Previous Issue
Volume 11, April
 
 

Photonics, Volume 11, Issue 5 (May 2024) – 39 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 12042 KiB  
Article
Tightly Trapped Atom Interferometer inside a Hollow-Core Fiber
by Yitong Song, Wei Li, Xiaobin Xu, Rui Han, Chengchun Gao, Cheng Dai and Ningfang Song
Photonics 2024, 11(5), 428; https://doi.org/10.3390/photonics11050428 - 03 May 2024
Viewed by 80
Abstract
We demonstrate a fiber-guided atom interferometer in a far-off-resonant trap (FORT) of 100 μK. The differential light shift (DLS) introduced by the FORT leads to the inhomogeneous dephasing of the tightly trapped atoms inside a hollow-core fiber. The DLS-induced dephasing is greatly suppressed [...] Read more.
We demonstrate a fiber-guided atom interferometer in a far-off-resonant trap (FORT) of 100 μK. The differential light shift (DLS) introduced by the FORT leads to the inhomogeneous dephasing of the tightly trapped atoms inside a hollow-core fiber. The DLS-induced dephasing is greatly suppressed in π/2-π-π/2 Doppler-insensitive interferometry. The spin coherence time is extended to 13.4 ms by optimizing the coupling of the trapping laser beam into a quasi-single-mode hollow-core anti-resonant fiber. The Doppler-sensitive interferometry shows a much shorter coherence time, indicating that the main limits to our fiber-guided atom interferometer are the wide axial velocity distribution and the irregular modes of the Raman laser beams inside the fiber. This work paves the way for portable and miniaturized quantum devices, which have advantages for inertial sensing at arbitrary orientations and in dynamic environments. Full article
(This article belongs to the Special Issue The Integration of Quantum Communication and Quantum Sensors)
Show Figures

Figure 1

16 pages, 3009 KiB  
Article
Improved Optics for Super-Resolution Time-Lapse Observations of Biological Phenomenon Using Speckle Interferometry
by Yasuhiko Arai
Photonics 2024, 11(5), 427; https://doi.org/10.3390/photonics11050427 - 03 May 2024
Viewed by 105
Abstract
This study proposes a new optical system with the potential for time-lapse observation of living cellular tissue beyond the diffraction limit through speckle interferometry to facilitate biological research. The spatial resolution of this optical system was investigated and improved upon. This study also [...] Read more.
This study proposes a new optical system with the potential for time-lapse observation of living cellular tissue beyond the diffraction limit through speckle interferometry to facilitate biological research. The spatial resolution of this optical system was investigated and improved upon. This study also experimentally verified a finding from an earlier simulation study that the new super-resolution technology could be realised by analysing the phase distribution related to the shape of the measured object, preserved in the light reflected from the object. Additionally, a method was presented to confirm the positions of microstructures, based on the extracted characteristics of the structure. Full article
(This article belongs to the Special Issue Coherence Properties of Light: From Theory to Applications)
26 pages, 10198 KiB  
Article
An Empirical Approach to Rerouting Visible Light Pathways Using an Adjustable-Angle Mirror to Sustain Communication between Vehicles on Curvy Roads
by Ahmet Deniz, Burak Aydın and Heba Yuksel
Photonics 2024, 11(5), 426; https://doi.org/10.3390/photonics11050426 - 03 May 2024
Viewed by 125
Abstract
In this paper, a novel method is demonstrated to sustain vehicle-to-vehicle (V2V) communication on curvy roads via the arrangement of the lateral position of a self-angle-adjustable mirror–reflective road sign (SAAMRS) and light-direction-sensing wide-angle complementary photodiodes (CPDs). Visible light communication (VLC) between vehicles attracts [...] Read more.
In this paper, a novel method is demonstrated to sustain vehicle-to-vehicle (V2V) communication on curvy roads via the arrangement of the lateral position of a self-angle-adjustable mirror–reflective road sign (SAAMRS) and light-direction-sensing wide-angle complementary photodiodes (CPDs). Visible light communication (VLC) between vehicles attracts attention as a complementary technology to radio-frequency-based (RF-based) communication technologies due to its wide, license-free spectrum and immunity to interferences. However, V2V VLC may be interrupted on curvy roads due to the limited field of view (FOV) of the receiver or the line of sight (LOS) being interrupted. To solve this problem, an experiment was developed using an SAAMRS along with wide-angle light-direction-sensing CPDs that used a precise peak detection (PPD) method to sustain communication between vehicles in dynamic environments by rerouting the incident light with the highest signal intensity level to the receiver vehicle on curvy roads. We also used real images of curvy roads simulated as polynomials to calculate the necessary rotation angles for the SAAMRS and regions where communication exist. Our experimental results overlapped almost completely with our simulations, with small errors of approximately 4.8% and 4.4% for the SAAMRS angle and communication region, respectively. Full article
(This article belongs to the Special Issue Visible Light Communications)
Show Figures

Figure 1

12 pages, 2756 KiB  
Article
Polarization Diffraction Gratings in PAZO Polymer Thin Films Recorded with Digital Polarization Holography: Polarization Properties and Surface Relief Formation
by Nataliya Berberova-Buhova, Lian Nedelchev, Georgi Mateev, Ludmila Nikolova, Elena Stoykova, Branimir Ivanov, Velichka Strijkova, Keehoon Hong and Dimana Nazarova
Photonics 2024, 11(5), 425; https://doi.org/10.3390/photonics11050425 - 03 May 2024
Viewed by 129
Abstract
In this work, we study the polarization properties of diffraction gratings recorded in thin films of the azopolymer PAZO (poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt]) using digital polarization holography. Using two quarter-wave plates, the phase retardation of each pixel of the SLM is converted into [...] Read more.
In this work, we study the polarization properties of diffraction gratings recorded in thin films of the azopolymer PAZO (poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt]) using digital polarization holography. Using two quarter-wave plates, the phase retardation of each pixel of the SLM is converted into the azimuth rotation of linearly polarized light. When recording from the azopolymer side of the sample, significant surface relief amplitude is observed with atomic force microscopy. In contrast, recording from the substrate side of the sample allows the reduction of the surface relief modulation and the obtaining of polarization gratings with characteristics close to an ideal grating, recorded with two orthogonal circular polarizations. This can be achieved even with a four-pixel period of grating, as demonstrated by our results. Full article
(This article belongs to the Special Issue Technologies and Applications of Digital Holography)
Show Figures

