Next Issue
Volume 14, January-2
Previous Issue
Volume 13, December-2
 
 

Cells, Volume 14, Issue 1 (January-1 2025) – 60 articles

Cover Story (view full-size image): Astrocytes are active partners of neurons in brain function and dysfunction. While some brain circuits have been extensively studied from an astrocentric perspective, others, such as the dopaminergic circuit of the Ventral Tegmental Area (VTA), have received less attention. In this study, Speggiorin et al. applied two-photon imaging techniques to explore the Ca2+ response of astrocytes in the VTA to the catecholamine norepinephrine (NE), identifying the α1 adrenergic receptor as the main mediator of the astrocyte response. In mice lacking the IP3 receptor type-2, the authors found that the residual Ca2+ response to NE still depends on the release of Ca2+ from the endoplasmic reticulum. Overall, these results call for a re-examination of the interpretations of the mechanisms underlying the effects of NE in this brain circuit. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 7241 KiB  
Article
Novel Drug Delivery Particles Can Provide Dual Effects on Cancer “Theranostics” in Boron Neutron Capture Therapy
by Abdul Basith Fithroni, Haruki Inoue, Shengli Zhou, Taufik Fatwa Nur Hakim, Takashi Tada, Minoru Suzuki, Yoshinori Sakurai, Manabu Ishimoto, Naoyuki Yamada, Rani Sauriasari, Wolfgang A. G. Sauerwein, Kazunori Watanabe, Takashi Ohtsuki and Eiji Matsuura
Cells 2025, 14(1), 60; https://doi.org/10.3390/cells14010060 - 6 Jan 2025
Cited by 1 | Viewed by 1388
Abstract
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved [...] Read more.
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, “AB-type” Lactosome® nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely o-Carborane (Carb) or 1,2-dihexyl-o-Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the “molecular glue” effect. Here we present in vivo and ex vivo studies with human pancreatic cancer (AsPC-1) cells to find therapeutically optimal formulas and the appropriate treatment conditions for these particles. The biodistribution of the particles was assessed by the tumor/normal tissue ratio (T/N) in terms of tumor/muscle (T/M) and tumor/blood (T/B) ratios using near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG). The in vivo and ex vivo accumulation of B delivered by the injected AB-Lac particles in tumor lesions reached a maximum by 12 h post-injection. Irradiation studies conducted both in vitro and in vivo showed that AB-Lac particles-loaded with either 10B-Carb or 10B-diC6-Carb significantly inhibited the growth of AsPC-1 cancer cells or strongly inhibited their growth, with the latter method being significantly more effective. Surprisingly, a similar in vitro and in vivo irradiation study showed that ICG-labeled AB-Lac particles alone, i.e., without any 10B compounds, also revealed a significant inhibition. Therefore, we expect that our ICG-labeled AB-Lac particles-loaded with 10B compound(s) may be a novel and promising candidate for providing not only NIRF imaging for a practical diagnosis but also the dual therapeutic effects of induced cancer cell death, i.e., “theranostics”. Full article
Show Figures

Figure 1

22 pages, 11367 KiB  
Article
Nuclear N-WASP Induces Actin Polymerization in the Nucleus with Cortactin as an Essential Factor
by Xin Jiang, Purusottam Mohapatra, Maria Rossing, Wenqian Zheng, Olga Zbodakova, Jayashree Vijay Thatte, Claus Storgaard Sørensen, Thu Han Le Phan and Cord Brakebusch
Cells 2025, 14(1), 59; https://doi.org/10.3390/cells14010059 - 6 Jan 2025
Viewed by 1093
Abstract
Nuclear actin polymerization was reported to control different nuclear processes, but its regulation is poorly understood. Here, we show that N-WASP can trigger the formation of nuclear N-WASP/F-actin nodules. While a cancer hotspot mutant of N-WASP lacking the VCA domain (V418fs) had a [...] Read more.
Nuclear actin polymerization was reported to control different nuclear processes, but its regulation is poorly understood. Here, we show that N-WASP can trigger the formation of nuclear N-WASP/F-actin nodules. While a cancer hotspot mutant of N-WASP lacking the VCA domain (V418fs) had a dominant negative function on nuclear F-actin, an even shorter truncation mutant found in melanoma (R128*) strongly promoted nuclear actin polymerization. Nuclear localization of N-WASP was not regulated by the cell cycle and increasing nuclear F-actin formation by N-WASP had no obvious influence on replication. However, nuclear N-WASP/F-actin nodules colocalized partially with RNA Pol II clusters. N-WASP-dependent actin polymerization promoted the maturation of RNA Pol II clusters, with the short truncation mutant R128* unexpectedly showing the strongest effect. Nuclear N-WASP nodules including V418fs colocalized with WIP and cortactin. Importantly, cortactin binding was essential but not sufficient for F-actin formation, while WIP binding was required for actin polymerization by R128*. These data reveal a cortactin-dependent role for N-WASP in the regulation of nuclear F-actin and indicate contrasting nuclear effects for N-WASP mutants found in cancer. Full article
Show Figures

Figure 1

31 pages, 2904 KiB  
Review
The Estrogen–Immune Interface in Endometriosis
by Emily Greygoose, Pat Metharom, Hakan Kula, Timur K. Seckin, Tamer A. Seckin, Ayse Ayhan and Yu Yu
Cells 2025, 14(1), 58; https://doi.org/10.3390/cells14010058 - 6 Jan 2025
Cited by 1 | Viewed by 1935
Abstract
Endometriosis is a gynecologic condition characterized by the growth of endometrium-like stroma and glandular elements outside of the uterine cavity. The involvement of hormonal dysregulation, specifically estrogen, is well established in the initiation, progression, and maintenance of the condition. Evidence also highlights the [...] Read more.
Endometriosis is a gynecologic condition characterized by the growth of endometrium-like stroma and glandular elements outside of the uterine cavity. The involvement of hormonal dysregulation, specifically estrogen, is well established in the initiation, progression, and maintenance of the condition. Evidence also highlights the association between endometriosis and altered immune states. The human endometrium is a highly dynamic tissue that undergoes frequent remodeling in response to hormonal regulation during the menstrual cycle. Similarly, endometriosis shares this propensity, compounded by unclear pathogenic mechanisms, presenting unique challenges in defining its etiology and pathology. Here, we provide a lens to understand the interplay between estrogen and innate and adaptive immune systems throughout the menstrual cycle in the pathogenesis of endometriosis. Estrogen is closely linked to many altered inflammatory and immunomodulatory states, affecting both tissue-resident and circulatory immune cells. This review summarizes estrogenic interactions with specific myeloid and lymphoid cells, highlighting their implications in the progression of endometriosis. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Gynecological Disorders)
Show Figures

