Functional Coatings with Nanostructures: Synthesis, Characterizations and Applications

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Synthesis, Interfaces and Nanostructures".

Deadline for manuscript submissions: closed (20 May 2024) | Viewed by 13434

Special Issue Editors


E-Mail Website
Guest Editor
College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
Interests: UV-curable materials; polymer materials; water-based coatings; anti-corrosion coatings; biomass materials
Special Issues, Collections and Topics in MDPI journals

E-Mail
Assistant Guest Editor
College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
Interests: bio-based materials; functional coatings; nanocellulose

Special Issue Information

Dear Colleagues, 

Coatings are a kind of material with important research value and broad applications which play multifunctional roles (such as anti-corrosion, anti-oxidation, anti-static radiation, high-temperature resistance, good appearance, etc.) on the surface of objects. With the rapid development of science and technology, the functions and properties of traditional coatings struggle to meet the needs of military, medical, construction and other fields. Therefore, it is urgent to develop functional coatings to improve and enhance coating performances. According to previous studies, the performances of coatings have been significantly improved and enhanced by introducing either nanoparticles or nanostructures into the systems, and such coatings have been widely used in anti-corrosion, antiflaming, antibacterial, anti-oxidation, superhydrophobic and other fields. 

This Special Issue aims to cover the latest research in the synthesis, preparation, characterization and application of functional coatings (including self-cleaning coatings, antibacterial coatings, self-healing coatings, antifouling coatings, conductive coatings, anti-corrosive coatings, etc.) containing nanostructures or nanoparticles. 

In this Special Issue, original research articles and reviews are welcomed. Research areas may include (but are not limited to) the following:      

  • The construction of functional coatings with nanostructures;      
  • The structure–property relationships of functional coatings;      
  • The enhancing mechanism of the properties of functional coatings.

Prof. Dr. Zhuohong Yang
Guest Editor

Dr. Zhuangzhuang Chu
Assistant Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • coatings
  • functional coatings
  • composite coatings
  • nanostructures
  • nanoparticles
  • structural characterizations
  • structure–property relationships
  • anti-corrosion
  • self-cleaning
  • antifouling
  • anti-oxidation
  • anti-static radiation
  • self-healing
  • antibacterial

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 9071 KiB  
Article
Synergistic Effect of He for the Fabrication of Ne and Ar Gas-Charged Silicon Thin Films as Solid Targets for Spectroscopic Studies
by Asunción Fernández, Vanda Godinho, José Ávila, M. Carmen Jiménez de Haro, Dirk Hufschmidt, Jennifer López-Viejobueno, G. Eduardo Almanza-Vergara, F. Javier Ferrer, Julien L. Colaux, Stephane Lucas and M. Carmen Asensio
Nanomaterials 2024, 14(8), 727; https://doi.org/10.3390/nano14080727 - 21 Apr 2024
Viewed by 1061
Abstract
Sputtering of silicon in a He magnetron discharge (MS) has been reported as a bottom-up procedure to obtain He-charged silicon films (i.e., He nanobubbles encapsulated in a silicon matrix). The incorporation of heavier noble gases is demonstrated in this work with a synergistic [...] Read more.
Sputtering of silicon in a He magnetron discharge (MS) has been reported as a bottom-up procedure to obtain He-charged silicon films (i.e., He nanobubbles encapsulated in a silicon matrix). The incorporation of heavier noble gases is demonstrated in this work with a synergistic effect, producing increased Ne and Ar incorporations when using He–Ne and He–Ar gas mixtures in the MS process. Microstructural and chemical characterizations are reported using ion beam analysis (IBA) and scanning and transmission electron microscopies (SEM and TEM). In addition to gas incorporation, He promotes the formation of larger nanobubbles. In the case of Ne, high-resolution X-ray photoelectron and absorption spectroscopies (XPS and XAS) are reported, with remarkable dependence of the Ne 1s photoemission and the Ne K-edge absorption on the nanobubble’s size and composition. The gas (He, Ne and Ar)-charged thin films are proposed as “solid” targets for the characterization of spectroscopic properties of noble gases in a confined state without the need for cryogenics or high-pressure anvils devices. Also, their use as targets for nuclear reaction studies is foreseen. Full article
Show Figures