Figure 1

12 pages, 3902 KiB  
Article
Deep Learning-Enhanced Inverse Modeling of Terahertz Metasurface Based on a Convolutional Neural Network Technique
by Muzhi Gao, Dawei Jiang, Gaoyang Zhu and Bin Wang
Photonics 2024, 11(5), 424; https://doi.org/10.3390/photonics11050424 - 03 May 2024
Viewed by 135
Abstract
The traditional design method for terahertz metasurface biosensors is cumbersome and time-consuming, requires expertise, and often leads to significant discrepancies between expected and actual values. This paper presents a novel approach for the fast, efficient, and convenient inverse design of THz metasurface sensors, [...] Read more.
The traditional design method for terahertz metasurface biosensors is cumbersome and time-consuming, requires expertise, and often leads to significant discrepancies between expected and actual values. This paper presents a novel approach for the fast, efficient, and convenient inverse design of THz metasurface sensors, leveraging convolutional neural network techniques based on deep learning. During the model training process, the magnitude data of the scattering parameters collected from the numerical simulation of the THz metasurface served as features, paired with corresponding surface structure matrices as labels to form the training dataset. During the validation process, the thoroughly trained model precisely predicted the expected surface structure matrix of a THz metasurface. The results demonstrate that the proposed algorithm realizes time-saving, high-efficiency, and high-precision inversion methods without complicated data preprocessing and additional optimization algorithms. Therefore, deep learning algorithms offer a novel approach for swiftly designing and optimizing THz metasurface sensors in biomedical detection, bypassing the complex and specialized design process of electromagnetic devices, and promising extensive prospects for their application in the biomedical field. Full article
(This article belongs to the Special Issue Fiber Optic Sensors: Science and Applications)
Show Figures

Figure 1

16 pages, 4432 KiB  
Article
Intermodal Fiber Interferometer with Spectral Interrogation and Fourier Analysis of Output Signals for Sensor Application
by Aleksandr Petrov, Andrey Golovchenko, Mikhail Bisyarin, Nikolai Ushakov and Oleg Kotov
Photonics 2024, 11(5), 423; https://doi.org/10.3390/photonics11050423 - 02 May 2024
Viewed by 198
Abstract
Interferometric fiber-optic sensors provide very high measurement accuracy and come with many other benefits. As such, the study of signal processing techniques for fiber-optic interferometers in order to extract information about external perturbation is an important area of research. In this work, the [...] Read more.
Interferometric fiber-optic sensors provide very high measurement accuracy and come with many other benefits. As such, the study of signal processing techniques for fiber-optic interferometers in order to extract information about external perturbation is an important area of research. In this work, the method of Fourier analysis was applied to extract information from the output signals of an intermodal fiber interferometer with spectral interrogation. It is shown that the external perturbation can be measured by obtaining the phase spectrum of the spectral transfer function of an intermodal fiber interferometer and determining the phase difference of a certain pair of mode groups. A mathematical model of this approach was developed, taking into account the parameters of the laser and the optical fiber, the number of excited mode groups, and the parameters of external perturbation. The theoretically considered method of Fourier analysis was experimentally verified, and it was proved to provide a linear response to external perturbation in a wide dynamic range. Full article
(This article belongs to the Special Issue Fiber Optic Sensors: Science and Applications)
Show Figures

Figure 1

13 pages, 6750 KiB  
Article
High-Precision Semiconductor Substrate Thickness Gauge Based on Spectral-Domain Interferometry
by Shuncong Zhong, Renyu He, Yaosen Deng, Jiewen Lin and Qiukun Zhang
Photonics 2024, 11(5), 422; https://doi.org/10.3390/photonics11050422 - 01 May 2024
Viewed by 309
Abstract
The flatness of semiconductor substrates is an important parameter for evaluating the surface quality of semiconductor substrates. However, existing technology cannot simultaneously achieve high measurement efficiency, large-range thickness measurement, and nanometer-level measurement accuracy in the thickness measurement of semiconductor substrates. To solve the [...] Read more.
The flatness of semiconductor substrates is an important parameter for evaluating the surface quality of semiconductor substrates. However, existing technology cannot simultaneously achieve high measurement efficiency, large-range thickness measurement, and nanometer-level measurement accuracy in the thickness measurement of semiconductor substrates. To solve the problems, we propose to apply the method that combines spectral-domain optical coherence tomography (SD-OCT) with the Hanning-windowed energy centrobaric method (HnWECM) to measure the thickness of semiconductor substrates. The method can be employed in the full-chip thickness measurement of a sapphire substrate, which has a millimeter measuring range, nanometer-level precision, and a sampling rate that can reach up to 80 kHz. In this contribution, we measured the full-chip thickness map of a sapphire substrate by using this method and analyzed the machining characteristics. The measurement results of a high-precision mechanical thickness gauge, which is widely used for thickness measurement in the wafer fabrication process, were compared with the proposed method. The difference between these two methods is 0.373%, which explains the accuracy of the applied method to some extent. The results of 10 sets of repeatability experiments on 250 measurement points show that the maximum relative standard deviation (RSD) at this point is 0.0061%, and the maximum fluctuation is 71.0 nm. The above experimental results prove that this method can achieve the high-precision thickness measurement of the sapphire substrate and is of great significance for improving the surface quality detection level of semiconductor substrates. Full article
Show Figures

Figure 1

11 pages, 8746 KiB  
Article
Group Control of Photo-Responsive Colloidal Motors with a Structured Light Field
by Dianyang Li, Huan Wei, Hui Fang and Yongxiang Gao
Photonics 2024, 11(5), 421; https://doi.org/10.3390/photonics11050421 - 01 May 2024
Viewed by 284
Abstract
Using structured light to drive colloidal motors, due to its advantages of remote manipulation, energy tunability, programmability, and the controllability of spatiotemporal distribution, has been attracting much attention in the fields of targeted drug delivery, environmental control, chemical agent detection, and smart device [...] Read more.
Using structured light to drive colloidal motors, due to its advantages of remote manipulation, energy tunability, programmability, and the controllability of spatiotemporal distribution, has been attracting much attention in the fields of targeted drug delivery, environmental control, chemical agent detection, and smart device design. Here, we focus on studying the group control of colloidal motors made from a photo-responsive organic polymer molecule NO-COP (N,O-Covalent organic polymer). These colloidal motors mainly respond to light intensity patterns. Considering its merits of fast refreshing speed, good programmability, and high-power threshold, we chose a digital micromirror device (DMD) to modulate the structured light field shining on the sample. It was found that under ultraviolet or green light modulation, such colloidal motors exhibit various group behaviors including group spreading, group patterning, and group migration. A qualitative interpretation is also provided for these observations. Full article
(This article belongs to the Special Issue Emerging Topics in Structured Light)
Show Figures