Graphical abstract

13 pages, 1977 KiB  
Article
The Aryl Hydrocarbon Receptor (AhR) Is a Novel Gene Involved in Proper Physiological Functions of Pancreatic β-Cells
by Shuhd Bin Eshaq, Jalal Taneera, Shabana Anjum, Abdul Khader Mohammed, Mohammad H. Semreen, Karem H. Alzoubi, Mohamed Eladl, Yasser Bustanji, Eman Abu-Gharbieh and Waseem El-Huneidi
Cells 2025, 14(1), 57; https://doi.org/10.3390/cells14010057 - 6 Jan 2025
Viewed by 1216
Abstract
The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the [...] Read more.
The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored. This study aimed to investigate the expression of AhR in human pancreatic islets using publicly available RNA-sequencing (RNA-seq) databases and to explore its correlations with various metabolic parameters and key β-cell markers. Additionally, functional experiments were conducted in INS-1 cells, a rat β-cell line, to elucidate the role of Ahr in β-cell biology. RNA-seq data analysis confirmed the expression of AHR in human islets, with elevated levels observed in pancreatic islets obtained from diabetic and obese donors compared to non-diabetic or lean donors. Furthermore, AHR expression showed an inverse correlation with the expression of key β-cell functional genes, including insulin, PDX-1, MAFA, KCNJ11, and GCK. Silencing Ahr expression using siRNA in INS-1 cells decreased insulin secretion, insulin content, and glucose uptake efficiency, while cell viability, apoptosis rate, and reactive oxygen species (ROS) production remained unaffected. Moreover, Ahr silencing led to the downregulation of major β-cell regulator genes, Ins1, Ins2, Pdx-1, and Glut2, at both the mRNA and protein levels. In summary, this study provides novel insights into the role of AhR in maintaining proper β-cell function. These findings suggest that AhR could be a potential target for future therapeutic strategies in treating type 2 diabetes (T2D). Full article
(This article belongs to the Special Issue Molecular Mechanisms of Signal Transduction in the Islet Cells)
Show Figures

Figure 1

32 pages, 9144 KiB  
Article
Small Extracellular Vesicles Promote Axon Outgrowth by Engaging the Wnt-Planar Cell Polarity Pathway
by Samar Ahmad, Tania Christova, Melanie Pye, Masahiro Narimatsu, Siyuan Song, Jeffrey L. Wrana and Liliana Attisano
Cells 2025, 14(1), 56; https://doi.org/10.3390/cells14010056 - 6 Jan 2025
Viewed by 1206
Abstract
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic [...] Read more.
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear. Here, we show that fibroblast-derived sEVs promote axon outgrowth and a polarized neuronal morphology in mouse primary embryonic cortical neurons. Mechanistically, we demonstrate that the sEV-induced increase in axon outgrowth requires endogenous Wnts and core PCP components including Prickle, Vangl, Frizzled, and Dishevelled. We demonstrate that sEVs are internalized by neurons, colocalize with Wnt7b, and induce relocalization of Vangl2 to the distal axon during axon outgrowth. In contrast, sEVs derived from neurons or astrocytes do not promote axon outgrowth, while sEVs from activated astrocytes inhibit elongation. Thus, our data reveal that fibroblast-derived sEVs promote axon elongation through the Wnt-PCP pathway in a manner that is dependent on endogenous Wnts. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

15 pages, 5336 KiB  
Article
Trehalose Ameliorates Zebrafish Emotional and Social Deficits Caused by CLN8 Dysfunction
by Rosario Licitra, Stefania Della Vecchia, Lorenzo Santucci, Rachele Vivarelli, Sara Bernardi, Filippo M. Santorelli and Maria Marchese
Cells 2025, 14(1), 55; https://doi.org/10.3390/cells14010055 - 5 Jan 2025
Viewed by 1104
Abstract
CLN8 and other neuronal ceroid lipofuscinoses (NCLs) often lead to cognitive decline, emotional disturbances, and social deficits, worsening with disease progression. Disrupted lysosomal pH, impaired autophagy, and defective dendritic arborization contribute to these symptoms. Using a cln8−/− zebrafish model, we identified significant [...] Read more.
CLN8 and other neuronal ceroid lipofuscinoses (NCLs) often lead to cognitive decline, emotional disturbances, and social deficits, worsening with disease progression. Disrupted lysosomal pH, impaired autophagy, and defective dendritic arborization contribute to these symptoms. Using a cln8−/− zebrafish model, we identified significant impairments in locomotion, anxiety, and aggression, along with subtle deficits in social interactions, positioning zebrafish as a useful model for therapeutic studies in NCL. Our findings show that trehalose, an autophagy enhancer, ameliorates anxiety, and modestly improves social behavior and predator avoidance in mutant zebrafish. This finding aligns animal models with clinical reports suggestive of behavioral improvements in NCL patients. Trehalose holds promise as a therapeutic agent for CLN8, warranting further research into its neuroprotective mechanisms and clinical applications. Full article
(This article belongs to the Special Issue Advances in Zebrafish Disease Models)
Show Figures