Figure 1

16 pages, 3447 KiB  
Article
LiNbO3 Thin Films through a Sol–Gel/Spin-Coating Approach Using a Novel Heterobimetallic Lithium–Niobium Precursor
by Francesca Lo Presti, Anna Lucia Pellegrino, Quentin Micard, Guglielmo Guido Condorelli, Samuel Margueron, Ausrine Bartasyte and Graziella Malandrino
Nanomaterials 2024, 14(4), 345; https://doi.org/10.3390/nano14040345 - 11 Feb 2024
Cited by 1 | Viewed by 2067
Abstract
Lithium niobate is a lead-free material which has attracted considerable attention due to its excellent optical, piezoelectric, and ferroelectric properties. This research is devoted to the synthesis through an innovative sol–gel/spin-coating approach of polycrystalline LiNbO3 films on Si substrates. A novel single-source [...] Read more.
Lithium niobate is a lead-free material which has attracted considerable attention due to its excellent optical, piezoelectric, and ferroelectric properties. This research is devoted to the synthesis through an innovative sol–gel/spin-coating approach of polycrystalline LiNbO3 films on Si substrates. A novel single-source hetero-bimetallic precursor containing lithium and niobium was synthesized and applied to the sol–gel synthesis. The structural, compositional, and thermal characteristics of the precursor have been tested through attenuated total reflection, X-ray photoelectron spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The LiNbO3 films have been characterized from a structural point of view with combined X-ray diffraction and Raman spectroscopy. Field-emission scanning electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy have been used to study the morphological and compositional properties of the deposited films. Full article
Show Figures

Graphical abstract

12 pages, 3321 KiB  
Article
Development of Hydroxyapatite Coatings for Orthopaedic Implants from Colloidal Solutions: Part 2—Detailed Characterisation of the Coatings and Their Growth Mechanism
by Bríd Murphy, Mick A. Morris and Jhonattan Baez
Nanomaterials 2023, 13(18), 2606; https://doi.org/10.3390/nano13182606 - 21 Sep 2023
Cited by 1 | Viewed by 1499
Abstract
This study is the second part of a two-part study whereby supersaturated solutions of calcium and phosphate ions generate well-defined hydroxyapatite coatings for orthopaedic implants. An ‘ideal’ process solution is selected from Part 1, and the detailed characterisation of films produced from this [...] Read more.
This study is the second part of a two-part study whereby supersaturated solutions of calcium and phosphate ions generate well-defined hydroxyapatite coatings for orthopaedic implants. An ‘ideal’ process solution is selected from Part 1, and the detailed characterisation of films produced from this solution is undertaken here in Part 2. Analysis is presented on the hydroxyapatite produced, in both powder form and as a film upon titanium substrates representative of orthopaedic implants. From thermal analysis data, it is shown that there is bound and interstitial water present in the hydroxyapatite. Nuclear magnetic resonance data allow for the distinction between an amorphous and a crystalline component of the material. As hydroxyapatite coatings are generated, their growth mechanism is tracked across repeated process runs. A clear understanding of the growth mechanism is achieved though crystallinity and electron imaging data. Transmission electron imaging data support the proposed crystal growth and deposition mechanism. All of the data conclude that this process has a clear propensity to grow the hydroxyapatite phase of octacalcium phosphate. The investigation of the hydroxyapatite coating and its growth mechanism establish that a stable and reproducible process window has been identified. Precise control is achieved, leading to the successful formation of the desired hydroxyapatite films. Full article
Show Figures

Graphical abstract

13 pages, 4709 KiB  
Article
Development of Hydroxyapatite Coatings for Orthopaedic Implants from Colloidal Solutions: Part 1—Effect of Solution Concentration and Deposition Kinetics
by Bríd Murphy, Mick A. Morris and Jhonattan Baez
Nanomaterials 2023, 13(18), 2577; https://doi.org/10.3390/nano13182577 - 17 Sep 2023
Cited by 3 | Viewed by 2147
Abstract
This study introduces and explores the use of supersaturated solutions of calcium and phosphate ions to generate well-defined hydroxyapatite coatings for orthopaedic implants. The deposition of hydroxyapatite is conducted via several solutions of metastable precursors that precipitate insoluble hydroxyapatite minerals at a substrate–solution [...] Read more.
This study introduces and explores the use of supersaturated solutions of calcium and phosphate ions to generate well-defined hydroxyapatite coatings for orthopaedic implants. The deposition of hydroxyapatite is conducted via several solutions of metastable precursors that precipitate insoluble hydroxyapatite minerals at a substrate–solution interface. Solutions of this nature are intrinsically unstable, but this paper outlines process windows in terms of time, temperature, concentration and pH in which coating deposition is controlled via the stop/go reaction. To understand the kinetics of the deposition process, comparisons based on ionic strength, particle size, electron imaging, elemental analyses and mass of the formed coating for various deposition solutions are carried out. This comprehensive dataset enables the measurement of deposition kinetics and identification of an optimum solution and its reaction mechanism. This study has established stable and reproducible process windows, which are precisely controlled, leading to the successful formation of desired hydroxyapatite films. The data demonstrate that this process is a promising and highly repeatable method for forming hydroxyapatites with desirable thickness, morphology and chemical composition at low temperatures and low capital cost compared to the existing techniques. Full article
Show Figures

