24-h exposure to 10 μM berberine did not change CYP1A1 mRNA stability, protein level and function. Berberine significantly increased micro RNA (miR)-21-3p by 36% and the transfection of an inhibitor of miR-21-3p restored the induction of CYP1A1 protein with a 50% increase. These findings demonstrate that the ring opening of the methylenedioxyl moiety in berberine decreased AhR activation in MCF-7 cells. While CYP1A1 mRNA was elevated, berberine-induced miR-21-3p suppressed the increase of functional CYP1A1 protein expression. Full article
Figures

Open AccessArticle Polyphosphates as Inhibitors for Poly(vinyl Chloride) Photodegradation
Molecules 2017, 22(11), 1849; doi:10.3390/molecules22111849
Received: 26 September 2017 / Revised: 24 October 2017 / Accepted: 25 October 2017 / Published: 28 October 2017
PDF Full-text (4404 KB) | HTML Full-text | XML Full-text
Abstract
Three polyphosphates were used as inhibitors for poly(vinyl chloride) (PVC) photodegradation. The polyphosphates were added to PVC at a concentration of 0.5% by weight. The PVC films (40 µm thickness) were irradiated at room temperature with ultraviolet (UV) light for up to 300
[...] Read more.
Three polyphosphates were used as inhibitors for poly(vinyl chloride) (PVC) photodegradation. The polyphosphates were added to PVC at a concentration of 0.5% by weight. The PVC films (40 µm thickness) were irradiated at room temperature with ultraviolet (UV) light for up to 300 h. The changes in PVC films after irradiation were monitored by Fourier transform infrared spectroscopy, weight loss, viscosity-average molecular weight determination, and atomic force microscopy. These changes were very noticeable in the blank PVC films compared to the ones obtained when additives were used. The polyphosphates can inhibit the PVC photodegradation through direct absorption of UV light, interactions with PVC chains, and acting as radical scavengers. Full article
Figures

Open AccessArticle Sustainable Bio-Based Phenol-Formaldehyde Resoles Using Hydrolytically Depolymerized Kraft Lignin
Molecules 2017, 22(11), 1850; doi:10.3390/molecules22111850
Received: 11 September 2017 / Revised: 26 October 2017 / Accepted: 27 October 2017 / Published: 28 October 2017
PDF Full-text (11454 KB) | HTML Full-text | XML Full-text
Abstract
In this study bio-based bio-phenol-formaldehyde (BPF) resoles were prepared using hydrolytically depolymerized Kraft lignin (DKL) as bio-phenol to partially substitute phenol. The effects of phenol substitution ratio, weight-average molecular weight (Mw) of DKL and formaldehyde-to-phenol (F/P) ratio were also investigated
[...] Read more.
In this study bio-based bio-phenol-formaldehyde (BPF) resoles were prepared using hydrolytically depolymerized Kraft lignin (DKL) as bio-phenol to partially substitute phenol. The effects of phenol substitution ratio, weight-average molecular weight (Mw) of DKL and formaldehyde-to-phenol (F/P) ratio were also investigated to find the optimum curing temperature for BPF resoles. The results indicated that DKL with Mw ~ 1200 g/mol provides a curing temperature of less than 180 °C for any substitution level, provided that F/P ratios are controlled. Incorporation of lignin reduced the curing temperature of the resin, however, higher Mw DKL negatively affected the curing process. For any level of lignin Mw, the curing temperature was found to increase with lower F/P ratios at lower phenol substitution levels. At 25% and 50% phenol substitution, increasing the F/P ratio allows for synthesis of resoles with lower curing temperatures. Increasing the phenol substitution from 50% to 75% allows for a broader range of lignin Mw to attain low curing temperatures. Full article
(This article belongs to the Special Issue Lignin for Energy, Chemicals and Materials)
Figures

Figure 1

Open AccessArticle Marrubium vulgare L. Leave Extract: Phytochemical Composition, Antioxidant and Wound Healing Properties
Molecules 2017, 22(11), 1851; doi:10.3390/molecules22111851
Received: 6 September 2017 / Revised: 13 October 2017 / Accepted: 26 October 2017 / Published: 28 October 2017
PDF Full-text (3601 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Several factors contribute in wound generation, e.g., accidental traumas or surgery, and in certain cases, this dermal injury may have a devastating outcome. When skin damage occurs, the human body puts in place a sophisticated choreography, which involves numerous repairing processes to restore
[...] Read more.
Several factors contribute in wound generation, e.g., accidental traumas or surgery, and in certain cases, this dermal injury may have a devastating outcome. When skin damage occurs, the human body puts in place a sophisticated choreography, which involves numerous repairing processes to restore physiological conditions. Nevertheless, natural healing mechanisms are ineffective towards chronic or non-healing wounds and thus, therapeutic strategies may represent the only beneficial alternative to counteract these tissue insults. Over the years, numerous studies showed the great potential of plants in promoting wound healing, by virtue of their high contents in antioxidant species. These compounds trigger a molecular cascade that collimate into the promotion of reparative processes. In this article, we report on the potential effect on wound healing of Marrubium vulgare L., a medicinal plant well known for several pharmaceutical activities. To this aim, the methanolic extract was prepared and subjected to a phytochemical investigation, quantifying the amount of marrubiin via NMR and drawing the phytochemical fingerprint via high performance liquid chromatography—ultra violet/photodiode-array detection-electrospray/mass (HPLC-UV/PAD-ESI/MS) analysis. Lastly, the antioxidant properties and wound healing potential have been evaluated. Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Figure 1

Open AccessArticle Biological Properties of Low-Toxic PLGA and PLGA/PHB Fibrous Nanocomposite Scaffolds for Osseous Tissue Regeneration. Evaluation of Potential Bioactivity
Molecules 2017, 22(11), 1852; doi:10.3390/molecules22111852
Received: 5 September 2017 / Revised: 19 October 2017 / Accepted: 24 October 2017 / Published: 28 October 2017
PDF Full-text (9849 KB) | HTML Full-text | XML Full-text
Abstract
Abstracts: The aim of the study was to evaluate the biocompatibility and bioactivity of two new prototype implants for bone tissue regeneration made from biodegradable fibrous materials. The first is a newly developed poly(l-lactide-co-glycolide), (PLGA), and the second is a blend of
[...] Read more.
Abstracts: The aim of the study was to evaluate the biocompatibility and bioactivity of two new prototype implants for bone tissue regeneration made from biodegradable fibrous materials. The first is a newly developed poly(l-lactide-co-glycolide), (PLGA), and the second is a blend of PLGA with synthetic poly([R,S]-3-hydroxybutyrate) (PLGA/PHB). The implant prototypes comprise PLGA or PLGA/PHB nonwoven fabrics with designed pore structures to create the best conditions for cell proliferation. The bioactivity of the proposed implants was enhanced by introducing a hydroxyapatite material and a biologically active agent, namely, growth factor IGF1, encapsulated in calcium alginate microspheres. To assess the biocompatibility and bioactivity, allergenic tests and an assessment of the local reaction of bone tissue after implantation were performed. Comparative studies of local tissue response after implantation into trochanters for a period of 12 months were performed on New Zealand rabbits. Based on the results of the in vivo evaluation of the allergenic effects and the local tissue reaction 12 months after implantation, it was concluded that the two implant prototypes, PLGA + IGF1 and PLGA/PHB + IGF1, were characterized by high biocompatibility with the soft and bone tissues of the tested animals. Full article
(This article belongs to the Special Issue Biomedical Applications of Polylactide (PLA) and its Copolymers)
Figures