Figure 1

13 pages, 3678 KiB  
Article
Functional Optical Coherence Tomography of Rat Cortical Neurovascular Activation during Monopulse Electrical Stimulation with the Microelectrode Array
by Lin Yao, Jin Huang, Taixiang Liu, Han Gu, Changpeng Li, Ke Yang, Hongwei Yan, Lin Huang, Xiaodong Jiang, Chengcheng Wang and Qihua Zhu
Photonics 2024, 11(5), 420; https://doi.org/10.3390/photonics11050420 - 30 Apr 2024
Viewed by 225
Abstract
This paper presents a study to evoke rat cortical functional activities, including hemodynamic and neural tissue signal changes, by monopulse electrical stimulation with a microelectrode array using functional optical coherence tomography (fOCT). Based on the principal component analysis and fuzzy clustering method (PCA-FCM), [...] Read more.
This paper presents a study to evoke rat cortical functional activities, including hemodynamic and neural tissue signal changes, by monopulse electrical stimulation with a microelectrode array using functional optical coherence tomography (fOCT). Based on the principal component analysis and fuzzy clustering method (PCA-FCM), the hemodynamic response of different size blood vessels in rat cortex are analyzed, showing that the hemodynamic response of the superficial large blood vessels is more concentrated. In the regions of neural tissue where blood vessels are removed, positive significant pixels (the intensity of the pixel for five consecutive frames is greater than the average value plus triple standard deviation) and negative significant pixels (the intensity of the pixel for five consecutive frames is less than the average value minus triple standard deviation) exist, and the averaged intensity signal responds rapidly with an onset time of ~20.8 ms. Furthermore, the hemodynamic response was delayed by ~3.5 s from the neural tissue response. fOCT can provide a label-free, large-scale and depth-resolved map of cortical neurovascular activation, which is a promising technology to monitor cortical small-scale neurovascular activities. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
18 pages, 2079 KiB  
Article
Direct Numerical Modeling as a Tool for Optical Coherence Tomography Development: SNR (Sensitivity) and Lateral Resolution Test Target Interpretation
by Samuel Lawman and Yao-Chun Shen
Photonics 2024, 11(5), 419; https://doi.org/10.3390/photonics11050419 - 30 Apr 2024
Viewed by 296
Abstract
Optical Coherence Tomography (OCT) is a growing family of biophotonic imaging techniques, but in the literature there is a lack of easy-to-use tools to universally directly evaluate a device’s theoretical performance for a given metric. Modern computing tools mean that direct numerical modeling [...] Read more.
Optical Coherence Tomography (OCT) is a growing family of biophotonic imaging techniques, but in the literature there is a lack of easy-to-use tools to universally directly evaluate a device’s theoretical performance for a given metric. Modern computing tools mean that direct numerical modeling can, from first principles, simulate the performance metrics of a specific device directly without relying on analytical approximations and/or complexities. Here, we present two different direct numerical models, along with the example MATLAB code for the reader to adapt to their own systems. The first model is of photo-electron shot noise at the detector, the primary noise source for OCT. We use this firstly to evaluate the amount of additional noise present (1.5 dB) for an experimental setup. Secondly, we demonstrate how to use it to precisely quantify the expected shot noise SNR limit difference between time-domain and Fourier-domain OCT systems in a given hypothetical experiment. The second model is used to demonstrate how USAF 1951 test chart images should be interpreted for a given lateral PSF shape. Direct numerical modeling is an easy and powerful basic tool for researchers and developers, the wider use of which may improve the rigor of the OCT literature. Full article
(This article belongs to the Special Issue Recent Progress in Biophotonics)
18 pages, 81455 KiB  
Review
Hybrid Integrated Silicon Photonics Based on Nanomaterials
by Domenic Prete, Francesco Amanti, Greta Andrini, Fabrizio Armani, Vittorio Bellani, Vincenzo Bonaiuto, Simone Cammarata, Matteo Campostrini, Samuele Cornia, Thu Ha Dao, Fabio De Matteis, Valeria Demontis, Giovanni Di Giuseppe, Sviatoslav Ditalia Tchernij, Simone Donati, Andrea Fontana, Jacopo Forneris, Roberto Francini, Luca Frontini, Gian Carlo Gazzadi, Roberto Gunnella, Simone Iadanza, Ali Emre Kaplan, Cosimo Lacava, Valentino Liberali, Leonardo Martini, Francesco Marzioni, Claudia Menozzi, Elena Nieto Hernández, Elena Pedreschi, Paolo Piergentili, Paolo Prosposito, Valentino Rigato, Carlo Roncolato, Francesco Rossella, Andrea Salamon, Matteo Salvato, Fausto Sargeni, Jafar Shojaii, Franco Spinella, Alberto Stabile, Alessandra Toncelli, Gabriella Trucco and Valerio Vitaliadd Show full author list remove Hide full author list
Photonics 2024, 11(5), 418; https://doi.org/10.3390/photonics11050418 - 30 Apr 2024
Viewed by 444
Abstract
Integrated photonic platforms have rapidly emerged as highly promising and extensively investigated systems for advancing classical and quantum information technologies, since their ability to seamlessly integrate photonic components within the telecommunication band with existing silicon-based industrial processes offers significant advantages. However, despite this [...] Read more.
Integrated photonic platforms have rapidly emerged as highly promising and extensively investigated systems for advancing classical and quantum information technologies, since their ability to seamlessly integrate photonic components within the telecommunication band with existing silicon-based industrial processes offers significant advantages. However, despite this integration facilitating the development of novel devices, fostering fast and reliable communication protocols and the manipulation of quantum information, traditional integrated silicon photonics faces inherent physical limitations that necessitate a challenging trade-off between device efficiency and spatial footprint. To address this issue, researchers are focusing on the integration of nanoscale materials into photonic platforms, offering a novel approach to enhance device performance while reducing spatial requirements. These developments are of paramount importance in both classical and quantum information technologies, potentially revolutionizing the industry. In this review, we explore the latest endeavors in hybrid photonic platforms leveraging the combination of integrated silicon photonic platforms and nanoscale materials, allowing for the unlocking of increased device efficiency and compact form factors. Finally, we provide insights into future developments and the evolving landscape of hybrid integrated photonic nanomaterial platforms. Full article
(This article belongs to the Special Issue Photonic Integrated Circuits for Information, Computing and Sensing)
Show Figures