Graphical abstract

16 pages, 7657 KiB  
Article
3-APTES on Dendritic Fibrous Mesoporous Silica Nanoparticles for the pH-Controlled Release of Corrosion Inhibitors
by Eleonora Marconi, Igor Luisetto, Gabriella Di Carlo, Maria Paola Staccioli, Simonetta Tuti and Luca Tortora
Nanomaterials 2023, 13(18), 2543; https://doi.org/10.3390/nano13182543 - 11 Sep 2023
Cited by 6 | Viewed by 1996
Abstract
Mesoporous silica nanoparticles (MSNPs) are currently used in different fields like catalysis, nanomedicine, and conservation science, taking advantage of their high surface area. Here, we synthesized and functionalized mesoporous dendritic fibrous nanoparticles to realize a smart delivery system of protective agents for metals. [...] Read more.
Mesoporous silica nanoparticles (MSNPs) are currently used in different fields like catalysis, nanomedicine, and conservation science, taking advantage of their high surface area. Here, we synthesized and functionalized mesoporous dendritic fibrous nanoparticles to realize a smart delivery system of protective agents for metals. Different MSNPs were obtained via the microemulsion method followed by a hydrothermal or refluxing treatment at different w/o ratios, times, and temperatures. Dendritic spherical silica nanoparticles with specific features such as an appropriate size (450 nm), a very large surface area (600 m2 g−1), and a high yield synthesis (86%) were selected for surface modification. The fiber surface of the selected MSNPs was functionalized with 3-aminopropyl triethoxysilane (3-APTES). 3-APTES works as a pH-driven “nanogate”, suppressing the immediate leakage of the total guest molecule load and modulating the release as a function of pH conditions. Surface-modified MSNPs were tested as a reservoir of the most diffused corrosion inhibitors: Mercaptobenzothiazole (MBT) and 1H-Benzotriazole (BTA); their release properties were studied in solutions with pH = 4 and 7. Functionalized and non-functionalized MSNPs showed a good loading efficiency of guest molecules (34–64%) and a pH-dependent release of the corrosion inhibitors on a timescale of several hours. Full article
Show Figures

Figure 1

15 pages, 13783 KiB  
Article
Characterising Hydroxyapatite Deposited from Solution onto Novel Substrates: Growth Mechanism and Physical Properties
by Bríd Murphy, Jhonattan Baez and Mick A. Morris
Nanomaterials 2023, 13(17), 2483; https://doi.org/10.3390/nano13172483 - 3 Sep 2023
Cited by 5 | Viewed by 1261
Abstract
Whilst titanium, stainless steel, and cobalt-chrome alloys are the most common materials for use in orthopaedic implant devices, there are significant advantages in moving to alternative non-metallic substrates. Substrates such as polymers may have advantageous mechanical biological properties whilst other substrates may bring [...] Read more.
Whilst titanium, stainless steel, and cobalt-chrome alloys are the most common materials for use in orthopaedic implant devices, there are significant advantages in moving to alternative non-metallic substrates. Substrates such as polymers may have advantageous mechanical biological properties whilst other substrates may bring unique capability. A key challenge in the use of non-metal products is producing substrates which can be modified to allow the formation of well-adhered hydroxyapatite films which promote osteointegration and have other beneficial properties. In this work, we aim to develop methodology for the growth of hydroxyapatite films on surfaces other than bulk metallic parts using a wet chemical coating process, and we provide a detailed characterisation of the coatings. In this study, hydroxyapatite is grown from saturated solutions onto thin titanium films and silicon substrates and compared to results from titanium alloy substrates. The coating process efficacy is shown to be dependent on substrate roughness, hydrophilicity, and activation. The mechanism of the hydroxyapatite growth is investigated in terms of initial attachment and morphological development using SEM and XPS analysis. XPS analysis reveals the exact chemical state of the hydroxyapatite compositional elements of Ca, P, and O. The characterisation of grown hydroxyapatite layers by XRD reveals that the hydroxyapatite forms from amorphous phases, displaying preferential crystal growth along the [002] direction, with TEM imagery confirming polycrystalline pockets amid an amorphous matrix. SEM-EDX and FTIR confirmed the presence of hydroxyapatite phases through elemental atomic weight percentages and bond assignment. All data are collated and reviewed for the different substrates. The results demonstrate that once hydroxyapatite seeds, it crystallises in the same manner as bulk titanium whether that be on a titanium or silicon substrate. These data suggest that a range of substrates may be coated using this facile hydroxyapatite deposition technique, just broadening the choice of substrate for a particular function. Full article
Show Figures