Open AccessArticle Simultaneous Determination of Twenty-Five Compounds in Rat Plasma Using Ultra-High Performance Liquid Chromatography-Polarity Switching Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Study
Molecules 2017, 22(11), 1853; doi:10.3390/molecules22111853
Received: 13 October 2017 / Revised: 25 October 2017 / Accepted: 27 October 2017 / Published: 30 October 2017
PDF Full-text (1367 KB) | HTML Full-text | XML Full-text
Abstract
An attempt was made to characterize the pharmacokinetic profiles of Qishen Keli (QSKL) that has been widely proved to be effective in clinical practice. A method using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) for the simultaneous determination of 25
[...] Read more.
An attempt was made to characterize the pharmacokinetic profiles of Qishen Keli (QSKL) that has been widely proved to be effective in clinical practice. A method using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) for the simultaneous determination of 25 analytes in rat plasma was developed and validated. Satisfactory chromatographic separation was achieved on an ACQUITY UPLC HSS T3 column with gradient elution using mobile phase consisting of 0.02% aqueous formic acid (A) and acetonitrile fortified with 0.02% formic acid (B), and analyte detection was carried out using polarity-switching multiple reaction monitoring mode. Method validation assays in terms of selectivity, linearity, inter- and intra-day variations, matrix effect, and recovery demonstrated the newly developed method to be specific, sensitive, accurate, and precise. Following the oral administration of QSKL at a single dose, the qualified method was successfully applied for pharmacokinetic investigations in sham and model rats. Mild differences occurred for the pharmacokinetic patterns of most components between those two groups, whereas significant differences were observed for glycyrrhizic acid and glycyrrhetic acid. The obtained findings could provide meaningful information for the clarification of the effective material basis of QSKL. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Functional Characterization of a Hydroxyacid/Alcohol Hydroxycinnamoyl Transferase Produced by the Liverwort Marchantia emarginata
Molecules 2017, 22(11), 1854; doi:10.3390/molecules22111854
Received: 25 September 2017 / Revised: 23 October 2017 / Accepted: 26 October 2017 / Published: 31 October 2017
PDF Full-text (1497 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The aerial organs of most terrestrial plants are covered by a hydrophobic protective cuticle. The main constituent of the cuticle is the lipid polyester cutin, which is composed of aliphatic and aromatic domains. The aliphatic component is a polyester between fatty acid/alcohol and
[...] Read more.
The aerial organs of most terrestrial plants are covered by a hydrophobic protective cuticle. The main constituent of the cuticle is the lipid polyester cutin, which is composed of aliphatic and aromatic domains. The aliphatic component is a polyester between fatty acid/alcohol and hydroxycinnamoyl acid. The BAHD/HxxxD family enzymes are central to the synthesis of these polyesters. The nature of this class of enzymes in bryophytes has not been explored to date. Here, a gene encoding a fatty ω-hydroxyacid/fatty alcohol hydroxycinnamoyl transferase (HFT) has been isolated from the liverwort Marchantia emarginata and has been functionally characterized. Experiments based on recombinant protein showed that the enzyme uses ω-hydroxy fatty acids or primary alcohols as its acyl acceptor and various hydroxycinnamoyl-CoAs—preferentially feruloyl-CoA and caffeoyl-CoA—as acyl donors at least in vitro. The transient expression of a MeHFT-GFP fusion transgene in the Nicotiana benthamiana leaf demonstrated that MeHFT is directed to the cytoplasm, suggesting that the feruloylation of cutin monomers takes place there. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle 1H-NMR-Based Metabonomics of the Protective Effect of Coptis chinensis and Berberine on Cinnabar-Induced Hepatotoxicity and Nephrotoxicity in Rats
Molecules 2017, 22(11), 1855; doi:10.3390/molecules22111855
Received: 19 September 2017 / Revised: 15 October 2017 / Accepted: 26 October 2017 / Published: 2 November 2017
PDF Full-text (6182 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Coptis chinensis Franch has been used in Traditional Chinese Medicine (TCM) for treating infectious and inflammatory diseases for over two thousand years. Berberine (BN), an isoquinoline alkaloid, is the main component of Coptis chinensis. The pharmacological basis for its therapeutic effects, which
[...] Read more.
Coptis chinensis Franch has been used in Traditional Chinese Medicine (TCM) for treating infectious and inflammatory diseases for over two thousand years. Berberine (BN), an isoquinoline alkaloid, is the main component of Coptis chinensis. The pharmacological basis for its therapeutic effects, which include hepatoprotective effects on liver injuries, has been studied intensively, yet the therapy of liver injuries and underlying mechanism remain unclear. We investigated the detoxification mechanism of Coptis chinensis and berberine using metabolomics of urine and serum in the present study. After the treatment with Coptis chinensis and berberine, compared with the cinnabar group, Coptis chinensis and berberine can regulate the concentration of the endogenous metabolites. PLS-DA score plots demonstrated that the urine and serum metabolic profiles in rats of the Coptis chinensis and berberine groups were similar those of the control group, yet remarkably apart from the cinnabar group. The mechanism may be related to the endogenous metabolites including energy metabolism, amino acid metabolism and metabolism of intestinal flora in rats. Meanwhile, liver and kidney histopathology examinations and serum clinical chemistry analysis verified the experimental results of metabonomics. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Zinc Ion-Dependent Peptide Nucleic Acid-Based Artificial Enzyme that Cleaves RNA—Bulge Size and Sequence Dependence
Molecules 2017, 22(11), 1856; doi:10.3390/molecules22111856
Received: 5 October 2017 / Revised: 25 October 2017 / Accepted: 27 October 2017 / Published: 29 October 2017
PDF Full-text (2008 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this report, we investigate the efficiency and selectivity of a Zn2+-dependent peptide nucleic acid-based artificial ribonuclease (PNAzyme) that cleaves RNA target sequences. The target RNAs are varied to form different sizes (3 and 4 nucleotides, nt) and sequences in the
[...] Read more.
In this report, we investigate the efficiency and selectivity of a Zn2+-dependent peptide nucleic acid-based artificial ribonuclease (PNAzyme) that cleaves RNA target sequences. The target RNAs are varied to form different sizes (3 and 4 nucleotides, nt) and sequences in the bulge formed upon binding to the PNAzyme. PNAzyme-promoted cleavage of the target RNAs was observed and variation of the substrate showed a clear dependence on the sequence and size of the bulge. For targets that form 4-nt bulges, we identified systems with an improved efficacy (an estimated half-life of ca 7–8 h as compared to 11–12 h for sequences studied earlier) as well as systems with an improved site selectivity (up to over 70% cleavage at a single site as compared to 50–60% with previous targets sequences). For targets forming 3-nt bulges, the enhancement compared to previous systems was even more pronounced. Compared to a starting point of targets forming 3-nt AAA bulges (half-lives of ca 21–24 h), we could identify target sequences that were cleaved with half-lives three times lower (ca 7–8 h), i.e., at rates similar to those found for the fastest 4-nt bulge system. In addition, with the 3-nt bulge RNA target site selectivity was improved even further to reach well over 80% cleavage at a specific site. Full article
(This article belongs to the Special Issue Molecular Properties and the Applications of Peptide Nucleic Acids)
Figures

Figure 1

Open AccessArticle Synthesis and Antitumor Activity of Novel Arylpiperazine Derivatives Containing the Saccharin Moiety
Molecules 2017, 22(11), 1857; doi:10.3390/molecules22111857
Received: 20 September 2017 / Revised: 17 October 2017 / Accepted: 25 October 2017 / Published: 29 October 2017
PDF Full-text (2305 KB) | HTML Full-text | XML Full-text
Abstract
Prostate cancer is a major public health problem worldwide. For the development of potential anti-prostate cancer agents, a series of novel arylpiperazine derivatives containing the saccharin moiety based on previous studies was designed, synthesized, and evaluated in prostate (PC-3, LNCaP, and DU145) cancer
[...] Read more.
Prostate cancer is a major public health problem worldwide. For the development of potential anti-prostate cancer agents, a series of novel arylpiperazine derivatives containing the saccharin moiety based on previous studies was designed, synthesized, and evaluated in prostate (PC-3, LNCaP, and DU145) cancer cell lines for their anticancer activities. The majority of the compounds exhibited excellent selective activity for the tested cancer cells. Compounds 4 and 12 exhibited strong cytotoxic activities against DU145 cells (half maximal inhibitory concentration (IC50) < 2 μM). The structure–activity relationship (SAR) of these arylpiperazine derivatives was also discussed based on the obtained experimental data. This work provides a potential lead compound for anticancer agent development focusing on prostate cancer therapy. Full article
Figures

Figure 1

Open AccessArticle Olive (Olea europaea L.) Biophenols: A Nutriceutical against Oxidative Stress in SH-SY5Y Cells
Molecules 2017, 22(11), 1858; doi:10.3390/molecules22111858
Received: 16 October 2017 / Revised: 25 October 2017 / Accepted: 26 October 2017 / Published: 29 October 2017
PDF Full-text (3080 KB) | HTML Full-text | XML Full-text
Abstract
Plant biophenols have been shown to be effective in the modulation of Alzheimer’s disease (AD) pathology resulting from free radical-induced oxidative stress and imbalance of the redox chemistry of transition metal ions (e.g., iron and copper). On the basis of earlier reported pharmacological
[...] Read more.
Plant biophenols have been shown to be effective in the modulation of Alzheimer’s disease (AD) pathology resulting from free radical-induced oxidative stress and imbalance of the redox chemistry of transition metal ions (e.g., iron and copper). On the basis of earlier reported pharmacological activities, olive biophenols would also be expected to have anti-Alzheimer’s activity. In the present study, the antioxidant activity of individual olive biophenols (viz. caffeic acid, hydroxytyrosol, oleuropein, verbascoside, quercetin, rutin and luteolin) were evaluated using superoxide radical scavenging activity (SOR), hydrogen peroxide (H2O2) scavenging activity, and ferric reducing ability of plasma (FRAP) assays. The identification and antioxidant activities in four commercial olive extracts—Olive leaf extractTM (OLE), Olive fruit extractTM (OFE), Hydroxytyrosol ExtremeTM (HTE), and Olivenol plusTM (OLP)—were evaluated using an on-line HPLC-ABTS•+ assay, and HPLC-DAD-MS analysis. Oleuropein and hydroxytyrosol were the predominant biophenols in all the extracts. Among the single compounds examined, quercetin (EC50: 93.97 μM) and verbascoside (EC50: 0.66 mM) were the most potent SOR and H2O2 scavengers respectively. However, OLE and HTE were the highest SOR (EC50: 1.89 μg/mL) and H2O2 (EC50: 115.8 μg/mL) scavengers among the biophenol extracts. The neuroprotection of the biophenols was evaluated against H2O2-induced oxidative stress and copper (Cu)-induced toxicity in neuroblastoma (SH-SY5Y) cells. The highest neuroprotection values (98% and 92%) against H2O2-induced and Cu-induced toxicities were shown by the commercial extract HTETM. These were followed by the individual biophenols, caffeic acid (77% and 64%) and verbascoside (71% and 72%). Our results suggest that olive biophenols potentially serve as agents for the prevention of neurodegenerative diseases such as AD, and other neurodegenerative ailments that are caused by oxidative stress. Full article
Figures