Figure 1

13 pages, 2538 KiB  
Article
Simulation Method for the Impact of Atmospheric Wind Speed on Optical Signals in Satellite–Ground Laser Communication Links
by Wujisiguleng Zhao and Chunyi Chen
Photonics 2024, 11(5), 417; https://doi.org/10.3390/photonics11050417 - 30 Apr 2024
Viewed by 217
Abstract
To analyze the intensity of atmospheric turbulence in a satellite–ground laser communication link, it is important to consider the effect of increased atmospheric turbulence caused by wind speed. Atmospheric turbulence causes a change in the refractive index, which negatively impacts the quality and [...] Read more.
To analyze the intensity of atmospheric turbulence in a satellite–ground laser communication link, it is important to consider the effect of increased atmospheric turbulence caused by wind speed. Atmospheric turbulence causes a change in the refractive index, which negatively impacts the quality and focusing ability of the laser beam by altering its phase front. To simulate the changes in amplitude and phase characteristics of laser beam propagation in atmospheric turbulence caused by wind speed, a transverse translation phase screen is used. To better understand and address the influence of atmospheric wind speed on the phase of optical signals in satellite–ground laser communication links, this paper proposes a Monte Carlo simulation method. This method utilizes the spatial and temporal variations in the refractive index in the atmosphere and integrates the principles of optical signal propagation in the atmosphere to simulate changes in the phase of optical signals under different wind speed conditions. By analyzing the variations in the received optical signal’s power, the Monte Carlo method is employed to simulate phase screens and logarithmic amplitude screens. Additionally, it models the probability density of the statistical behavior of received optical signal’s fluctuations, as well as the time autocorrelation coefficient of optical signals. This paper, under the coupling condition in satellite–ground laser communication links, conducted a Monte Carlo simulation experiment to analyze the characteristics of the optical signal’s fluctuations in the link and discovered that atmospheric wind speed affects the shape of the power spectral density model of the received optical signal. Increasing wind speed leads to a decrease in the time autocorrelation coefficient of the received optical signal and affects the coupling efficiency. The paper then used a cubic spline interpolation fitting method to verify the models of the power spectral density and the autocorrelation time coefficient of the optical signal. This provides a theoretical foundation and practical guidance for the optimization of satellite–ground laser communication systems. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

10 pages, 2342 KiB  
Article
Modulation of Second-Order Sideband Efficiency in an Atom-Assisted Optomechanical System
by Liang-Xuan Fan, Tao Shui, Ling Li and Wen-Xing Yang
Photonics 2024, 11(5), 416; https://doi.org/10.3390/photonics11050416 - 30 Apr 2024
Viewed by 221
Abstract
We propose an efficient scheme to enhance the generation of optical second-order sidebands (OSSs) in an atom-assisted optomechanical system. The cavity field is coupled with a strong driving field and a weak probe field, and a control field is applied to the atom. [...] Read more.
We propose an efficient scheme to enhance the generation of optical second-order sidebands (OSSs) in an atom-assisted optomechanical system. The cavity field is coupled with a strong driving field and a weak probe field, and a control field is applied to the atom. We use the steady-state method to analyze the nonlinear interaction in the system, which is different from the traditional linear analysis method. The existence of an auxiliary three-level atom driven by the control field significantly enhances the generation of an OSS. It is found that the efficiency of the OSS can be effectively modulated by adjusting the Rabi frequency of the control field, optomechanical cooperativity and atomic coupling strength. Our scheme provides a promising solution for controlling light propagation and has potential application in quantum optical devices and quantum information networks. Full article
(This article belongs to the Special Issue Optics and Laser: Light Field Manipulation)
Show Figures

Figure 1

9 pages, 3308 KiB  
Article
A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals
by Yufeng Shao, Yanlin Li, Anrong Wang, Yaodong Zhu, Chong Li, Peng Chen, Renjie Zuo, Jie Yuan and Shuanfan Liu
Photonics 2024, 11(5), 415; https://doi.org/10.3390/photonics11050415 - 30 Apr 2024
Viewed by 220
Abstract
A novel visible-light communication (VLC) system with 4 × 1 multi-input–single-output (MISO) channels is designed. In the system, the filter bank multicarrier (FBMC) and offset quadrature amplitude modulation (OQAM) techniques are used to generate downlink signals. The principles and implementation methods are proposed [...] Read more.
A novel visible-light communication (VLC) system with 4 × 1 multi-input–single-output (MISO) channels is designed. In the system, the filter bank multicarrier (FBMC) and offset quadrature amplitude modulation (OQAM) techniques are used to generate downlink signals. The principles and implementation methods are proposed and analyzed, and the light intensity and received light power distribution of four LED emitters are discussed. The results demonstrate that it not only satisfies the requirements of indoor information access but also provides daily lighting. The used FBMC-OQAM signals exhibit better reception performance than orthogonal frequency division multiplexing (OFDM) signals. The system used has a lower bit error rate (BER) and larger access bandwidth compared to a 1 × 1 single-input–single-output (SISO) system. It has the potential for application advantages in future indoor VLC system applications. Full article
(This article belongs to the Special Issue Visible Light Communications)
Show Figures

Figure 1

28 pages, 8139 KiB  
Review
The Structure and Applications of Fused Tapered Fiber Optic Sensing: A Review
by Siqi Ban and Yudong Lian
Photonics 2024, 11(5), 414; https://doi.org/10.3390/photonics11050414 - 30 Apr 2024
Viewed by 382
Abstract
Tapered optical fibers have continuously evolved in areas such as distributed sensing and laser generation in recent years. Their high sensitivity, ease of integration, and real-time monitoring capabilities have positioned them as a focal point in optical fiber sensing. This paper systematically introduces [...] Read more.
Tapered optical fibers have continuously evolved in areas such as distributed sensing and laser generation in recent years. Their high sensitivity, ease of integration, and real-time monitoring capabilities have positioned them as a focal point in optical fiber sensing. This paper systematically introduces the structures and characteristics of various tapered optical fiber sensors, providing a comprehensive overview of their applications in biosensing, environmental monitoring, and industrial surveillance. Furthermore, it offers insights into the developmental trends of tapered optical fiber sensing, providing valuable references for future related research and suggesting potential directions for the further advancement of optical fiber sensing. Full article
Show Figures