Figure 1

11 pages, 1791 KiB  
Article
Zirconium Component Modified Porous Nanowood for Efficient Removal of Phosphate from Aqueous Solutions
by Zhuangzhuang Chu, Wei Wang, Mengping Yin and Zhuohong Yang
Nanomaterials 2023, 13(11), 1807; https://doi.org/10.3390/nano13111807 - 5 Jun 2023
Viewed by 1502
Abstract
Rapid urban industrialization and agricultural production have led to the discharge of excessive phosphate into aquatic systems, resulting in a rise in water pollution. Therefore, there is an urgent need to explore efficient phosphate removal technologies. Herein, a novel phosphate capture nanocomposite (PEI−PW@Zr) [...] Read more.
Rapid urban industrialization and agricultural production have led to the discharge of excessive phosphate into aquatic systems, resulting in a rise in water pollution. Therefore, there is an urgent need to explore efficient phosphate removal technologies. Herein, a novel phosphate capture nanocomposite (PEI−PW@Zr) with mild preparation conditions, environmental friendliness, recyclability, and high efficiency has been developed by modifying aminated nanowood with a zirconium (Zr) component. The Zr component imparts the ability to capture phosphate to the PEI−PW@Zr, while the porous structure provides a mass transfer channel, resulting in excellent adsorption efficiency. Additionally, the nanocomposite maintains more than 80% phosphate adsorption efficiency even after ten adsorption–desorption cycles, indicating its recyclability and potential for repeated use. This compressible nanocomposite provides novel insights into the design of efficient phosphate removal cleaners and offers potential approaches for the functionalization of biomass−based composites. Full article
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 1023 KiB  
Review
A Meta-Analysis Review: Nanoparticles as a Gateway to Optimized Boiling Surfaces
by Giulia Motta and Antonis Sergis
Nanomaterials 2024, 14(12), 1012; https://doi.org/10.3390/nano14121012 - 11 Jun 2024
Viewed by 1033
Abstract
Pool boiling is essential in many industrial manufacturing applications. In addition, it can become critical in the journey towards improving energy generation efficiency and accomplishing the goal of net-zero carbon emissions by 2050 via new or traditional power generation applications. The effectiveness of [...] Read more.
Pool boiling is essential in many industrial manufacturing applications. In addition, it can become critical in the journey towards improving energy generation efficiency and accomplishing the goal of net-zero carbon emissions by 2050 via new or traditional power generation applications. The effectiveness of boiling is governed by the bubble cycle. The chemistry and topographical features of the surface being heated have been found to highly impact the boiling performance, such as in the case of pool boiling enhancement when employing hydrophilic and hydrophobic surfaces via nano/micro heater surface modification. Nevertheless, it is questionable how feasible it is to create these surfaces for large-scale applications due to their manufacturing and maintenance cost and complexity. The current work assesses whether the use of nanoparticles in traditional coolants could potentially unlock the mass production of optimised heating surface modification through a metadata literature review analysis. It was discovered that self-assembled layers created as a result of the deposition of nanoparticles in coolants undergoing pool boiling seem to behave most similarly to manufactured hydrophilic surfaces. The creation of enhanced patterned-heat transfer surfaces is shown to be possible via the use of a combination of different nanoparticle suspensions in coolants. Full article
Show Figures

Figure 1

Back to TopTop