Open AccessArticle New Adducts of Iriflophene and Flavonoids Isolated from Sedum aizoon L. with Potential Antitumor Activity
Molecules 2017, 22(11), 1859; doi:10.3390/molecules22111859
Received: 15 October 2017 / Revised: 24 October 2017 / Accepted: 24 October 2017 / Published: 2 November 2017
PDF Full-text (1032 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Four new special compounds with character of an iriflophene unit and a flavonoid unit connecting via a furan ring were isolated from the roots of Sedum aizoon L. Their corresponding structures were elucidated on the basis of spectroscopic analysis. The in vitro anti-proliferative
[...] Read more.
Four new special compounds with character of an iriflophene unit and a flavonoid unit connecting via a furan ring were isolated from the roots of Sedum aizoon L. Their corresponding structures were elucidated on the basis of spectroscopic analysis. The in vitro anti-proliferative activities against BXPC-3, A549, and MCF-7 tumor cell lines were evaluated. Compounds 3 and 4 exhibited moderate cytotoxic activities with IC50 ranging from 24.84 to 37.22 μmol L−1, which was capable for further drug exploration. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-yl)methanone) Ligand: Synthesis and ε-Caprolactone Polymerization Behavior
Molecules 2017, 22(11), 1860; doi:10.3390/molecules22111860
Received: 18 September 2017 / Revised: 23 October 2017 / Accepted: 26 October 2017 / Published: 10 November 2017
PDF Full-text (1507 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The reaction of isophthaloyl dichloride with 1H-1,2,4-triazole afforded the new ligand 1,3-phenylenebis(1,2,4-triazole-1-yl)methanone (1). A series of Co(II), Cu(II), Zn(II) and Ni(II) complexes were synthesized using 1 and then characterized by melting point analysis, elemental analysis, theoretical calculations, thermogravimetric analysis,
[...] Read more.
The reaction of isophthaloyl dichloride with 1H-1,2,4-triazole afforded the new ligand 1,3-phenylenebis(1,2,4-triazole-1-yl)methanone (1). A series of Co(II), Cu(II), Zn(II) and Ni(II) complexes were synthesized using 1 and then characterized by melting point analysis, elemental analysis, theoretical calculations, thermogravimetric analysis, X-ray powder diffraction, nuclear magnetic resonance, infrared and Raman spectroscopy. Experimental and computational studies predict the formation of coordination polymers (CPs). The cobalt and copper CPs and zinc(II) complex were found to be good initiators for the ring-opening polymerization of ε-caprolactone (CL) under solvent-free conditions. 1H-NMR analysis showed that the obtained polymers of CL were mainly linear and had terminal hydroxymethylene groups. Differential scanning calorimetry showed that the obtained polycaprolactones had high crystallinity, and TGA showed that they had decomposition temperatures above 400 °C. These results provide insight and guidance for the design of metal complexes with potential applications in the polymerization of CL. Full article
(This article belongs to the Section Organometallic Chemistry)
Figures

Open AccessArticle Metabolomic Analysis of Two Parmotrema Lichens: P. robustum (Degel.) Hale and P. andinum (Mull. Arg.) Hale Using UHPLC-ESI-OT-MS-MS
Molecules 2017, 22(11), 1861; doi:10.3390/molecules22111861
Received: 1 October 2017 / Revised: 17 October 2017 / Accepted: 25 October 2017 / Published: 30 October 2017
PDF Full-text (1050 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Lichens are symbiotic associations of fungi with microalgae and/or cyanobacteria. Lichens belonging to the Parmeliaceae family comprise 2700 species of lichens, including the Parmotrema genus which is composed of 300 species. The metabolites of this genus include depsides, depsidones, phenolics, polysaccharides, lipids, diphenylethers
[...] Read more.
Lichens are symbiotic associations of fungi with microalgae and/or cyanobacteria. Lichens belonging to the Parmeliaceae family comprise 2700 species of lichens, including the Parmotrema genus which is composed of 300 species. The metabolites of this genus include depsides, depsidones, phenolics, polysaccharides, lipids, diphenylethers and dibenzofurans, which are responsible for the biological activities reported including antidiabetic, antihelmintic, anticancer, antioxidant, antibacterial, anti-inflammatory, antimitotic, antitumoral, antifungal, and antioxidant enzyme inhibitory. Due to scarce knowledge of metabolomic profiles of Parmotrema species (P. andinum and P. robustum), a full metabolome study based on ultra-high performance liquid chromatography- diode array detector-electrospray ionization-quadrupole-orbitrap-mass-spectrometry (UHPLC-DAD-ESI-Q-orbitrap MS) was performed for a comprehensive characterization of their substances. From the methanolic extracts of these species, a total of 54 metabolites were identified for the first time using this hyphenated technique, including thirty compounds in P. andinum, and thirty-seven in P. robustum. Moreover, two compounds were not identified as known compounds, and could be new structures, according to our data. This report shows that this technique is effective and accurate for rapid chemical identification of lichen substances and the compounds identified could serve as chemotaxonomic markers to differentiate these ruffle lichens. Full article
(This article belongs to the Section Metabolites)
Figures

Figure 1

Open AccessArticle New Biflavonoids with α-Glucosidase and Pancreatic Lipase Inhibitory Activities from Boesenbergia rotunda
Molecules 2017, 22(11), 1862; doi:10.3390/molecules22111862
Received: 17 October 2017 / Revised: 25 October 2017 / Accepted: 25 October 2017 / Published: 30 October 2017
PDF Full-text (1507 KB) | HTML Full-text | XML Full-text
Abstract
Roots of Boesenbergia rotunda (L.) Mansf. are prominent ingredients in the cuisine of several Asian countries, including Thailand, Malaysia, Indonesia, India, and China. An extract prepared from the roots of this plant showed strong inhibitory activity against enzymes α-glucosidase and pancreatic lipase and
[...] Read more.
Roots of Boesenbergia rotunda (L.) Mansf. are prominent ingredients in the cuisine of several Asian countries, including Thailand, Malaysia, Indonesia, India, and China. An extract prepared from the roots of this plant showed strong inhibitory activity against enzymes α-glucosidase and pancreatic lipase and was subjected to chromatographic separation to identify the active components. Three new biflavonoids of the flavanone-chalcone type (9, 12, and 13) were isolated, along with 12 known compounds. Among the 15 isolates, the three new compounds showed stronger inhibitory activity against α-glucosidase than the drug acarbose but displayed lower pancreatic lipase inhibitory effect than the drug orlistat. The results indicated the potential of B. rotunda roots as a functional food for controlling after-meal blood glucose levels. Full article
Figures

Open AccessArticle Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase
Molecules 2017, 22(11), 1863; doi:10.3390/molecules22111863
Received: 5 October 2017 / Revised: 21 October 2017 / Accepted: 24 October 2017 / Published: 30 October 2017
PDF Full-text (4365 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans-sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic
[...] Read more.
Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans-sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic acid derivatives as trans-sialidase (TS) inhibitors and anti-trypanosomal agents. Three compounds (14, 18, and 19) sharing a para-aminobenzoic acid moiety showed more potent trypanocidal activity than the commercially available drugs nifurtimox and benznidazole in both strains: the lysis concentration of 50% of the population (LC50) was <0.15 µM on the NINOA strain, and LC50 < 0.22 µM on the INC-5 strain. Additionally, compound 18 showed a moderate inhibition (47%) on the trans-sialidase enzyme and a binding model similar to DANA (pattern A). Full article
(This article belongs to the Special Issue Emerging Drug Discovery Approaches against Infectious Diseases)
Figures

Open AccessArticle Synthesis and Biological Evaluation of 2H-Indazole Derivatives: Towards Antimicrobial and Anti-Inflammatory Dual Agents
Molecules 2017, 22(11), 1864; doi:10.3390/molecules22111864
Received: 8 October 2017 / Revised: 27 October 2017 / Accepted: 27 October 2017 / Published: 31 October 2017
PDF Full-text (1301 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Indazole is considered a very important scaffold in medicinal chemistry. It is commonly found in compounds with diverse biological activities, e.g., antimicrobial and anti-inflammatory agents. Considering that infectious diseases are associated to an inflammatory response, we designed a set of 2H-indazole
[...] Read more.
Indazole is considered a very important scaffold in medicinal chemistry. It is commonly found in compounds with diverse biological activities, e.g., antimicrobial and anti-inflammatory agents. Considering that infectious diseases are associated to an inflammatory response, we designed a set of 2H-indazole derivatives by hybridization of cyclic systems commonly found in antimicrobial and anti-inflammatory compounds. The derivatives were synthesized and tested against selected intestinal and vaginal pathogens, including the protozoa Giardia intestinalis, Entamoeba histolytica, and Trichomonas vaginalis; the bacteria Escherichia coli and Salmonella enterica serovar Typhi; and the yeasts Candida albicans and Candida glabrata. Biological evaluations revealed that synthesized compounds have antiprotozoal activity and, in most cases, are more potent than the reference drug metronidazole, e.g., compound 18 is 12.8 times more active than metronidazole against G. intestinalis. Furthermore, two 2,3-diphenyl-2H-indazole derivatives (18 and 23) showed in vitro growth inhibition against Candida albicans and Candida glabrata. In addition to their antimicrobial activity, the anti-inflammatory potential for selected compounds was evaluated in silico and in vitro against human cyclooxygenase-2 (COX-2). The results showed that compounds 18, 21, 23, and 26 display in vitro inhibitory activity against COX-2, whereas docking calculations suggest a similar binding mode as compared to rofecoxib, the crystallographic reference. Full article
(This article belongs to the Special Issue Emerging Drug Discovery Approaches against Infectious Diseases)
Figures