Figure 1

9 pages, 3271 KiB  
Technical Note
Design and Test of a Klystron Intra-Pulse Phase Feedback System for Electron Linear Accelerators
by Luca Piersanti, Marco Bellaveglia, Fabio Cardelli, Alessandro Gallo, Riccardo Magnanimi, Sergio Quaglia, Michele Scampati, Giorgio Scarselletta, Beatrice Serenellini and Simone Tocci
Photonics 2024, 11(5), 413; https://doi.org/10.3390/photonics11050413 - 29 Apr 2024
Viewed by 164
Abstract
Beam stability and timing jitter in modern linear accelerators are becoming increasingly important. In particular, if a magnetic or radio-frequency (RF) compression regime is employed, the beam time of arrival jitter at the end of the linac can be strictly correlated with the [...] Read more.
Beam stability and timing jitter in modern linear accelerators are becoming increasingly important. In particular, if a magnetic or radio-frequency (RF) compression regime is employed, the beam time of arrival jitter at the end of the linac can be strictly correlated with the phase noise of the accelerating fields of the RF structure working off-crest. For this reason, since 2008, an RF fast-feedback technique, which acts within each RF pulse, has been successfully employed at LNF-INFN (Laboratori Nazionali di Frascati dell’Istituto Nazionale di Fisica Nucleare) in the SPARC_LAB (Sources for Plasma Accelerators and Radiation Compton with Laser And Beam) facility on S-band ( 2856 MHz) klystrons powered by pulse-forming network (PFN) modulators, as reported in this paper. However, in order to meet the more stringent requirements of plasma wakefield acceleration schemes, some upgrades to this feedback system have been recently carried out. The first prototype has been experimentally tested on a C-band ( 5712 MHz) klystron, driven by a solid-state modulator, in order to investigate the possibility for additional improvement resulting from the inherently more stable power source. In this paper, the design, realization and the preliminary measurement results obtained at SPARC_LAB after such upgrades will be reviewed. Full article
(This article belongs to the Special Issue Recent Advances in Free Electron Laser Accelerators)
16 pages, 4790 KiB  
Article
Design and Analysis of a Narrow Linewidth Laser Based on a Triple Euler Gradient Resonant Ring
by Yikai Wang, Boxia Yan, Mi Zhou, Chenxi Sun, Yan Qi, Yanwei Wang, Yuanyuan Fan and Qian Wang
Photonics 2024, 11(5), 412; https://doi.org/10.3390/photonics11050412 - 29 Apr 2024
Viewed by 231
Abstract
We designed a narrow-linewidth external-cavity hybrid laser leveraging a silicon-on-insulator triple Euler gradient resonant ring. The laser’s outer cavity incorporates a compact, high-Q resonant ring with low loss. The straight waveguide part of the resonant ring adopts a width of 1.6 μm to [...] Read more.
We designed a narrow-linewidth external-cavity hybrid laser leveraging a silicon-on-insulator triple Euler gradient resonant ring. The laser’s outer cavity incorporates a compact, high-Q resonant ring with low loss. The straight waveguide part of the resonant ring adopts a width of 1.6 μm to ensure low loss transmission. The curved section is designed as an Euler gradient curved waveguide, which is beneficial for low loss and stable single-mode transmission. The design features an effective bending radius of only 26.35 μm, which significantly improves the compactness of the resonant ring and, in turn, reduces the overall footprint of the outer cavity chip. To bolster the laser power and cater to the varying shapes of semiconductor optical amplifier (SOA) spots, we designed a multi-tip edge coupler. Theoretical analysis indicates that this edge coupler can achieve an optical coupling efficiency of 85%. It also reveals that the edge coupler provides 3 dB vertical and horizontal alignment tolerances of 0.76 μm and 2.4 μm, respectively, for a spot with a beam waist radius of 1.98 μm × 0.99 μm. The outer cavity, designed with an Euler gradient micro-ring, can achieve a side-mode suppression ratio (SMSR) of 30 dB within a tuning range of 100 nm, with a round-trip loss of the entire cavity at 1.12 dB, and an expected theoretical laser linewidth of 300 Hz. Full article
(This article belongs to the Special Issue Narrow Linewidth Laser Sources and Their Applications)
Show Figures

Figure 1

11 pages, 1290 KiB  
Communication
Mueller Matrix Polarizing Power
by José J. Gil
Photonics 2024, 11(5), 411; https://doi.org/10.3390/photonics11050411 - 29 Apr 2024
Viewed by 164
Abstract
The transformation of the states of polarization of electromagnetic waves through their interaction with polarimetrically linear media can be represented by the associated Mueller matrices. A global measure of the ability of a linear medium to modify the states of polarization of incident [...] Read more.
The transformation of the states of polarization of electromagnetic waves through their interaction with polarimetrically linear media can be represented by the associated Mueller matrices. A global measure of the ability of a linear medium to modify the states of polarization of incident waves, due to any combination of enpolarizing, depolarizing and retarding properties, is introduced as the distance from the Mueller matrix to the identity matrix. This new descriptor, called the polarizing power, is applicable to any Mueller matrix and can be expressed as a function of the degree of polarimetric purity and the trace of the Mueller matrix. The graphical representation of the feasible values of the polarizing power provides a general view of its main peculiarities and features. The values of the polarizing power for several typical devices are analyzed. Full article
Show Figures

Figure 1

17 pages, 6834 KiB  
Article
A Novel Inserting Pilot Radio over Fiber System without the Bit Walk-Off Effect for the Generation and Distribution of Frequency 16-Tupling Millimeter Waves by Mach–Zehnder Modulators
by Xu Chen, Xinqiao Chen, Siyuan Dai, Bin Li and Ling Wang
Photonics 2024, 11(5), 410; https://doi.org/10.3390/photonics11050410 - 28 Apr 2024
Viewed by 282
Abstract
A novel inserting pilot scheme to generate and distribute a frequency 16-tupling millimeter wave (MMW) radio over fiber (ROF) system without the bit walk-off effect via Mach–Zehnder modulators (MZMs) is proposed. The operation principle is analyzed and the feasibility of our proposed scheme [...] Read more.
A novel inserting pilot scheme to generate and distribute a frequency 16-tupling millimeter wave (MMW) radio over fiber (ROF) system without the bit walk-off effect via Mach–Zehnder modulators (MZMs) is proposed. The operation principle is analyzed and the feasibility of our proposed scheme is verified by simulation test. The main part of our scheme is a ±8th-order sidebands generator (SG), which is constructed by four MZMs connected in parallel. In the back-to-back (BTB) transmission case, by properly adjusting the voltage and initial phase of the radio frequency (RF) drive signals of the MZMs, ±8th-order sidebands are generated by the SG. In the data transmission case, the data signal is first split into two beams, one of which modulates the RF drive signal with an electrical phase modulator (PM) while the other is amplified by an electrical gainer (EG), and then the two beams are combined into one and used as the composite RF drive signal of the MZMs. By adjusting the modulation index of the PM and the gain of the EG, the data signal can only be modulated to the +8th-order sideband of the output of the SG. The optical carrier from the continuous wave (CW) laser is split into two paths: one is sent into the SG, and the other is used as a pilot signal. The output signal of SG is combined with the pilot signal and is transmitted to the base station (BS) via optical fiber. At the BS, the pilot signal is filtered out by a fiber Bragg grating (FBG) and used as the carrier for the uplink for carrier reuse. After filtering out the pilot, the signal from the FBG, which is composed of ±8th-order sidebands, is injected into a photodetector, and a frequency 16-tupling MMW with downlink data is generated. The key parameters’ influence on the bit error rate (BER) and Q factor in the system is also analyzed. Our scheme can not only effectively overcome the bit walk-off effect caused by optical fiber chromatic dispersion and greatly increase the fiber transmission distance but can also effectively improve the performance and the tunability of system. Therefore, it has important application prospects in ROF systems. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