Figure 1

32 pages, 5152 KiB  
Review
From Homeostasis to Neuroinflammation: Insights into Cellular and Molecular Interactions and Network Dynamics
by Ludmila Müller, Svetlana Di Benedetto and Viktor Müller
Cells 2025, 14(1), 54; https://doi.org/10.3390/cells14010054 - 5 Jan 2025
Cited by 3 | Viewed by 1800
Abstract
Neuroinflammation is a complex and multifaceted process that involves dynamic interactions among various cellular and molecular components. This sophisticated interplay supports both environmental adaptability and system resilience in the central nervous system (CNS) but may be disrupted during neuroinflammation. In this article, we [...] Read more.
Neuroinflammation is a complex and multifaceted process that involves dynamic interactions among various cellular and molecular components. This sophisticated interplay supports both environmental adaptability and system resilience in the central nervous system (CNS) but may be disrupted during neuroinflammation. In this article, we first characterize the key players in neuroimmune interactions, including microglia, astrocytes, neurons, immune cells, and essential signaling molecules such as cytokines, neurotransmitters, extracellular matrix (ECM) components, and neurotrophic factors. Under homeostatic conditions, these elements promote cellular cooperation and stability, whereas in neuroinflammatory states, they drive adaptive responses that may become pathological if dysregulated. We examine how neuroimmune interactions, mediated through these cellular actors and signaling pathways, create complex networks that regulate CNS functionality and respond to injury or inflammation. To further elucidate these dynamics, we provide insights using a multilayer network (MLN) approach, highlighting the interconnected nature of neuroimmune interactions under both inflammatory and homeostatic conditions. This perspective aims to enhance our understanding of neuroimmune communication and the mechanisms underlying shifts from homeostasis to neuroinflammation. Applying an MLN approach offers a more integrative view of CNS resilience and adaptability, helping to clarify inflammatory processes and identify novel intervention points within the layered landscape of neuroinflammatory responses. Full article
Show Figures

Graphical abstract

26 pages, 18146 KiB  
Article
Trying to Kill a Killer; Impressive Killing of Patient Derived Glioblastoma Cultures Using NK-92 Natural Killer Cells Reveals Both Sensitive and Highly Resistant Glioblastoma Cells
by Jane Yu, Hyeon Joo Kim, Jordyn Reinecke, James Hucklesby, Tennille Read, Akshata Anchan, Catherine E. Angel and Euan Scott Graham
Cells 2025, 14(1), 53; https://doi.org/10.3390/cells14010053 - 5 Jan 2025
Viewed by 981
Abstract
The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of [...] Read more.
The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of 5:1 and 1:1. This enabled direct comparison of the degree of glioblastoma cell loss across a broader range of glioblastoma cultures. Importantly, even at high ET ratios of 5:1, there are always subpopulations of glioblastoma cells that prove very challenging to kill that evade the NK-92 cells. Of value in this study has been the application of ECIS (Electric Cell–Substrate Impedance Sensing) biosensor technology to monitor the glioblastoma cells in real-time, enabling temporal assessment of the NK-92 cells. ECIS has been powerful in revealing that at higher ET ratios, the glioblastoma cells are acutely sensitive to the NK-92 cells, and the observed glioblastoma cell death is supported by the high-content imaging data. Moreover, long-term ECIS experiments reveal that the surviving glioblastoma cells were then able to grow and reseed the culture, which was evident 300–500 h after the addition of the NK-92 cells. This was observed for multiple glioblastoma lines. In addition, our imaging provides evidence that some NK-92 cells appear to be compromised early, which would be consistent with potent evasive mechanisms by the glioblastoma tumour cells. This research strongly highlights the potential for NK-92 cells to kill glioblastoma tumour cells and provides a basis to identify the mechanism utilised by the surviving glioblastoma cells that we now need to target to achieve maximal cytolysis of the resistant glioblastoma cells. It is survival of the highly resistant glioblastoma clones that results in tumour relapse. Full article
(This article belongs to the Special Issue Therapeutic Targets in Glioblastoma)
Show Figures

Figure 1

14 pages, 2786 KiB  
Article
Local Administration of (−)-Epigallocatechin-3-Gallate as a Local Anesthetic Agent Inhibits the Excitability of Rat Nociceptive Primary Sensory Neurons
by Syogo Utugi, Risako Chida, Sana Yamaguchi, Yukito Sashide and Mamoru Takeda
Cells 2025, 14(1), 52; https://doi.org/10.3390/cells14010052 - 5 Jan 2025
Viewed by 687
Abstract
While the impact of (−)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally [...] Read more.
While the impact of (−)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli. Following the administration of EGCG, the mean firing rate of TG neurons to both non-noxious and noxious mechanical stimuli significantly decreased in a dose-dependent manner (1–10 mM), and both the non-noxious and nociceptive mechanical stimuli experienced the maximum suppression of discharge frequency within 5 min. These inhibitory effects lasted for approximately 20 min. These findings suggest that the local injection of EGCG into the peripheral receptive field suppresses the responsiveness of nociceptive primary sensory neurons in the TG, almost equal to that of the local anesthetic, 1% lidocaine. As a result, the local application of EGCG as a local anesthetic could alleviate nociceptive trigeminal pain that does not result in side effects, thereby playing a significant role in pain management. Full article
Show Figures

Figure 1

19 pages, 4549 KiB  
Article
The Influence of Cell Isolation and Culturing on Natriuretic Peptide Receptors in Aortic Vascular Smooth Muscle Cells
by Christine Rager, Tobias Klöpper, Sabine Tasch, Michael Raymond Whittaker, Betty Exintaris, Andrea Mietens and Ralf Middendorff
Cells 2025, 14(1), 51; https://doi.org/10.3390/cells14010051 - 4 Jan 2025
Viewed by 1054
Abstract
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs [...] Read more.
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing. Previously, we showed that even popular reference genes changed dramatically after SMC isolation from aorta. Regarding NP receptors, a substantial amount of data relies on cell culture. We hypothesize that the NP/cGMP system in intact aortic tunica media differs from isolated and cultured aortic SMCs. Therefore, we studied isolation and culturing effects on the expression of NP receptors GC-A, GC-B, and NP clearance receptor (NPRC) compared to sGC. We investigated intact tunica media and primary SMCs from the longitudinal halves of the same rat aorta. GC activity was monitored by cyclic guanosine monophosphate (cGMP). In addition, we hypothesize that there are sex-dependent differences in the NP/cGMP cascade in both intact tissue and cultured cells. We, therefore, analyzed a male and female cohort. Expression was quantified by RT-qPCR comparing aortic media and SMCs with our recently validated reference gene (RG) small nuclear ribonucleoprotein 2 (U2). Only GC-A was stably expressed. In intact media, GC-A exceeded GC-B and NPRC. However, GC-B, NPRC, and sGC were dramatically upregulated in cultured SMCs of the same aortae different from the stable GC-A. The expression was mirrored by NP-induced GC activity. In cultured cells, changes in GC activity were delayed compared to receptor expression. Minor differences between both sexes could also be revealed. Thus, isolation and culture fundamentally alter the cGMP system in vascular SMCs with potential impact on drug testing and scRNAseq. Especially, the dramatic increase in the clearance receptor NPRC in culture might distort all physiological ANP, BNP, and CNP effects. Full article
(This article belongs to the Special Issue Role of Vascular Smooth Muscle Cells in Cardiovascular Disease)
Show Figures