Open AccessArticle Synthesis, Biological Evaluation and Molecular Docking Study of 2-Substituted-4,6-Diarylpyrimidines as α-Glucosidase Inhibitors
Molecules 2017, 22(11), 1865; doi:10.3390/molecules22111865
Received: 30 September 2017 / Revised: 27 October 2017 / Accepted: 27 October 2017 / Published: 30 October 2017
PDF Full-text (2521 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A novel series of 2-substituted-4,6-diarylpyrimidines 6a6t has been synthesized, characterized by 1H-NMR, 13C-NMR and HRMS, and screened for in vitro α-glucosidase inhibitory activity. The majority of the screened compounds possessed significant α-glucosidase inhibitory activity with IC50 values
[...] Read more.
A novel series of 2-substituted-4,6-diarylpyrimidines 6a6t has been synthesized, characterized by 1H-NMR, 13C-NMR and HRMS, and screened for in vitro α-glucosidase inhibitory activity. The majority of the screened compounds possessed significant α-glucosidase inhibitory activity with IC50 values ranging from 19.6 ± 0.21 to 38.9 ± 0.35 μM, which is more potent than the positive control α-glucosidase inhibitor acarbose (IC50 = 817.38 ± 6.27 μM). Among them, 6j was found to be the most active compound against α-glucosidase with an IC50 of 19.6 ± 0.21 μM. In addition, molecular docking studies were carried out to explore the binding interactions of 2-substituted-4,6-diarylpyrimidine derivatives with α-glucosidase. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle Purification, Characterization, and Antioxidant Activity of Polysaccharides Isolated from Cortex Periplocae
Molecules 2017, 22(11), 1866; doi:10.3390/molecules22111866
Received: 13 October 2017 / Revised: 27 October 2017 / Accepted: 30 October 2017 / Published: 31 October 2017
PDF Full-text (1592 KB) | HTML Full-text | XML Full-text
Abstract
In this study, crude Cortex Periplocae polysaccharides (CCPPs) were extracted with water. CCPPs were decolored with AB-8 resin and deproteinated using papain-Sevage methods. Then, they were further purified and separated through DEAE-52 anion exchange chromatography and Sephadex G-100 gel filtration chromatography, respectively. Three
[...] Read more.
In this study, crude Cortex Periplocae polysaccharides (CCPPs) were extracted with water. CCPPs were decolored with AB-8 resin and deproteinated using papain-Sevage methods. Then, they were further purified and separated through DEAE-52 anion exchange chromatography and Sephadex G-100 gel filtration chromatography, respectively. Three main fractions—CPP1, CPP2, and CPP3, (CPPs)—were obtained. The average molecular weights, monosaccharide analysis, surface morphology, and chemical compositions of the CPPs were investigated by high-performance gel permeation chromatography (HPGPC), gas chromatography-mass spectrometry (GC/MS), UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectrum, and nuclear magnetic resonance (NMR). In addition, the antioxidant activities of these three polysaccharides were investigated. The results indicated that all of the CPPs were composed of rhamnose, arabinose, mannose, glucose, and galactose. These three polysaccharides exhibited antioxidant activities in four assays including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2′-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical, reducing power, and total antioxidant activity in vitro. The data indicated that these three polysaccharides could be utilized as potential natural sources of alternative additives in the functional food, cosmetics, and pharmaceutical industries. Full article
(This article belongs to the Special Issue Advances in Natural Polysaccharides Research)
Figures

Figure 1

Open AccessArticle Study of Absorption Characteristics of the Total Saponins from Radix Ilicis Pubescentis in an In Situ Single-Pass Intestinal Perfusion (SPIP) Rat Model by Using Ultra Performance Liquid Chromatography (UPLC)
Molecules 2017, 22(11), 1867; doi:10.3390/molecules22111867
Received: 12 September 2017 / Revised: 13 October 2017 / Accepted: 21 October 2017 / Published: 1 November 2017
PDF Full-text (2661 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In contrast to the extensively reported therapeutic activities, far less attention has been paid to the intestinal absorption of the total saponins from Radix Ilicis Pubescentis (in Chinese Mao-Dong-Qing, MDQ). This study aimed to investigate the intestinal absorption characteristics of ilexgenin A (C1),
[...] Read more.
In contrast to the extensively reported therapeutic activities, far less attention has been paid to the intestinal absorption of the total saponins from Radix Ilicis Pubescentis (in Chinese Mao-Dong-Qing, MDQ). This study aimed to investigate the intestinal absorption characteristics of ilexgenin A (C1), ilexsaponin A1 (C2), ilexsaponin B1 (C3), ilexsaponin B2 (C4), ilexsaponin B3 (DC1), and ilexoside O (DC2) when administrated with the total saponins from MDQ (MDQ-TS). An UPLC method for simultaneous determination of C1, C2, C3, C4, DC1, and DC2 in intestinal outflow perfusate was developed and validated. The absorption characteristics of MDQ-TS were investigated by evaluating the effects of intestinal segments, drug concentration, P-glycoprotein (P-gp) inhibitor (verapomil), endocytosis inhibitor (amantadine) and ethylene diamine tetraacetic acid (EDTA, tight junction modulator) on the intestinal transportation of MDQ-TS by using a single-pass intestinal perfusion (SPIP) rat model, and the influence of co-existing components on the intestinal transport of the six saponins was discussed. The results showed that effective apparent permeability (Papp) of C1, C2, C3, C4, and DC2 administrated in MDQ-TS form had no segment-dependent changes at low and middle dosage levels. C1, C2, C3, D4, DC1, and DC2 administrated in MDQ-TS form all exhibited excellent transmembrane permeability with Papp > 0.12 × 10−2 cm·min−1. Meanwhile, Papp and effective absorption rate constant (Ka) values for the most saponins showed concentration dependence and saturation characteristics. After combining with P-gp inhibitor of verapamil, Papp of C2, C3, and DC1 in MDQ-TS group was significantly increased up to about 2.3-fold, 1.4-fold, and 3.4-fold, respectively in comparison to that of non-verapamil added group. Verapamil was found to improve the absorption of C2, C3, and DC1, indicating the involvement of an active transport mechanism in the absorption process. Compared with the non-amantadine added group, the absorption of C1, C2, C4, DC1, and DC2 were decreased by 40%, 71%, 31%, 53%, and 100%, respectively. Papp for the six target compounds increased up to about 1.2–2.1-fold in comparison with the non-EDTA added, respectively. The gastrointestinal transport of MDQ-TS could be greatly promoted by EDTA, and inhibited by amantadine, implying that the intestinal absorption of MDQ-TS was by passive diffusion and endocytosis process. Compared with monomer administration group, the intestinal absorption of C3, C4, DC1, and DC2 was significantly improved by co-existing components in MDQ-TS, and the non-absorbable saponins of C4, DC1, and DC2 unexpectedly showed sufficient intestinal permeability with Papp > 0.12 × 10−2 cm·min−1. This suggested that compounds orally administrated in TCM extract forms displayed unique intestinal absorption characteristics different from those of monomers, and the enhancing intestinal absorption of MDQ-TS reflected a holistic and specific view of traditional Chinese medicines (TCMs). Full article
Figures

Figure 1

Open AccessCommunication Biophysical Properties and Antiviral Activities of Measles Fusion Protein Derived Peptide Conjugated with 25-Hydroxycholesterol
Molecules 2017, 22(11), 1869; doi:10.3390/molecules22111869
Received: 13 July 2017 / Accepted: 26 October 2017 / Published: 31 October 2017
PDF Full-text (3398 KB) | HTML Full-text | XML Full-text
Abstract
Measles virus (MV) infection is re-emerging, despite the availability of an effective vaccine. The mechanism of MV entry into a target cell relies on coordinated action between the MV hemagglutinin (H) receptor binding protein and the fusion envelope glycoprotein (F) which mediates fusion
[...] Read more.
Measles virus (MV) infection is re-emerging, despite the availability of an effective vaccine. The mechanism of MV entry into a target cell relies on coordinated action between the MV hemagglutinin (H) receptor binding protein and the fusion envelope glycoprotein (F) which mediates fusion between the viral and cell membranes. Peptides derived from the C-terminal heptad repeat (HRC) of F can interfere with this process, blocking MV infection. As previously described, biophysical properties of HRC-derived peptides modulate their antiviral potency. In this work, we characterized a MV peptide fusion inhibitor conjugated to 25-hydroxycholesterol (25HC), a cholesterol derivative with intrinsic antiviral activity, and evaluated its interaction with membrane model systems and human blood cells. The peptide (MV Full article
(This article belongs to the Special Issue Peptide-Based Drugs and Drug Delivery Systems)
Figures