16 pages, 3014 KiB  
Article
Far-Field Super-Resolution Optical Microscopy for Nanostructures in a Reflective Substrate
by Aiqin Zhang, Kunyang Li, Guorong Guan, Haowen Liang, Xiangsheng Xie and Jianying Zhou
Photonics 2024, 11(5), 409; https://doi.org/10.3390/photonics11050409 - 27 Apr 2024
Viewed by 382
Abstract
The resolution of an optical microscope is determined by the overall point spread function of the system. When examining structures significantly smaller than the wavelength of light, the contribution of the background or surrounding environment can profoundly affect the point spread function. This [...] Read more.
The resolution of an optical microscope is determined by the overall point spread function of the system. When examining structures significantly smaller than the wavelength of light, the contribution of the background or surrounding environment can profoundly affect the point spread function. This research delves into the impact of reflective planar substrate structures on the system’s resolution. We establish a comprehensive forward imaging model for a reflection-type confocal laser scanning optical microscope, incorporating vector field manipulation to image densely packed nanoparticle clusters. Both theoretical and experimental findings indicate that the substrate causes an interference effect between the background field and the scattered field from the nanoparticles, markedly enhancing the overall spatial resolution. The integration of vector field manipulation with an interferometric scattering approach results in superior spatial resolution for imaging isolated particles and densely distributed nanoscale particle clusters even with deep subwavelength gaps as small as 20 nm between them. However, the method still struggles to resolve nanoparticles positioned directly next to each other without any gap, necessitating further work to enhance the resolving ability. This may involve techniques like deconvolution or machine learning-based post-processing methods. Full article
(This article belongs to the Special Issue Design and Applications of Optical Microscopes)
Show Figures

Figure 1

13 pages, 8405 KiB  
Article
Rapid Fabrication of Yttrium Aluminum Garnet Microhole Array Based on Femtosecond Bessel Beam
by Heng Yang, Yuan Yu, Tong Zhang, Shufang Ma, Lin Chen, Bingshe Xu and Zhiyong Wang
Photonics 2024, 11(5), 408; https://doi.org/10.3390/photonics11050408 - 27 Apr 2024
Viewed by 302
Abstract
High-aspect-ratio microholes, the fundamental building blocks for microfluidics, optical waveguides, and other devices, find wide applications in aerospace, biomedical, and photonics fields. Yttrium aluminum garnet (YAG) crystals are commonly used in optical devices due to their low stress, hardness, and excellent chemical stability. [...] Read more.
High-aspect-ratio microholes, the fundamental building blocks for microfluidics, optical waveguides, and other devices, find wide applications in aerospace, biomedical, and photonics fields. Yttrium aluminum garnet (YAG) crystals are commonly used in optical devices due to their low stress, hardness, and excellent chemical stability. Therefore, finding efficient fabrication methods to produce high-quality microholes within YAG crystals is crucial. The Bessel beam, characterized by a uniform energy distribution along its axis and an ultra-long depth of focus, is highly suitable for creating high-aspect-ratio structures. In this study, an axicon lens was used to shape the spatial profile of a femtosecond laser into a Bessel beam. Experimental verification showed a significant improvement in the high aspect ratio of the microholes produced in YAG crystals using the femtosecond Bessel beam. This study investigated the effects of the power and defocus parameters of single-pulse Bessel beams on microhole morphology and size, and microhole units with a maximum aspect ratio of more than 384:1 were obtained. Based on these findings, single-pulse femtosecond Bessel processing parameters were optimized, and an array of 181 × 181 microholes in a 400 μm thick YAG crystal was created in approximately 13.5 min. The microhole array had a periodicity of 5 μm and a unit aspect ratio of 315:1, with near-circular top and subface apertures and high repeatability. Full article
(This article belongs to the Special Issue Laser Processing and Modification of Materials)
Show Figures

Figure 1

16 pages, 12591 KiB  
Article
Evaluation of an Erbium-Doped Fiber Ring Laser as an Edge Filtering Device for Fiber Bragg Grating Sensor Interrogation
by Nikolaos A. Stathopoulos, Christos Lazakis, Iraklis Simos and Christos Simos
Photonics 2024, 11(5), 407; https://doi.org/10.3390/photonics11050407 - 27 Apr 2024
Viewed by 232
Abstract
An easy-to-implement and cost-effective Fiber Bragg Grating (FBG) sensor interrogation technique based on a ring Erbium-Doped Fiber Laser (EDFL) topology is proposed and experimentally assessed. The FBG sensor is part of the EDFL cavity and must have a central wavelength located within the [...] Read more.
An easy-to-implement and cost-effective Fiber Bragg Grating (FBG) sensor interrogation technique based on a ring Erbium-Doped Fiber Laser (EDFL) topology is proposed and experimentally assessed. The FBG sensor is part of the EDFL cavity and must have a central wavelength located within the linear region of the EDF’s amplified spontaneous emission (ASE) spectrum, which occurs at between 1530 and 1540 nm. In this manner, the wavelength-encoded response of the FBG under strain is converted to a linear variation in the laser output power, removing the need for spectrum analysis as well as any limitations from the use of external edge-filtering components. In addition, the laser linewidth is significantly reduced with respect to the FBG bandwidth, thus improving the resolution of the system, whereas its sensitivity can be controlled through pumping power. The performance of the system has been characterized by modeling and experiments for EDFs with different lengths, doping concentrations, and pumping power levels. The influence of mode-hopping in the laser cavity on the resolution and accuracy of the system has also been investigated. Full article
(This article belongs to the Special Issue Fiber Optic Sensors: Science and Applications)
Show Figures