Figure 1

15 pages, 5514 KiB  
Article
Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells
by Paola Sabbatini, Sabrina Cipriani, Andrea Biagini, Luana Sallicandro, Cataldo Arcuri, Rita Romani, Paolo Prontera, Alessandra Mirarchi, Rosaria Gentile, Diletta Del Bianco, Elko Gliozheni, Sandro Gerli, Irene Giardina, Maurizio Arduini, Alessandro Favilli, Antonio Malvasi, Andrea Tinelli and Bernard Fioretti
Cells 2025, 14(1), 50; https://doi.org/10.3390/cells14010050 - 4 Jan 2025
Viewed by 1044
Abstract
Amniotic fluid is a complex and dynamic biological matrix that surrounds the fetus during the pregnancy. From this fluid, is possible to isolate various cell types with particular interest directed towards stem cells (AF-SCs). These cells are highly appealing due to their numerous [...] Read more.
Amniotic fluid is a complex and dynamic biological matrix that surrounds the fetus during the pregnancy. From this fluid, is possible to isolate various cell types with particular interest directed towards stem cells (AF-SCs). These cells are highly appealing due to their numerous potential applications in the field of regenerative medicine for tissues and organs as well as for treating conditions such as traumatic or ischemic injuries to the nervous system, myocardial infarction, or cancer. AF-SCs, when subcultured in the presence of basic Fibroblast Growth Factor (bFGF), have been shown to survive and migrate when transplanted into the striatum of the rat brain, exhibiting behavior characteristics of neuronal/glial progenitor cells. In this work, we performed an electrophysiological characterization to ascertain the propensity of AF-SCs to differentiate into glial and neuronal cells by bFGF. By using patch clamp technique we characterized a fibroblast-like morphology that display a barium-sensitive inward-rectifying potassium current (Kir) and calcium-activated potassium currents (KCa). The electrophysiological and calcium dynamics of histamine, a marker of undifferentiated neural progenitors, was further studied. Histamine promoted intracellular calcium increase by Fura-2 recording and calcium-activated potassium current activation with a similar temporal profile in AF-SC. The data presented in this paper ultimately confirm the expression in AF-SCs of the Kir and KCa currents, also showing regulation by endogenous stimuli such as histamine for the latter. Full article
Show Figures

Figure 1

33 pages, 3394 KiB  
Review
Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies
by Maria Azam and Beata Jastrzebska
Cells 2025, 14(1), 49; https://doi.org/10.3390/cells14010049 - 4 Jan 2025
Viewed by 1633
Abstract
Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of [...] Read more.
Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP. Among them, mutations in the rhodopsin gene (RHO) are the most common cause of this condition. Due to the involvement of numerous genes and multiple mutations in a single gene, RP is a highly heterogeneous disease making the development of effective treatments particularly challenging. The progression of this disease involves complex cellular responses to restore cellular homeostasis, including the unfolded protein response (UPR) signaling, autophagy, and various cell death pathways. These mechanisms, however, often fail to prevent photoreceptor cell degradation and instead contribute to cell death under certain conditions. Current research focuses on the pharmacological modulation of the components of these pathways and the direct stabilization of mutated receptors as potential treatment strategies. Despite these efforts, the intricate interplay between these mechanisms and the diverse causative mutations involved has hindered the development of effective treatments. Advancing our understanding of the interactions between photoreceptor cell death mechanisms and the specific genetic mutations driving RP is critical to accelerate the discovery and development of therapeutic strategies for this currently incurable disease. Full article
(This article belongs to the Special Issue New Advances in Neuroinflammation)
Show Figures

Figure 1

17 pages, 3365 KiB  
Article
Circulating T Cell Subsets in Type 1 Diabetes
by Aldo Ferreira-Hermosillo, Paola Santana-Sánchez, Ricardo Vaquero-García, Manuel R. García-Sáenz, Angélica Castro-Ríos, Adriana K. Chávez-Rueda, Rita A. Gómez-Díaz, Luis Chávez-Sánchez and María V. Legorreta-Haquet
Cells 2025, 14(1), 48; https://doi.org/10.3390/cells14010048 - 4 Jan 2025
Viewed by 1438
Abstract
Type 1 diabetes (T1D) is a complex disease driven by the immune system attacking the insulin-producing beta cells in the pancreas. Understanding the role of different T cell subpopulations in the development and progression of T1D is crucial. By employing flow cytometry to [...] Read more.
Type 1 diabetes (T1D) is a complex disease driven by the immune system attacking the insulin-producing beta cells in the pancreas. Understanding the role of different T cell subpopulations in the development and progression of T1D is crucial. By employing flow cytometry to compare the characteristics of T cells, we can pinpoint potential indicators of treatment response or therapeutic inefficacy. Our study reveals elevated prolactin (PRL) levels in T1D patients, along with a decreased production of key cytokines. Additionally, PD1 appears to play a significant role in T1D. Notably, PRL levels correlate with an earlier disease onset and a specific T cell phenotype, hinting at the potential influence of PRL. These findings highlight the need for further research to identify promising cellular targets for more effective and tailored therapies. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Immune Regulation)
Show Figures

Figure 1

27 pages, 831 KiB  
Review
Schwann Cells in Neuromuscular Disorders: A Spotlight on Amyotrophic Lateral Sclerosis
by Kathryn R. Moss and Smita Saxena
Cells 2025, 14(1), 47; https://doi.org/10.3390/cells14010047 - 3 Jan 2025
Viewed by 1852
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and [...] Read more.
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes. Furthermore, advancements in understanding Schwann cell pathology in ALS combined with lessons learned from studying Charcot–Marie–Tooth disease Type 1 (CMT1) suggest potential therapeutic strategies targeting these cells may support nerve repair and slow disease progression. Overall, this review aims to provide comprehensive insights into Schwann cell classification, physiology, and function, underscoring the critical pathological contributions of Schwann cells in ALS and suggests new avenues for targeted therapeutic interventions aimed at modulating Schwann cell function in ALS. Full article
(This article belongs to the Special Issue Genetics and Pathomechanisms of Amyotrophic Lateral Sclerosis (ALS))
Show Figures