Open AccessArticle Synthesis and Structure–Activity Relationships of 4-Morpholino-7,8-Dihydro-5H-Thiopyrano[4,3-d]pyrimidine Derivatives Bearing Pyrazoline Scaffold
Molecules 2017, 22(11), 1870; doi:10.3390/molecules22111870
Received: 6 September 2017 / Revised: 20 October 2017 / Accepted: 25 October 2017 / Published: 31 October 2017
PDF Full-text (2483 KB) | HTML Full-text | XML Full-text
Abstract
Phosphatidylinositol 3-kinase/Protein kinase B/Mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway is abnormally active in the growth and proliferation of cancer cells. The inhibition of PI3K kinase can effectively block the conduction of signaling pathways and is an ideal target for drug design. In
[...] Read more.
Phosphatidylinositol 3-kinase/Protein kinase B/Mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway is abnormally active in the growth and proliferation of cancer cells. The inhibition of PI3K kinase can effectively block the conduction of signaling pathways and is an ideal target for drug design. In this paper; two series of 4-morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives bearing pyrazoline moiety (7a–l; 8a–l) were synthesized; and their cytotoxicity in vitro were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method against four human cancer cell lines including A549; PC-3; MCF-7; and HepG2 cell lines. The activity of the most promising compound 8d against PI3Kα kinase was further evaluated. The results indicated that most of the target compounds showed moderate to excellent cytotoxicity and the most promising compound 8d showed excellent cytotoxicity against four cancer cell lines with half maximal inhibitory concentration (IC50) values of 6.02–10.27 μM. In addition; the compound 8d was found to have a moderate inhibitory activity in the PI3Kα enzyme assay. What’s more; the compounds of which the substituents of benzene ring at the C-4 position are electron-withdrawing groups such as substituents (Cl; F; Br) have better activity than the compounds containing the electron donating groups (OCH3; H). However; the exact action mechanism is not quite clear right now. Further study will be carried out to identify the exact target in near future. Full article
(This article belongs to the Special Issue Pyrazole Derivatives)
Figures

Open AccessArticle Synthesis of Substituted Oxo-Azepines by Regio- and Diastereoselective Hydroxylation
Molecules 2017, 22(11), 1871; doi:10.3390/molecules22111871
Received: 27 September 2017 / Revised: 26 October 2017 / Accepted: 27 October 2017 / Published: 31 October 2017
PDF Full-text (2887 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Substituted seven-membered N-heterocycles are prevalent bioactive epitopes and useful synthons for preparing enzyme inhibitors or molecular recognition systems. To fully exploit the chemical properties of this flexible N-heterocycle scaffold, efficient methods for its diverse functionalization are required. Here we utilize the
[...] Read more.
Substituted seven-membered N-heterocycles are prevalent bioactive epitopes and useful synthons for preparing enzyme inhibitors or molecular recognition systems. To fully exploit the chemical properties of this flexible N-heterocycle scaffold, efficient methods for its diverse functionalization are required. Here we utilize the late-stage oxidation of tetrahydroazepines as an approach to access densely functionalized oxo-azepines in a total of 8 steps and ~30% overall yield from commercially available starting materials. Hydroboration of tetrahydroazepines proceeded with diastereoselectivity in a substrate-dependent manner to yield regioisomeric azepanols before their oxidation to the corresponding oxo-azepines. Regioselectivity of the hydroboration step may be improved moderately by a rhodium catalyst, albeit with loss of conversion to a competing hydrogenation pathway. Overall our method allows efficient access to azepanols and oxo-azepines as versatile epitopes and synthons with a high degree of diastereoselectivity and moderate regioselectivity. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Figure 1

Open AccessArticle Practical Synthesis of Chalcone Derivatives and Their Biological Activities
Molecules 2017, 22(11), 1872; doi:10.3390/molecules22111872
Received: 30 September 2017 / Revised: 21 October 2017 / Accepted: 24 October 2017 / Published: 1 November 2017
PDF Full-text (1691 KB) | HTML Full-text | XML Full-text
Abstract
Practical synthesis and biological activities of 4-hydroxy-3-methoxy-2-propene derivatives are described. The novel chalcone derivatives were prepared by acid catalysed one-step condensation of 1,3- or 1,4-diacetylbenzene and 1,3,5-triacetylbenzene with 4-hydroxy-3-methoxybenzaldehyde. They were then evaluated for free radical scavenging activity, suppression of lipopolysaccharides (LPS)-induced NO
[...] Read more.
Practical synthesis and biological activities of 4-hydroxy-3-methoxy-2-propene derivatives are described. The novel chalcone derivatives were prepared by acid catalysed one-step condensation of 1,3- or 1,4-diacetylbenzene and 1,3,5-triacetylbenzene with 4-hydroxy-3-methoxybenzaldehyde. They were then evaluated for free radical scavenging activity, suppression of lipopolysaccharides (LPS)-induced NO generation, and anti-excitotoxicity in vitro. It was found that all compounds showed good effects for 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, LPS-induced NO generation, and anti-neurotoxicity. Compounds 6 and 7 were potent suppressor of NO generation with the concentration range 10 µM and especially compound 8 showed very potent anti-inflammatory activity with 1 µM. In addition, the di- and tri-acetylbenzyl derivatives 6, 7, and 8 showed enhanced anti-neurotoxicity activity in cultured cortical neurons. Molecular modelling studies to investigate the chemical structural characteristics required for the enhanced biological activities interestingly revealed that compound 8 has the smallest highest occupied molecular orbital-lowest energy unoccupied molecular orbital (HOMO-LUMO) gap, which signifies easy electron and radical transfer between HOMO and LUMO in model studies. Full article
(This article belongs to the Special Issue Chalcone: A Privileged Structure in Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Acaricidal Activity and Synergistic Effect of Thyme Oil Constituents against Carmine Spider Mite (Tetranychus Cinnabarinus (Boisduval))
Molecules 2017, 22(11), 1873; doi:10.3390/molecules22111873
Received: 19 September 2017 / Revised: 30 October 2017 / Accepted: 30 October 2017 / Published: 1 November 2017
PDF Full-text (1481 KB) | HTML Full-text | XML Full-text
Abstract
Studies examining the use of essential oils as replacements for synthetic insecticides require an understanding of the contribution of each constituent present, interactions among these components, and how they relate to overall toxicity. In the present study, the chemical composition of commercial thyme
[...] Read more.
Studies examining the use of essential oils as replacements for synthetic insecticides require an understanding of the contribution of each constituent present, interactions among these components, and how they relate to overall toxicity. In the present study, the chemical composition of commercial thyme oil was identified by gas chromatography-mass spectrometry. Thyme oil and blends of its major constituents were tested for their acaricidal activitities against carmine spider mites (Tetranychus cinnabarinus (Boisduval)) using a slide-dip bioassay. Natural thyme oil showed greater toxicity than any single constituent or blend of constituents. Thymol was the most abundant component (34.4%), and also possessed the strongest acaricidal activity compared with other single constituents. When tested individually, four constituents (linalool, terpinene, p-cymene and carvacrol) also had activity, while α-pinene, benzoic acid and ethyl gallate had almost no activity. The toxicity of blends of selected constituents indicated a synergistic effect among the putatively active and inactive constituents, with the presence of all constituents necessary to reach the highest toxicity. The results indicated that thyme oil and some of its major constituents have the potential to be developed into botanical acaricides. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Figure 1

Open AccessArticle Detection of Rare Somatic GNAS Mutation in McCune-Albright Syndrome Using a Novel Peptide Nucleic Acid Probe in a Single Tube
Molecules 2017, 22(11), 1874; doi:10.3390/molecules22111874
Received: 29 August 2017 / Revised: 23 October 2017 / Accepted: 30 October 2017 / Published: 1 November 2017
PDF Full-text (1264 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
McCune-Albright syndrome (MAS) is characterized by the triad of precocious puberty, café au lait pigmentation, and polyostotic fibrous dysplasia (FD) of bone, and is caused by post-zygotic somatic mutations—R201H or R201C—in the guanine nucleotide binding protein, alpha stimulating (GNAS) gene. In the present
[...] Read more.
McCune-Albright syndrome (MAS) is characterized by the triad of precocious puberty, café au lait pigmentation, and polyostotic fibrous dysplasia (FD) of bone, and is caused by post-zygotic somatic mutations—R201H or R201C—in the guanine nucleotide binding protein, alpha stimulating (GNAS) gene. In the present study, a novel peptide nucleic acid (PNA) probe with fluorescent labeling was designed to detect trace amounts of somatic mutant GNAS in a single tube reaction. The method was applied to screen GNAS mutations in six patients with MAS/FD. The results showed that the PNA probe assay could detect low abundant mutants in 200-fold excess of wild-type alleles. The GNAS mutation was found in three patients with severe disease (MAS) by using the assay. The other three patients with mild disease (having only FD) showed a wild-type result. This study has provided a simple method to detect trace amounts of GNAS mutants with high sensitivity in large amounts of wild-type DNA. Full article
(This article belongs to the Special Issue Molecular Properties and the Applications of Peptide Nucleic Acids)
Figures

Figure 1

Open AccessArticle The Complete Amomum kravanh Chloroplast Genome Sequence and Phylogenetic Analysis of the Commelinids
Molecules 2017, 22(11), 1875; doi:10.3390/molecules22111875
Received: 22 September 2017 / Revised: 28 October 2017 / Accepted: 30 October 2017 / Published: 1 November 2017
PDF Full-text (6380 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Amomum kravanh is an important edible and medicinal herb, the dried fruits of which are widely used in traditional herbal medicine as cardamom. We sequenced and analyzed the complete chloroplast (cp) genome of A. kravanh with herbgenomics technologies. The size of the A.
[...] Read more.
Amomum kravanh is an important edible and medicinal herb, the dried fruits of which are widely used in traditional herbal medicine as cardamom. We sequenced and analyzed the complete chloroplast (cp) genome of A. kravanh with herbgenomics technologies. The size of the A. kravanh cp genome was 162,766 bp, which consisted of long (LSC; 87,728 bp) and short (SSC; 15,390 bp) single-copy regions, separated by a pair of inverted repeats (IRs; 29,824 bp). The genome encoded 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. A total of 299 simple sequence repeats (SSRs) were identified in the A. kravanh cp genome, which provides an effective method to study species identification and population genetics of the medicinal plant. Moreover, one complement, 12 forward, 12 palindrome and two reverse repeats were detected. Comparative cp genome sequence analysis of four Zingiberaceae species indicated that their intergenic spacers are highly divergent, although the gene order, gene content and genome structure differed only minimally. In particular, there was a remarkable expansion of the IR regions in the A. kravanh cp genome. Phylogenetic analysis strongly supported a sister relationship between A. kravanh and Alpinia zerumbet. This study identified the unique characteristics of the A. kravanh cp genome and might provide valuable information for future studies aiming for Amomum identification, and provide insights into the taxonomy of the commelinids. Full article
Figures