Figure 1

11 pages, 3785 KiB  
Article
Experimental Study of Fast Orthogonal Frequency Division Multiplexing Transmission over a Random Media Channel for Optical Wireless Communications
by Lu Zhang and Yanan Chen
Photonics 2024, 11(5), 406; https://doi.org/10.3390/photonics11050406 - 26 Apr 2024
Viewed by 340
Abstract
In this paper, a 4 amplitude shift keying (4-ASK) fast orthogonal frequency division multiplexing (FOFDM) scheme was experimentally investigated over a turbulent air–water channel for optical wireless communications. The experiment results showed that the 4-ASK-FOFDM modulated signals were not sensitive to weak atmospheric [...] Read more.
In this paper, a 4 amplitude shift keying (4-ASK) fast orthogonal frequency division multiplexing (FOFDM) scheme was experimentally investigated over a turbulent air–water channel for optical wireless communications. The experiment results showed that the 4-ASK-FOFDM modulated signals were not sensitive to weak atmospheric turbulence, and the bit-error rate (BER) was lower than the 7% forward error correction (FEC) limit of 3.8 × 10−3. Under the condition of the same spectra efficiency, the 4-ASK-FOFDM scheme just had a tiny performance penalty compared to the 16-QAM-OFDM scheme. Consequently, the 4-ASK-FOFDM scheme is a promising alternative to the conventional 16-QAM-OFDM scheme in optical wireless communications. Full article
Show Figures

Figure 1

12 pages, 4734 KiB  
Article
High Fidelity Full-Color Optical Sectioning Structured Illumination Microscopy by Fourier Domain Based Reconstruction
by Shipei Dang, Jia Qian, Wang Ma, Rui Ma, Xing Li, Siying Wang, Chen Bai, Dan Dan and Baoli Yao
Photonics 2024, 11(5), 405; https://doi.org/10.3390/photonics11050405 - 26 Apr 2024
Viewed by 423
Abstract
The natural color of biological specimens plays a crucial role in body protection, signaling, physiological adaptations, etc. Full-color optical sectioning structured illumination microscopy (OS-SIM) color is a promising approach that can reconstruct biological specimens in three-dimension meanwhile maintaining their natural color. Full-color OS-SIM [...] Read more.
The natural color of biological specimens plays a crucial role in body protection, signaling, physiological adaptations, etc. Full-color optical sectioning structured illumination microscopy (OS-SIM) color is a promising approach that can reconstruct biological specimens in three-dimension meanwhile maintaining their natural color. Full-color OS-SIM takes the advantages of rapid imaging speed, compatibility with fluorescence and non-fluorescence samples, compact configuration, and low cost. However, the commonly used HSV-RMS reconstruction algorithm for full-color OS-SIM faces two issues to be improved. One is the RMS (root-mean-square) OS reconstruction algorithm is prone to background noise, and the other is the reconstruction is bound in RGB and HSV color spaces, consuming more reconstructing time. In this paper, we propose a full-color Fourier-OS-SIM method that allows for the OS reconstruction using the high-frequency spectrum of the sample and thus is immune to the low-frequency background noise. The full-color Fourier-OS-SIM directly runs in the RGB color space, providing an easy way to restore the color information. Simulation and experiments with various samples (pollen grains and tiny animals) demonstrate that the full-color Fourier-OS-SIM method is superior to the HSV-RMS method regarding background noise suppression. Moreover, benefiting from the background noise suppression merit, the quantitative morphological height map analysis with the full-color Fourier-OS-SIM method is more accurate. The proposed full-color Fourier-OS-SIM method is expected to find broad applications in biological and industrial fields where the 3D morphology and the color information of objects both need to be recovered. Full article
(This article belongs to the Special Issue Emerging Topics in Structured Light)
Show Figures

Figure 1

13 pages, 2993 KiB  
Article
Adaptive Modulation Scheme for Soft-Switching Hybrid FSO/RF Links Based on Machine Learning
by Junhu Shao, Yishuo Liu, Xuxiao Du and Tianjiao Xie
Photonics 2024, 11(5), 404; https://doi.org/10.3390/photonics11050404 - 26 Apr 2024
Viewed by 238
Abstract
A hybrid free-space optical (FSO) and radio frequency (RF) communication system has been considered an effective way to obtain a good trade-off between spectrum utilization efficiency and high-rate transmission. Utilizing artificial intelligence (AI) to deal with the switching and rate adaption problems between [...] Read more.
A hybrid free-space optical (FSO) and radio frequency (RF) communication system has been considered an effective way to obtain a good trade-off between spectrum utilization efficiency and high-rate transmission. Utilizing artificial intelligence (AI) to deal with the switching and rate adaption problems between FSO/RF links, this paper investigated their modulation adapting mechanism based on a machine learning (ML) algorithm. Hybrid link budgets were estimated for different modulation types in various environments, particularly severe weather conditions. For the adaptive modulation (AM) scheme with different order PPM/PSK/QAM, a rate-compatible soft-switching model for hybrid FSO/RF links was established with a random forest algorithm based on ML. With a given target bit error rate, the model categorized a link budget threshold of the hybrid FSO/RF system over a training data set from local weather records. The switching and modulation adaption accuracy were tested over the testing weather data set especially focusing on rain and fog. Simulation results show that the proposed adaptive modulation scheme based on the random forest algorithm can have a good performance for soft-switching hybrid FSO/RF communication links. Full article
(This article belongs to the Special Issue Next-Generation Free-Space Optical Communication Technologies)
Show Figures

Figure 1

18 pages, 4835 KiB  
Article
VLCMnet-Based Modulation Format Recognition for Indoor Visible Light Communication Systems
by Xin Zheng, Ying He, Chong Zhang and Pu Miao
Photonics 2024, 11(5), 403; https://doi.org/10.3390/photonics11050403 - 26 Apr 2024
Viewed by 295
Abstract
In indoor visible light communication (VLC), the received signals are subject to severe interference due to factors such as high-brightness backgrounds, long-distance transmissions, and indoor obstructions. This results in an increase in misclassification for modulation format recognition. We propose a novel model called [...] Read more.
In indoor visible light communication (VLC), the received signals are subject to severe interference due to factors such as high-brightness backgrounds, long-distance transmissions, and indoor obstructions. This results in an increase in misclassification for modulation format recognition. We propose a novel model called VLCMnet. Within this model, a temporal convolutional network and a long short-term memory (TCN-LSTM) module are utilized for direct channel equalization, effectively enhancing the quality of the constellation diagrams for modulated signals. A multi-mixed attention network (MMAnet) module integrates single- and mixed-attention mechanisms within a convolutional neural network (CNN) framework specifically for constellation image classification. This allows the model to capture fine-grained spatial structure features and channel features within constellation diagrams, particularly those associated with high-order modulation signals. Experimental results obtained demonstrate that, compared to a CNN model without attention mechanisms, the proposed model increases the recognition accuracy by 19.2%. Under severe channel distortion conditions, our proposed model exhibits robustness and maintains a high level of accuracy. Full article
Show Figures