Figure 1

14 pages, 2941 KiB  
Article
Encapsulation and Melanization Are Not Correlated to Successful Immune Defense Against Parasitoid Wasps in Drosophila melanogaster
by Lilla B. Magyar, István Andó and Gyöngyi Cinege
Cells 2025, 14(1), 46; https://doi.org/10.3390/cells14010046 - 3 Jan 2025
Viewed by 1110
Abstract
Parasitoid elimination in Drosophila melanogaster involves special hemocytes, called lamellocytes, which encapsulate the eggs or larvae of the parasitoid wasps. The capsules are melanized, and metabolites of the melanization reaction may play a potential role in parasitoid killing. We have observed a variation [...] Read more.
Parasitoid elimination in Drosophila melanogaster involves special hemocytes, called lamellocytes, which encapsulate the eggs or larvae of the parasitoid wasps. The capsules are melanized, and metabolites of the melanization reaction may play a potential role in parasitoid killing. We have observed a variation in the melanization capacity of different, commonly used D. melanogaster strains, such as Canton-S, Oregon-R, and BL5905, BL6326. In this work, we aimed to clarify a possible connection between the effectiveness of capsule melanization and the success of parasitoid elimination following infection with Leptopilina parasitoid wasps. Circulating hemocytes and lamellocyte attachment were visualized by confocal and epifluorescence microscopy using indirect immunofluorescence. Expression profiles of the PPO2 and PPO3 prophenoloxidase genes, which encode key enzymes in the melanization reaction, were detected by qRT-PCR. Parasitization assays were used to analyze fly and wasp eclosion success. Active encapsulation and melanization reactions against Leptopilina boulardi were observed in the BL5905 and the BL6326 strains, though restricted to the dead supernumerary parasitoids, while fly and wasp eclosion rates were essentially the same in the four examined D. melanogaster strains. We conclude that encapsulation and melanization carried out by D. melanogaster following L. boulardi infection have no impact on survival. Full article
Show Figures

Figure 1

21 pages, 4824 KiB  
Article
TGFβ1 Restores Energy Homeostasis of Human Trophoblast Cells Under Hyperglycemia In Vitro by Inducing PPARγ Expression, AMPK Activation, and HIF1α Degradation
by Nihad Khiat, Julie Girouard, Emmanuelle Stella Kana Tsapi, Cathy Vaillancourt, Céline Van Themsche and Carlos Reyes-Moreno
Cells 2025, 14(1), 45; https://doi.org/10.3390/cells14010045 - 3 Jan 2025
Viewed by 1082
Abstract
Elevated glucose levels at the fetal–maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce [...] Read more.
Elevated glucose levels at the fetal–maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function. While HIF1α promotes glycolysis over mitochondrial respiration, PPARγ and AMPK encourage the opposite. However, the interplay between TGFβ1 and these energy-sensing regulators in trophoblast cell glucose metabolism remains unclear. This study aimed to investigate whether and how TGFβ1 regulates energy metabolism in trophoblast cells exposed to normal and high glucose conditions. The trophoblast JEG-3 cells were incubated in normal (5 mM) and high (25 mM) glucose conditions for 24 h in the absence and the presence of TGFβ1. The protein expression levels of phosphor (p)-SMAD2, GLUT1/3, HIF1α, PPARγ, p-AMPK, and specific OXPHOS protein subunits were determined by western blotting, and ATP and lactate production by bioluminescent assay kits. JEG-3 cells exposed to 25 mM glucose decreased ATP production but did not affect lactate production. These changes led to a reduction in the expression levels of GLUT1/3, mitochondrial respiratory chain proteins, and PPARγ, coinciding with an increase in HIF1α expression. Conversely, TGFβ1 treatment at 25 mM glucose reduced HIF1α expression while enhancing the expression levels of GLUT1/3, PPARγ, p-AMPK, and mitochondrial respiratory chain proteins, thereby rejuvenating ATP production. Our findings reveal that high glucose conditions disrupt cellular glucose metabolism in trophoblast cells by perturbing mitochondrial oxidative respiration and decreasing ATP production. Treatment with TGFβ1 appears to counteract this trend, probably by enhancing both glycolytic and mitochondrial metabolism, suggesting a potential regulatory role of TGFβ1 in placental trophoblast cell glucose metabolism. Full article
Show Figures

Graphical abstract

22 pages, 7517 KiB  
Article
New Insights in Microplastic Cellular Uptake Through a Cell-Based Organotypic Rainbow-Trout (Oncorhynchus mykiss) Intestinal Platform
by Nicole Verdile, Nico Cattaneo, Federica Camin, Matteo Zarantoniello, Federico Conti, Gloriana Cardinaletti, Tiziana A. L. Brevini, Ike Olivotto and Fulvio Gandolfi
Cells 2025, 14(1), 44; https://doi.org/10.3390/cells14010044 - 3 Jan 2025
Cited by 1 | Viewed by 1657
Abstract
Microplastics (MPs) in fish can cross the intestinal barrier and are often bioaccumulated in several tissues, causing adverse effects. While the impacts of MPs on fish are well documented, the mechanisms of their cellular internalization remain unclear. A rainbow-trout (Oncorhynchus mykiss) [...] Read more.
Microplastics (MPs) in fish can cross the intestinal barrier and are often bioaccumulated in several tissues, causing adverse effects. While the impacts of MPs on fish are well documented, the mechanisms of their cellular internalization remain unclear. A rainbow-trout (Oncorhynchus mykiss) intestinal platform, comprising proximal and distal intestinal epithelial cells cultured on an Alvetex scaffold, was exposed to 50 mg/L of MPs (size 1–5 µm) for 2, 4, and 6 h. MP uptake was faster in RTpi-MI compared to RTdi-MI. Exposure to microplastics compromised the cellular barrier integrity by disrupting the tight-junction protein zonula occludens-1, inducing significant decreases in the transepithelial-electrical-resistance (TEER) values. Consequently, MPs were internalized by cultured epithelial cells and fibroblasts. The expression of genes related to endocytosis (cltca, cav1), macropinocytosis (rac1), and tight junctions’ formation (oclna, cldn3a, ZO-1) was analyzed. No significant differences were observed in cltca, oclna, and cldn3a expression, while an upregulation of cav1, rac1, and ZO-1 genes was detected, suggesting macropinocytosis as the route of internalization, since also cav1 and ZO-1 are indirectly related to this mechanism. The obtained results are consistent with data previously reported in vivo, confirming its validity for identifying MP internalization pathways. This could help to develop strategies to mitigate MP absorption through ingestion. Full article
Show Figures