Figure 1

Open AccessArticle Novel Triazole Hybrids of Betulin: Synthesis and Biological Activity Profile
Molecules 2017, 22(11), 1876; doi:10.3390/molecules22111876
Received: 16 October 2017 / Revised: 27 October 2017 / Accepted: 30 October 2017 / Published: 1 November 2017
PDF Full-text (793 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Betulin derivatives containing a 1,2,3-triazole ring possess a wide spectrum of biological activities, including antiviral, anticancer, and antibacterial activity. A series of novel triazoles were prepared by the 1,3-dipolar cycloaddition reaction between the alkyne derivatives of betulin and organic azides. The chemical structures
[...] Read more.
Betulin derivatives containing a 1,2,3-triazole ring possess a wide spectrum of biological activities, including antiviral, anticancer, and antibacterial activity. A series of novel triazoles were prepared by the 1,3-dipolar cycloaddition reaction between the alkyne derivatives of betulin and organic azides. The chemical structures of the obtained compounds were defined by 1H and 13C NMR, IR, and high-resolution mass spectrometry (HR-MS) analysis. The target triazoles were screened for their antiviral activity against DNA and RNA viruses. The cytotoxic activity of the obtained compounds 5ak and 6ah was determined using five human cancer cell lines (T47D, MCF-7, SNB-19, Colo-829, and C-32) by a WST-1 assay. The bistriazole 6b displayed a promising IC50 value (0.05 μM) against the human ductal carcinoma T47D (500-fold higher potency than cisplatin). The microdilution method was applied for an evaluation of the antimicrobial activity of all of the compounds. The triazole 5e containing a 3′-deoxythymidine-5′-yl moiety exhibited antibacterial activity against two gram-negative bacteria vz. Klebsiella pneumoniae and Escherichia coli (minimal inhibitory concentration (MIC) range of 0.95–1.95 μM). Full article
(This article belongs to the Special Issue Emerging Drug Discovery Approaches against Infectious Diseases)
Figures

Open AccessArticle Optimization of the Extraction Conditions for Buddleja officinalis Maxim. Using Response Surface Methodology and Exploration of the Optimum Harvest Time
Molecules 2017, 22(11), 1877; doi:10.3390/molecules22111877
Received: 30 September 2017 / Accepted: 29 October 2017 / Published: 1 November 2017
PDF Full-text (4346 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Box-Behnken design was used to evaluate the effects of the methanol concentration (60–100%), liquid to solid ratio (20:1 to 40:1 mL/g) and extraction time (20–40 min) on the yield of 11 constituents from Buddleja officinalis Maxim using ultrasound-assisted extraction. The Derringer’s desirability
[...] Read more.
The Box-Behnken design was used to evaluate the effects of the methanol concentration (60–100%), liquid to solid ratio (20:1 to 40:1 mL/g) and extraction time (20–40 min) on the yield of 11 constituents from Buddleja officinalis Maxim using ultrasound-assisted extraction. The Derringer’s desirability function approach showed that the modified optimum extraction conditions were: 76% methanol concentration, 33 min extraction time and a 34:1 mL/g solvent to solid ratio. Under these conditions, the experimentally measured yields of the compounds were in good agreement with the predicted values. An accurate and sensitive method was also established using high-performance liquid chromatography with diode-array detection for the simultaneous determination of the 11 compounds in Buddleja officinalis. The newly developed method was used to determine the amounts of bioactive components in Buddleja officinalis during four different growth stages. According to these results, we recommend that the full blossom stage is the best time for harvesting this plant to obtain the highest yield of crude materials. Full article
Figures

Open AccessArticle Characterization of Free, Conjugated, and Bound Phenolic Acids in Seven Commonly Consumed Vegetables
Molecules 2017, 22(11), 1878; doi:10.3390/molecules22111878
Received: 21 September 2017 / Revised: 31 October 2017 / Accepted: 1 November 2017 / Published: 1 November 2017
PDF Full-text (673 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Phenolic acids are thought to be beneficial for human health and responsible for vegetables’ health-promoting properties. Free, conjugated, and bound phenolic acids of seven commonly consumed vegetables, including kidney bean, cow pea, snow pea, hyacinth bean, green soy bean, soybean sprouts and daylily,
[...] Read more.
Phenolic acids are thought to be beneficial for human health and responsible for vegetables’ health-promoting properties. Free, conjugated, and bound phenolic acids of seven commonly consumed vegetables, including kidney bean, cow pea, snow pea, hyacinth bean, green soy bean, soybean sprouts and daylily, from the regions of Beijing, Hangzhou, and Guangzhou, were identified and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Three vegetables, namely green soy bean, soybean sprouts, and daylily (Hemerocallis fulva L.), from the Beijing region contained higher concentrations of total phenolic acids than those from the Hangzhou and Guangzhou regions. The results indicated that the phenolic acid content in the seven vegetables appeared to be species-dependent. The highest content of phenolic acids was found in daylily, followed by green soy bean, while the least amounts were identified in kidney bean and hyacinth bean. Typically, phenolic acids are predominantly found in conjugated forms. Principle component analysis (PCA) revealed some key compounds that differentiated the seven vegetables. Green soy bean, compared to the other six vegetables, was characterized by higher levels of syringic acid, ferulic acid, vanillic acid, and sinapic acid. Other compounds, particularly p-coumaric acid, neochlorogenic acid, and caffeic acid, exhibited significantly higher concentrations in daylily. In addition, p-coumaric acid was the characteristic substance in cow pea. Results from this study can contribute to the development of vegetables with specific phytochemicals and health benefits. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle Influence of Amlodipine Enantiomers on Human Microsomal Cytochromes P450: Stereoselective Time-Dependent Inhibition of CYP3A Enzyme Activity
Molecules 2017, 22(11), 1879; doi:10.3390/molecules22111879
Received: 12 October 2017 / Accepted: 31 October 2017 / Published: 3 November 2017
PDF Full-text (2111 KB) | HTML Full-text | XML Full-text
Abstract
Amlodipine (AML) is available as a racemate, i.e., a mixture of R- and S-enantiomers. Its inhibitory potency towards nine cytochromes P450 (CYP) was studied to evaluate the drug–drug interactions between the enantiomers. Enzyme inhibition was evaluated using specific CYP substrates in
[...] Read more.
Amlodipine (AML) is available as a racemate, i.e., a mixture of R- and S-enantiomers. Its inhibitory potency towards nine cytochromes P450 (CYP) was studied to evaluate the drug–drug interactions between the enantiomers. Enzyme inhibition was evaluated using specific CYP substrates in human liver microsomes. With CYP3A, both enantiomers exhibited reversible and time-dependent inhibition. S-AML was a stronger reversible inhibitor of midazolam hydroxylation: the Ki values of S- and R-AML were 8.95 µM, 14.85 µM, respectively. Computational docking confirmed that the enantiomers interact differently with CYP3A: the binding free energy of S-AML in the active site was greater than that for R-AML (−7.6- vs. −6.7 kcal/mol). Conversely, R-AML exhibited more potent time-dependent inhibition of CYP3A activity (KI 8.22 µM, Kinact 0.065 min−1) than S-AML (KI 14.06 µM, Kinact 0.041 min−1). R-AML was also a significantly more potent inhibitor of CYP2C9 (Ki 12.11 µM/S-AML 21.45 µM) and CYP2C19 (Ki 5.97 µM/S-AML 7.22 μM. In conclusion, results indicate that clinical use of S-AML has an advantage not only because of greater pharmacological effect, but also because of fewer side effects and drug–drug interactions with cytochrome P450 substrates due to absence of R-AML. Full article
Figures