Figure 1

14 pages, 3319 KiB  
Article
The Application of Optical Sensors with Built-in Anchor-like Cavities in the Detection of Hemoglobin Concentration
by Wen Jiang, Shubin Yan, Yiru Su, Chong Wang, Taiquan Wu, Yang Cui, Chuanhui Zhu, Yi Zhang, Xiangyang Mu and Guowang Gao
Photonics 2024, 11(5), 402; https://doi.org/10.3390/photonics11050402 - 26 Apr 2024
Viewed by 340
Abstract
This paper introduces a refractive index sensor based on Fano resonance, utilizing a metal–insulator–metal (MIM) waveguide structure with an Anchor-like cavity. This study utilizes the finite element method (FEM) for analyzing the propagation characteristics of the structure. The evaluation concentrated on assessing how [...] Read more.
This paper introduces a refractive index sensor based on Fano resonance, utilizing a metal–insulator–metal (MIM) waveguide structure with an Anchor-like cavity. This study utilizes the finite element method (FEM) for analyzing the propagation characteristics of the structure. The evaluation concentrated on assessing how the refractive index and the structure’s geometric parameters affect its sensing characteristics. The designed structure demonstrates optimum performance, achieving a maximum sensitivity of 2440 nm/RIU and an FOM of 63. Given its high sensitivity, this nanoscale refractive index sensor is ideal for detecting hemoglobin concentrations in blood, and the sensor’s sensitivity is 0.6 nm·g/L, aiding in clinical prevention and treatment. Full article
(This article belongs to the Special Issue New Perspectives in Optical Design)
Show Figures

Figure 1

10 pages, 8597 KiB  
Communication
Line-of-sight Initial Pointing Model of Space Dynamic Optical Network and Its Verification
by Shu Chen, Xin Zhao, Xiaoying Ding, Xiaoyun Wu and Dewang Liu
Photonics 2024, 11(5), 401; https://doi.org/10.3390/photonics11050401 - 26 Apr 2024
Viewed by 290
Abstract
In dynamic space networks, achieving high precision and fast initial pointing of the optical line of sight (LOS) is the key goal in developing this technology. It is the premise and basis of realizing optical LOS capture. Based on the composition and working [...] Read more.
In dynamic space networks, achieving high precision and fast initial pointing of the optical line of sight (LOS) is the key goal in developing this technology. It is the premise and basis of realizing optical LOS capture. Based on the composition and working principle of space optical networking systems, and the effect of real-time position and attitude changes on LOS initial pointing between networks, the matrix transformation and transfer principle is used to establish a multi-link LOS initial pointing model and analyze the factors affecting the size of the field of uncertainty (FOU). In a dynamic space optical networking experiment, the “one-to-two” simultaneous LOS pointing test is carried out, which shows that the model can realize the function of multi-link LOS initial pointing. The sizes of the FOU of the test terminal are 8.67 mrad and 8.34 mrad, respectively, with an average capture time of 18.3 s. Full article
(This article belongs to the Special Issue Next-Generation Free-Space Optical Communication Technologies)
Show Figures

Figure 1

12 pages, 3101 KiB  
Article
Protecting the Quantum Coherence of Two Atoms Inside an Optical Cavity by Quantum Feedback Control Combined with Noise-Assisted Preparation
by Chang-Xiao Li
Photonics 2024, 11(5), 400; https://doi.org/10.3390/photonics11050400 - 25 Apr 2024
Viewed by 249
Abstract
We propose a theoretical scheme to enhance quantum coherence and obtain steady-state coherence by combining quantum feedback control and noise-assisted preparation. We investigate the effects of quantum-jump-based feedback control and noise field on the quantum coherence and excited-state population between two atoms inside [...] Read more.
We propose a theoretical scheme to enhance quantum coherence and obtain steady-state coherence by combining quantum feedback control and noise-assisted preparation. We investigate the effects of quantum-jump-based feedback control and noise field on the quantum coherence and excited-state population between two atoms inside an optical cavity where a noise field drives one, and the other is under quantum feedback control. It is found that steady quantum coherence can be achieved by adding an external noise field, and the quantum feedback can prolong the coherence time with partial suppression of the spontaneous emission of atoms. In addition, we study the influence of the joint action of quantum feedback and noise-assisted preparation on quantum coherence and show that the combined action of feedback control and noise-assisted preparation is more effective in enhancing steady coherence. The findings of our research offer some general guidelines for improving the steady-state coherence of coupled qubit systems and have the potential to be applied in the realm of quantum information technology. Full article
Show Figures

Figure 1

12 pages, 12747 KiB  
Article
High-Bandwidth Lumped Mach-Zehnder Modulators Based on Thin-Film Lithium Niobate
by Peng Yang, Siwei Sun, Yuqiang Zhang, Rui Cao, Huimin He, Haiyun Xue and Fengman Liu
Photonics 2024, 11(5), 399; https://doi.org/10.3390/photonics11050399 - 25 Apr 2024
Viewed by 330
Abstract
Recently, lumped Mach-Zehnder Modulators (MZMs) have received renewed attention due to their potential for low power consumption and compact size. However, the practicality of lumped MZMs with conventional lumped electrodes (C−LEs) is limited by their lower electro−optical (EO) bandwidth. The reduction in EO [...] Read more.
Recently, lumped Mach-Zehnder Modulators (MZMs) have received renewed attention due to their potential for low power consumption and compact size. However, the practicality of lumped MZMs with conventional lumped electrodes (C−LEs) is limited by their lower electro−optical (EO) bandwidth. The reduction in EO bandwidth results from the inherent trade−off between EO bandwidth and half−wave voltage length product (VπL) within the C−LE architecture. This paper proposes a thin−film lithium niobate (TFLN)−based lumped MZM with capacitively−loaded lumped electrodes (CL−LEs). The purely linear EO effect of the LN eliminates the parasitic capacitance in the doped PN junction and enhances the EO bandwidth. Furthermore, the CL−LE structure can break the limitation between EO bandwidth and VπL inherent in the C−LE design. Simulations show the proposed device achieves a high EO bandwidth of 32.4 GHz and a low VπL of 1.15 V·cm. Due to the reduced capacitance and lower VπL, the power consumption of the device is as low as 0.1 pJ/bit. Simulation results indicate that the open−eye diagrams are achieved at 64 Gb/s for 1.5 mm TFLN lumped MZM, with an ER of 2.97 dB. Consequently, the proposed device architecture substantially enhances the performance of lumped MZMs, showing promise for application in short−reach optical interconnects within data centers. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

Previous Issue
Back to TopTop