Figure 1

27 pages, 2781 KiB  
Review
p63: A Master Regulator at the Crossroads Between Development, Senescence, Aging, and Cancer
by Lakshana Sruthi Sadu Murari, Sam Kunkel, Anala Shetty, Addison Bents, Aayush Bhandary and Juan Carlos Rivera-Mulia
Cells 2025, 14(1), 43; https://doi.org/10.3390/cells14010043 - 3 Jan 2025
Viewed by 1912
Abstract
The p63 protein is a master regulatory transcription factor that plays crucial roles in cell differentiation, adult tissue homeostasis, and chromatin remodeling, and its dysregulation is associated with genetic disorders, physiological and premature aging, and cancer. The effects of p63 are carried out [...] Read more.
The p63 protein is a master regulatory transcription factor that plays crucial roles in cell differentiation, adult tissue homeostasis, and chromatin remodeling, and its dysregulation is associated with genetic disorders, physiological and premature aging, and cancer. The effects of p63 are carried out by two main isoforms that regulate cell proliferation and senescence. p63 also controls the epigenome by regulating interactions with histone modulators, such as the histone acetyltransferase p300, deacetylase HDAC1/2, and DNA methyltransferases. miRNA-p63 interactions are also critical regulators in the context of cancer metastasis. This review aims to elaborate on the diverse roles of p63, focusing on disease, development, and the mechanisms controlling genome organization and function. Full article
(This article belongs to the Special Issue The Role of Cellular Senescence in Health, Disease, and Aging)
Show Figures

Graphical abstract

18 pages, 658 KiB  
Review
Advances in Stem Cell Therapy for Huntington’s Disease: A Comprehensive Literature Review
by Siddharth Shah, Hadeel M. Mansour and Brandon Lucke-Wold
Cells 2025, 14(1), 42; https://doi.org/10.3390/cells14010042 - 3 Jan 2025
Viewed by 1626
Abstract
Huntington’s disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.6 per 100,000 people worldwide, and the mean prevalence rate among all published studies, reviews, and genetic HD [...] Read more.
Huntington’s disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.6 per 100,000 people worldwide, and the mean prevalence rate among all published studies, reviews, and genetic HD registries is 5.7 per 100,000. A key feature of HD is the loss of striatal neurons and cortical atrophy. Although there is no cure at present, the discovery of the gene causing HD has brought us into a new DNA era and therapeutic advances for several neurological disorders. PubMed was systematically searched using three search strings: ‘“Huntington disease” + “stem cell”’, ‘”Huntington disease” + Mesenchymal stromal cell’, and ‘”Huntington disease” + “induced pluripotent stem cell”’. For each string, the search results were categorized based on cell type, and papers that included a clinical analysis were categorized as well. The data were extracted up to 2024. We did not include other databases in our search to have a comparable and systematic review of the literature on the topic. The collected data were analyzed and used for critical interpretation in the present review. Data are presented chronologically as clinical studies were published. Therapeutic strategies based on stem cells have drawn a lot of interest as possible HD therapies. Recent research indicates that NSCs have been the most often utilized stem cell type for treating HD. NSCs have been generated and extracted from a variety of sources, including HD patients’ somatic cells and the brain itself. There is strong evidence supporting the transplantation of stem cells or their derivatives in HD animal models, even if stem-cell-based preclinical and clinical trials are still in their early stages. Current treatment only aims at relieving the symptoms rather than treating the pathogenesis of the disease. Although preclinical trials in HD models have shown promise in improving cognitive and motor functions, stem cell therapy still faces many challenges and disadvantages including immunosuppression and immunorejection as well as ethical, technical, and safety concerns. Further research is required for a definitive conclusion. Full article
Show Figures

Figure 1

19 pages, 552 KiB  
Review
CAR-T Therapy Beyond B-Cell Hematological Malignancies
by Martina Canichella and Paolo de Fabritiis
Cells 2025, 14(1), 41; https://doi.org/10.3390/cells14010041 - 3 Jan 2025
Viewed by 1683
Abstract
Despite the advances of CAR-T cells in certain hematological malignancies, mostly from B-cell derivations such as non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, a significant portion of other hematological and non-hematological pathologies can benefit from this innovative treatment, as the results of [...] Read more.
Despite the advances of CAR-T cells in certain hematological malignancies, mostly from B-cell derivations such as non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, a significant portion of other hematological and non-hematological pathologies can benefit from this innovative treatment, as the results of clinical studies are demonstrating. The clinical application of CAR-T in the setting of acute T-lymphoid leukemia, acute myeloid leukemia, solid tumors, autoimmune diseases and infections has encountered limitations that are different from those of hematological B-cell diseases. To overcome these restrictions, strategies based on different molecular engineering platforms have been devised and will be illustrated below. The aim of this manuscript is to provide an overview of the CAR-T application in pathologies other than those currently treated, highlighting both the limits and results obtained with these settings. Full article
Show Figures