Figure 1

Open AccessArticle Abies Concolor Seeds and Cones as New Source of Essential Oils—Composition and Biological Activity
Molecules 2017, 22(11), 1880; doi:10.3390/molecules22111880
Received: 20 October 2017 / Revised: 1 November 2017 / Accepted: 1 November 2017 / Published: 2 November 2017
PDF Full-text (444 KB) | HTML Full-text | XML Full-text
Abstract
The chemical composition, including the enantiomeric excess of the main terpenes, of essential oils from seeds and cones of Abies concolor was studied by chromatographic (GC) and spectroscopic methods (mass spectrometry, nuclear magnetic resonance), leading to the determination of 98 compounds. Essential oils
[...] Read more.
The chemical composition, including the enantiomeric excess of the main terpenes, of essential oils from seeds and cones of Abies concolor was studied by chromatographic (GC) and spectroscopic methods (mass spectrometry, nuclear magnetic resonance), leading to the determination of 98 compounds. Essential oils were mainly composed of monoterpene hydrocarbons. The dominant volatiles of seed essential oil were: limonene (47 g/100 g, almost pure levorotary form) and α-pinene (40 g/100 g), while α-pinene (58 g/100 g), sabinene (11 g/100 g), and β-pinene (4.5 g/100 g) were the predominant components of the cone oil. The seed and cone essential oils exhibited mild antibacterial activity, and the MIC ranged from 26 to 30 μL/mL against all of the tested bacterial standard strains: Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, and Klebsiella pneumoniae. The cytotoxic studies have demonstrated that tested essential oils were cytotoxic to human skin fibroblasts and human microvascular endothelial cells at concentrations much lower than the MIC. The essential oils from A. concolor seeds and cones had no toxic effect on human skin fibroblasts and human microvascular endothelial cells, when added to the cells at a low concentration (0–0.075 μL/mL) and (0–1.0 μL/mL), respectively, and cultured for 24 h. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Anti-Inflammatory Effect of Malva sylvestris, Sida cordifolia, and Pelargonium graveolens Is Related to Inhibition of Prostanoid Production
Molecules 2017, 22(11), 1883; doi:10.3390/molecules22111883
Received: 4 October 2017 / Accepted: 29 October 2017 / Published: 3 November 2017
PDF Full-text (1343 KB) | HTML Full-text | XML Full-text
Abstract
The ability of plant extracts and preparations to reduce inflammation has been proven by different means in experimental models. Since inflammation enhances the release of specific mediators, inhibition of their production can be used to investigate the anti-inflammatory effect of plants widely used
[...] Read more.
The ability of plant extracts and preparations to reduce inflammation has been proven by different means in experimental models. Since inflammation enhances the release of specific mediators, inhibition of their production can be used to investigate the anti-inflammatory effect of plants widely used in folk medicine for this purpose. The study was performed for leaves and flowers of Malva sylvestris, and leaves of Sida cordifolia and Pelargonium graveolens. These are three plant species known in Brazil as Malva. The anti-inflammatory activity of extracts and fractions (hexane, chloroform, ethyl acetate, and residual) was evaluated by quantitation of prostaglandins (PG) PGE2, PGD2, PGF, and thromboxane B2 (the stable nonenzymatic product of TXA2) concentration in the supernatant of lipopolysaccharide (LPS)- induced RAW 264.7 cells. Inhibition of anti-inflammatory mediator release was observed for plants mainly in the crude extract, ethyl acetate fraction, and residual fraction. The results suggest superior activity of S. cordifolia, leading to significantly lower values of all mediators after treatment with its residual fraction, even at the lower concentration tested (10 μg/mL). M. sylvestris and P. graveolens showed similar results, such as the reduction of all mediators after treatment, with leaf crude extracts (50 μg/mL). These results suggest that the three species known as Malva have anti-inflammatory properties, S. cordifolia being the most potent. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Fast Extraction and Detection of 4-Methylimidazole in Soy Sauce Using Magnetic Molecularly Imprinted Polymer by HPLC
Molecules 2017, 22(11), 1885; doi:10.3390/molecules22111885
Received: 29 September 2017 / Revised: 31 October 2017 / Accepted: 1 November 2017 / Published: 2 November 2017
PDF Full-text (11078 KB) | HTML Full-text | XML Full-text
Abstract
On the basis of magnetic molecularly imprinted polymer (MMIP) solid-phase extraction coupled with high performance liquid chromatography, we established a new method for the determination of the 4-methylimidazole (4-MEI) in soy sauce. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD)
[...] Read more.
On the basis of magnetic molecularly imprinted polymer (MMIP) solid-phase extraction coupled with high performance liquid chromatography, we established a new method for the determination of the 4-methylimidazole (4-MEI) in soy sauce. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) were used to characterize the synthesized MMIPs. To evaluate the polymers, batch rebinding experiments were carried out. The binding strength and capacity were determined from the derived Freundlich isotherm (FI) equation. The selective recognition capability of MMIPs was investigated with a reference compound and a structurally similar compound. As a selective pre-concentration sorbents for 4-methylimidazole in soy sauce, the MMIPs showed a satisfied recoveries rate of spiked samples, ranged from 97% to 105%. As a result, the prepared MMIPs could be applied to selectively pre-concentrate and determine 4-methylimidazole in soy sauce samples. Full article
(This article belongs to the Special Issue Synthesis and Applications of Molecularly Imprinted Polymers)
Figures

Open AccessArticle Atractylenolide II Inhibits Proliferation, Motility and Induces Apoptosis in Human Gastric Carcinoma Cell Lines HGC-27 and AGS
Molecules 2017, 22(11), 1886; doi:10.3390/molecules22111886
Received: 25 October 2017 / Accepted: 1 November 2017 / Published: 3 November 2017
PDF Full-text (3393 KB) | HTML Full-text | XML Full-text
Abstract
Atractylenolide II (AT-II) exhibits several biological and pharmacological functions, especially anti-cancer activity as the major sesquiterpene lactones isolated from Atractylodes macrocephala (also named Baizhu in Chinese). However, the effects and mechanisms of AT-II on human gastric cancer remain unclear. Cell Counting Kit-8 (CCK-8)
[...] Read more.
Atractylenolide II (AT-II) exhibits several biological and pharmacological functions, especially anti-cancer activity as the major sesquiterpene lactones isolated from Atractylodes macrocephala (also named Baizhu in Chinese). However, the effects and mechanisms of AT-II on human gastric cancer remain unclear. Cell Counting Kit-8 (CCK-8) assay, morphological changes, flow cytometry, wound healing assay and Western blot analysis were used to investigate the effects of AT-II on cell proliferation, apoptosis and motility of human gastric carcinoma cell lines HGC-27 and AGS. Our results indicated that AT-II could significantly inhibit cell proliferation, motility and induce apoptosis in a dose and time-dependent manner. Western blot analysis showed that the expression level of Bax was upregulated and the expression levels of B-cell lymphoma-2 (Bcl-2), phosphorylated-protein kinase B (p-Akt) and phosphorylated-ERK (p-ERK) were downregulated compared to control group. In conclusion, the findings suggested that AT-II exerted significant anti-tumor effects on gastric carcinoma cells by modulating Akt/ERK signaling pathway, which might shed light on therapy of gastric carcinoma. Full article
Figures

Figure 1

Open AccessArticle Chemical Composition of Herbal Macerates and Corresponding Commercial Essential Oils and Their Effect on Bacteria Escherichia coli
Molecules 2017, 22(11), 1887; doi:10.3390/molecules22111887
Received: 28 September 2017 / Accepted: 29 October 2017 / Published: 10 November 2017
PDF Full-text (1605 KB) | HTML Full-text | XML Full-text
Abstract
This study addresses the chemical composition of some commercial essential oils (clove, juniper, oregano, and marjoram oils), as well as appropriate herbal extracts obtained in the process of cold maceration and their biological activity against selected Escherichia coli strains: E. coli ATTC 25922,
[...] Read more.
This study addresses the chemical composition of some commercial essential oils (clove, juniper, oregano, and marjoram oils), as well as appropriate herbal extracts obtained in the process of cold maceration and their biological activity against selected Escherichia coli strains: E. coli ATTC 25922, E. coli ATTC 10536, and E. coli 127 isolated from poultry waste. On the basis of the gas chromatography-mass spectrometry (GCMS) analysis, it was found that the commercial essential oils revealed considerable differences in terms of the composition and diversity of terpenes, terpenoids and sesquiterpenes as compared with the extracts obtained from plant material. The commercial clove, oregano, and marjoram oils showed antibacterial properties against all the tested strains of E. coli. However, these strains were not sensitive to essential oils obtained from the plant material in the process of maceration. The tested strains of E. coli show a high sensitivity, mainly against monoterpenes (α-pinene, β-pinene, α,β,γ-terpinene, limonene) and some terpenoids (thymol, carvacrol). The commercial juniper oil contained mainly monoterpenes and monoterpenoids, while the extracts contained lower amounts of monoterpenes and high amounts of sesquiterpenes—the anti-microbiotic properties of the juniper herbal extract seem to be caused by the synergistic activity of mono- and sesquiterpenes. Full article
(This article belongs to the Special Issue Antibacterial Materials and Coatings)
Figures

Open AccessArticle A Rapid and Simple TLC-Densitometric Method for Assay of Clobetasol Propionate in Topical Solution
Molecules 2017, 22(11), 1888; doi:10.3390/molecules22111888
Received: 29 September 2017 / Revised: 31 October 2017 / Accepted: 31 October 2017 / Published: 3 November 2017
PDF Full-text (1051 KB) | HTML Full-text | XML Full-text
Abstract
A rapid, simple to use and low-cost thin-layer chromatographic procedure in normal phase system with densitometric detection at 246 nm was carefully validated according to the International Conference on Harmonisation (ICH) guidelines for assay of clobetasol propionate in topical solution containing clobetasol propionate
[...] Read more.
A rapid, simple to use and low-cost thin-layer chromatographic procedure in normal phase system with densitometric detection at 246 nm was carefully validated according to the International Conference on Harmonisation (ICH) guidelines for assay of clobetasol propionate in topical solution containing clobetasol propionate in quantity 0.50 mg/mL. The adopted thin-layer chromatographic (TLC)-densitometric procedure could effectively separate clobetasol propionate from its related compound, namely clobetasol. It is linear for clobetasol propionate in the range of 0.188 ÷ 5 µg/spot. The limit of detection (LOD) and limit of quantification (LOQ) value is 0.061 and 0.186 µg/spot, respectively. Accuracy of proposed procedure was evaluated by recovery test. The mean recovery of studied clobetasol propionate ranges from 98.7 to 101.0%. The coefficient of variation (CV, %) obtained during intra-day and inter-day studies, which was less than 2% (0.40 ÷ 1.17%), confirms the precision of described method. The assay value of clobetasol propionate is consistent with the pharmacopoeial requirements. In conclusion, it can be suitable as a simple and economic procedure for routine quality control laboratories of clobetasol propionate in topical solution. Full article
Figures