Figure 1

17 pages, 3642 KiB  
Article
Mesenchymal Stem/Stromal Cells Reverse Adipose Tissue Inflammation in Pigs with Metabolic Syndrome and Renovascular Hypertension
by Alexander B. C. Krueger, Xiangyang Zhu, Sarosh Siddiqi, Emma C. Whitehead, Hui Tang, Kyra L. Jordan, Amir Lerman and Lilach O. Lerman
Cells 2025, 14(1), 40; https://doi.org/10.3390/cells14010040 - 2 Jan 2025
Cited by 1 | Viewed by 920
Abstract
Metabolic syndrome (MetS) is associated with low-grade inflammation, which can be exacerbated by renal artery stenosis (RAS) and renovascular hypertension, potentially worsening outcomes through pro-inflammatory cytokines. This study investigated whether mesenchymal stem/stromal cells (MSCs) could reduce fat inflammation in pigs with MetS and [...] Read more.
Metabolic syndrome (MetS) is associated with low-grade inflammation, which can be exacerbated by renal artery stenosis (RAS) and renovascular hypertension, potentially worsening outcomes through pro-inflammatory cytokines. This study investigated whether mesenchymal stem/stromal cells (MSCs) could reduce fat inflammation in pigs with MetS and RAS. Twenty-four pigs were divided into Lean (control), MetS, MetS + RAS, and MetS + RAS + MSCs. In the MSC-treated group, autologous adipose-derived MSCs (107 cells) were injected into the renal artery six weeks after RAS induction. After four weeks, fat volumes and inflammatory markers were assessed. MSC treatment reduced levels of pro-inflammatory cytokines (MCP-1, TNF-a, IL-6) in the renal vein blood and in perirenal fat. The MSCs also decreased fat fibrosis, restored adipocyte size, and altered adipogenesis-related gene expression, particularly in the perirenal fat. These effects were less pronounced in subcutaneous fat. The MSC therapy attenuated fat inflammation and improved metabolic outcomes in pigs with MetS + RAS, suggesting that adipose-derived MSCs may offer a promising therapeutic approach for metabolic disorders. Full article
Show Figures

Graphical abstract

14 pages, 2266 KiB  
Article
The Ivermectin Related Compound Moxidectin Can Target Apicomplexan Importin α and Limit Growth of Malarial Parasites
by Sujata B. Walunj, Geetanjali Mishra, Kylie M. Wagstaff, Swati Patankar and David A. Jans
Cells 2025, 14(1), 39; https://doi.org/10.3390/cells14010039 - 2 Jan 2025
Viewed by 1409
Abstract
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan Plasmodium species and Toxoplasma gondii, causative [...] Read more.
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan Plasmodium species and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit P. falciparum and T. gondii IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time. We use circular dichroism and intrinsic tryptophan fluorescence measurements to show that moxidectin can bind directly to apicomplexan IMPαs, thereby inhibiting their key binding functions at low μM concentrations, as well as possessing anti-parasitic activity against P. falciparum in culture. The results imply a class effect in terms of IMPα’s ability to be targeted by macrocyclic lactone compounds. Importantly, in the face of rising global emergence of resistance to approved anti-parasitic agents, the findings highlight the potential of moxidectin and possibly other macrocyclic lactone compounds as antimalarial agents. Full article
Show Figures

Figure 1

24 pages, 2160 KiB  
Review
In Vitro 3D Models of Haematological Malignancies: Current Trends and the Road Ahead?
by Carlotta Mattioda, Claudia Voena, Gianluca Ciardelli and Clara Mattu
Cells 2025, 14(1), 38; https://doi.org/10.3390/cells14010038 - 2 Jan 2025
Viewed by 2025
Abstract
Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. [...] Read more.
Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment. The development of biomimetic, in vitro models may promote the investigation of the interactions between cancer cells and the tumor microenvironment and may help to better understand the mechanisms leading to drug resistance. Although advanced in vitro models have been largely explored in the field of solid tumors, due to the complex nature of the blood cancer tumor microenvironment, the mimicking of haematological malignancies mostly relies on simpler systems, often limited to two-dimensional cell culture, which intrinsically excludes the microenvironmental niche, or to ethically debated animal models. This review aims at reporting an updated overview of state-of-the-art hematological malignancies 3D in vitro models, emphasizing the key features and limitations of existing systems to inspire further research in this underexplored field. Full article
Show Figures

Graphical abstract

19 pages, 4850 KiB  
Article
Single-Nucleus RNA Sequencing Reveals Cellular Transcriptome Features at Different Growth Stages in Porcine Skeletal Muscle
by Ziyu Chen, Xiaoqian Wu, Dongbin Zheng, Yuling Wang, Jie Chai, Tinghuan Zhang, Pingxian Wu, Minghong Wei, Ting Zhou, Keren Long, Mingzhou Li, Long Jin and Li Chen
Cells 2025, 14(1), 37; https://doi.org/10.3390/cells14010037 - 2 Jan 2025
Cited by 2 | Viewed by 1278
Abstract
Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of [...] Read more.
Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of skeletal muscle, with phenotypic differences reflecting variations in cellular composition and transcriptional profiles. This study investigates the cellular-level transcriptional characteristics of LDM in large white pigs at two growth stages (170 days vs. 245 days) using single-nucleus RNA sequencing (snRNA-seq). We identified 56,072 cells across 12 clusters, including myofibers, fibro/adipogenic progenitor (FAP) cells, muscle satellite cells (MUSCs), and other resident cell types. The same cell types were present in the LDM at both growth stages, but their proportions and states differed. A higher proportion of FAPs was observed in the skeletal muscle of 245-day-old pigs. Additionally, these cells exhibited more active communication with other cell types compared to 170-day-old pigs. For instance, more interactions were found between FAPs and pericytes or endothelial cells in 245-day-old pigs, including collagen and integrin family signaling. Three subclasses of FAPs was identified, comprising FAPs_COL3A1+, FAPs_PDE4D+, and FAPs_EBF1+, while adipocytes were categorized into Ad_PDE4D+ and Ad_DGAT2+ subclasses. The proportions of these subclasses differed between the two age groups. We also constructed differentiation trajectories for FAPs and adipocytes, revealing that FAPs in 245-day-old pigs differentiated more toward fibrosis, a characteristic reminiscent of the high prevalence of skeletal muscle fibrosis in aging humans. Furthermore, the Ad_PDE4D+ adipocyte subclass, predominant in 245-day-old pigs, originated from FAPs_PDE4D+ expressing the same gene, while the Ad_DGAT2+ subclass stemmed from FAPs_EBF1+. In conclusion, our study elucidates transcriptional differences in skeletal muscle between two growth stages of pigs and provides insights into mechanisms relevant to pork meat quality and skeletal muscle diseases. Full article
Show Figures