Figure 1

Open AccessArticle Synthesis and Antibacterial Activity of Benzo[4,5]isothiazolo[2,3-a]pyrazine-6,6-dioxide Derivatives
Molecules 2017, 22(11), 1889; doi:10.3390/molecules22111889
Received: 26 September 2017 / Revised: 31 October 2017 / Accepted: 31 October 2017 / Published: 4 November 2017
PDF Full-text (832 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Using a routine procedure, a number of derivatives of the benzo[4,5]isothiazolo[2,3-a]pyrazine-6,6-dioxide ring system have been synthesized from readily available starting materials. A series of chalcones were synthesized, which were subsequently reacted with chlorosulfonic acid to generate chalcone sulfonyl chlorides. The chalcone
[...] Read more.
Using a routine procedure, a number of derivatives of the benzo[4,5]isothiazolo[2,3-a]pyrazine-6,6-dioxide ring system have been synthesized from readily available starting materials. A series of chalcones were synthesized, which were subsequently reacted with chlorosulfonic acid to generate chalcone sulfonyl chlorides. The chalcone sulfonyl chlorides were then treated with bromine to generate dibromo chalcone sulfonyl chlorides. These were subsequently reacted with 1,2-diaminopropane and 2-methyl-1,2-diaminopropane in boiling ethanol resulting in compounds 210 and 1119 respectively, in 12–80% yields. The products were characterized by spectral analysis and the definitive structure of compound 11 was determined by X-ray crystallography. The synthesized compounds were screened for potential antibacterial properties against Bacillus subtilis, Escherichia coli, Proteus vulgaris and Staphylococcus aureus. Full article
Figures

Open AccessArticle Glypre: In Silico Prediction of Protein Glycation Sites by Fusing Multiple Features and Support Vector Machine
Molecules 2017, 22(11), 1891; doi:10.3390/molecules22111891
Received: 20 September 2017 / Accepted: 26 October 2017 / Published: 3 November 2017
PDF Full-text (2023 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Glycation is a non-enzymatic process occurring inside or outside the host body by attaching a sugar molecule to a protein or lipid molecule. It is an important form of post-translational modification (PTM), which impairs the function and changes the characteristics of the proteins
[...] Read more.
Glycation is a non-enzymatic process occurring inside or outside the host body by attaching a sugar molecule to a protein or lipid molecule. It is an important form of post-translational modification (PTM), which impairs the function and changes the characteristics of the proteins so that the identification of the glycation sites may provide some useful guidelines to understand various biological functions of proteins. In this study, we proposed an accurate prediction tool, named Glypre, for lysine glycation. Firstly, we used multiple informative features to encode the peptides. These features included the position scoring function, secondary structure, AAindex, and the composition of k-spaced amino acid pairs. Secondly, the distribution of distinctive features of the residues surrounding the glycation and non-glycation sites was statistically analysed. Thirdly, based on the distribution of these features, we developed a new predictor by using different optimal window sizes for different properties and a two-step feature selection method, which utilized the maximum relevance minimum redundancy method followed by a greedy feature selection procedure. The performance of Glypre was measured with a sensitivity of 57.47%, a specificity of 90.78%, an accuracy of 79.68%, area under the receiver-operating characteristic (ROC) curve (AUC) of 0.86, and a Matthews’s correlation coefficient (MCC) of 0.52 by 10-fold cross-validation. The detailed analysis results showed that our predictor may play a complementary role to other existing methods for identifying protein lysine glycation. The source code and datasets of the Glypre are available in the Supplementary File. Full article
(This article belongs to the Special Issue Computational Analysis for Protein Structure and Interaction)
Figures

Open AccessArticle Continuous Preparation of Hollow Polymeric Nanocapsules Using Self-Assembly and a Photo-Crosslinking Process of an Amphiphilic Block Copolymer
Molecules 2017, 22(11), 1892; doi:10.3390/molecules22111892
Received: 18 September 2017 / Revised: 1 November 2017 / Accepted: 3 November 2017 / Published: 3 November 2017
PDF Full-text (5640 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents a fabrication method of hollow polymeric nanocapsules (HPNCs). The HPNCs were examined to reduce light trapping in an organic light emitting diodes (OLED) device by increasing the refractive index contrast. They were continuously fabricated by the sequential process of self-assembly
[...] Read more.
This paper presents a fabrication method of hollow polymeric nanocapsules (HPNCs). The HPNCs were examined to reduce light trapping in an organic light emitting diodes (OLED) device by increasing the refractive index contrast. They were continuously fabricated by the sequential process of self-assembly and photo-crosslinking of an amphiphilic block copolymer of SBR-b-PEGMA, poly(styrene-r-butadiene)-b-poly(poly(ethylene glycol) methyl ether methacrylate) in a flow-focusing microfluidic device. After the photo-crosslinking process, the produced HPNCs have a higher resistance to water and organic solvents, which is applicable to the fabrication process of optical devices. The morphology and hollow structure of the produced nanocapsules were determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Also, their size control was examined by varying the ratio of inlet flow rates and the morphological difference was studied by changing the polymer concentration. The size was measured by dynamic light scattering (DLS). The refractive index of the layer with and without the HPNCs was measured, and a lower refractive index was obtained in the HPNCs-dispersed layer. In future work, the light extraction efficiency of the HPNCs-dispersed OLED will be examined. Full article
Figures

Open AccessArticle Structural and Functional Properties Changes of β-Conglycinin Exposed to Hydroxyl Radical-Generating Systems
Molecules 2017, 22(11), 1893; doi:10.3390/molecules22111893
Received: 9 October 2017 / Accepted: 1 November 2017 / Published: 3 November 2017
PDF Full-text (1580 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The objective of the present study was to examine the structural and functional changes of β-conglycinin exposed to oxidizing radicals produced by FeCl3/H2O2/ascorbic acid hydroxyl radical-generating system (HRGS) for 3 h at room temperature. Increasing H2
[...] Read more.
The objective of the present study was to examine the structural and functional changes of β-conglycinin exposed to oxidizing radicals produced by FeCl3/H2O2/ascorbic acid hydroxyl radical-generating system (HRGS) for 3 h at room temperature. Increasing H2O2 concentrations resulted in a loss of histidine residues, lysine residues, and available lysine, which was accompanied by the formation of protein carbonyls and disulphide bonds (p < 0.05). Changes in secondary structure, surface hydrophobicity, and intrinsic fluorescence indicated that hydroxyl radicals had induced protein unfolding and conformational alterations. Results from SDS-PAGE implied that a small amount of protein cross-linkages produced by oxidative incubation. The emulsifying properties of β-conglycinin were gradually improved with the increasing extent of oxidation. The structural changes above contributed to the reduction of potential allergenicity of β-conglycinin, as verified by specific ELISA analysis. These results suggest that moderate oxidation could partially improve the protein functional properties and reduced the potential allergy of protein, providing guidance for effective use of moderately oxidized soy protein in the industry. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Open AccessArticle Microwave-Assisted Extraction of Cannabinoids in Hemp Nut Using Response Surface Methodology: Optimization and Comparative Study
Molecules 2017, 22(11), 1894; doi:10.3390/molecules22111894
Received: 7 October 2017 / Revised: 31 October 2017 / Accepted: 2 November 2017 / Published: 3 November 2017
PDF Full-text (26820 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hemp nut is commonly incorporated into several food preparations; however, most countries set regulations for hemp products according to their cannabinoid content. In this study, we have developed an efficient microwave-assisted extraction (MAE) method for cannabinoids (i.e., Δ9-tetrahydrocannabinol, cannabidiol, and cannabinol) in hemp
[...] Read more.
Hemp nut is commonly incorporated into several food preparations; however, most countries set regulations for hemp products according to their cannabinoid content. In this study, we have developed an efficient microwave-assisted extraction (MAE) method for cannabinoids (i.e., Δ9-tetrahydrocannabinol, cannabidiol, and cannabinol) in hemp nut. Optimization of the MAE procedure was conducted through single factor experiments and response surface methodology (RSM). A comparative study was also conducted to determine the differences in the extraction yields and morphology of hemp nut between MAE and reference extraction methods, namely heat reflux extraction (HRE), Soxhlet extraction (SE), supercritical fluid extraction (SFE), and ultrasound-assisted extraction (UAE). Among the independent variables in RSM, the temperature was the most significant parameter. The optimal conditions of MAE were as follows: extraction solvent of methanol, microwave power of 375 W, temperature of 109 °C, and extraction time of 30 min. Compared with reference extraction methods, MAE achieved the highest extraction yields of total cannabinoids in hemp nut (6.09 μg/g for MAE; 4.15 μg/g for HRE; 5.81 μg/g for SE; 3.61 μg/g for SFE; 3.73 μg/g for UAE) with the least solvent consumption and shortest time. Morphological observations showed that substantial cell rupturing occurred in the microstructure of hemp nut after MAE, indicating enhanced dissolution of the target compounds during the extraction process. The MAE method is thus a rapid, economic, and environmentally friendly extraction method that is both effective and practical for industrial applications.