Figure 1

18 pages, 304 KiB  
Review
Oxidative Stress and the NLRP3 Inflammasome: Focus on Female Fertility and Reproductive Health
by Efthalia Moustakli, Sofoklis Stavros, Periklis Katopodis, Charikleia Skentou, Anastasios Potiris, Periklis Panagopoulos, Ekaterini Domali, Ioannis Arkoulis, Theodoros Karampitsakos, Eleftheria Sarafi, Theologos M. Michaelidis, Athanasios Zachariou and Athanasios Zikopoulos
Cells 2025, 14(1), 36; https://doi.org/10.3390/cells14010036 - 2 Jan 2025
Viewed by 1330
Abstract
Chronic inflammation is increasingly recognized as a critical factor in female reproductive health; influencing natural conception and the outcomes of assisted reproductive technologies such as in vitro fertilization (IVF). An essential component of innate immunity, the NLR family pyrin domain-containing 3 (NLRP3) inflammasome [...] Read more.
Chronic inflammation is increasingly recognized as a critical factor in female reproductive health; influencing natural conception and the outcomes of assisted reproductive technologies such as in vitro fertilization (IVF). An essential component of innate immunity, the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is one of the major mediators of inflammatory responses, and its activation is closely linked to oxidative stress. This interaction contributes to a decline in oocyte quality, reduced fertilization potential, and impaired embryo development. In the ovarian milieu, oxidative stress and NLRP3 inflammasome activation interact intricately, and their combined effects on oocyte competence and reproductive outcomes are significant. The aims of this review are to examine these molecular mechanisms and to explore therapeutic strategies targeting oxidative stress and NLRP3 inflammasome activity, with the goal of enhancing female fertility and improving clinical outcomes in reproductive health. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Gynecological Disorders)
Show Figures

Graphical abstract

18 pages, 3235 KiB  
Article
Dysregulation of the NLRP3 Inflammasome and Promotion of Disease by IL-1β in a Murine Model of Sandhoff Disease
by Nick Platt, Dawn Shepherd, David A. Smith, Claire Smith, Kerri-Lee Wallom, Raashid Luqmani, Grant C. Churchill, Antony Galione and Frances M. Platt
Cells 2025, 14(1), 35; https://doi.org/10.3390/cells14010035 - 1 Jan 2025
Viewed by 1071
Abstract
Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the HEXB gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. [...] Read more.
Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the HEXB gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. The NLRP3 inflammasome is an important coordinator of pro-inflammatory responses, and we have investigated its regulation in murine SD. The NLRP3 inflammasome requires two signals, lipopolysaccharide (LPS) and ATP, to prime and activate the complex, respectively, leading to IL-1β secretion. Peritoneal, but not bone-marrow-derived, macrophages from symptomatic SD mice, but not those from pre-symptomatic animals, secrete the cytokine following priming with LPS with no requirement for activation with ATP, suggesting that such NLRP3 deregulation is related to the extent of glycosphingolipid storage. Dysregulated production of IL-1β was dependent upon caspase activity but not cathepsin B. We investigated the role of IL-1β in SD pathology using two approaches: the creation of hexb−/−Il1r1−/− double knockout mice or by treating hexb−/− animals with anakinra, a recombinant form of the IL-1 receptor antagonist, IL-1Ra. Both resulted in modest but significant extensions in lifespan and improvement of neurological function. These data demonstrate that IL-1β actively participates in the disease process and provides proof-of-principle that blockade of the pro-inflammatory cytokine IL-1β may provide benefits to patients. Full article
Show Figures

Figure 1

11 pages, 2149 KiB  
Article
Bi-Hormonal Endocrine Cell Presence Within the Islets of Langerhans of the Human Pancreas Throughout Life
by Jiwon Hahm, Dawn Kumar, Juan Andres Fernandez Andrade, Edith Arany and David J. Hill
Cells 2025, 14(1), 34; https://doi.org/10.3390/cells14010034 - 1 Jan 2025
Viewed by 1376
Abstract
Bi-hormonal islet endocrine cells have been proposed to represent an intermediate state of cellular transdifferentiation, enabling an increase in beta-cell mass in response to severe metabolic stress. Beta-cell plasticity and regenerative capacity are thought to decrease with age. We investigated the ontogeny of [...] Read more.
Bi-hormonal islet endocrine cells have been proposed to represent an intermediate state of cellular transdifferentiation, enabling an increase in beta-cell mass in response to severe metabolic stress. Beta-cell plasticity and regenerative capacity are thought to decrease with age. We investigated the ontogeny of bi-hormonal islet endocrine cell populations throughout the human lifespan. Immunofluorescence microscopy was performed for insulin, glucagon, and somatostatin presence on paraffin-embedded sections of pancreata from 20 donors without diabetes aged between 11 days and 79 years of age. The mean proportional presence of glucagon-, insulin-, and somatostatin-immunoreactive cells within islets was 27.5%, 62.1%, and 12.1%, respectively. There was no change in the relative presence of alpha- or beta-cells with advancing age, but delta-cell presence showed a decline with age (R2 = 0.59, p < 0.001). The most abundant bi-hormonal cell phenotype observed co-stained for glucagon and insulin, representing 3.1 ± 0.3% of all islet cells. Glucagon/somatostatin and insulin/somatostatin bi-hormonal cells were also observed representing 2–3% abundance relative to islet cell number. Glucagon/insulin bi-hormonal cells increased with age (R2 = 0.30, p < 0.05) whilst insulin/somatostatin (R2 = 0.50, p < 0.01) and glucagon/somatostatin (R2 = 0.35, p < 0.05) cells decreased with age of donor. Findings show that bi-hormonal cells are present within human pancreatic islets throughout life, perhaps reflecting an ongoing potential for endocrine cell plasticity. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

11 pages, 3447 KiB  
Communication
CCL4 Affects Eosinophil Survival via the Shedding of the MUC1 N-Terminal Domain in Airway Inflammation
by Yoshiki Kobayashi, Chu Hong Hanh, Naoto Yagi, Nhi Kieu Thi Le, Yasutaka Yun, Akihiro Shimamura, Kenta Fukui, Akitoshi Mitani, Kensuke Suzuki, Akira Kanda and Hiroshi Iwai
Cells 2025, 14(1), 33; https://doi.org/10.3390/cells14010033 - 31 Dec 2024
Viewed by 841
Abstract
Eosinophilic chronic rhinosinusitis (ECRS), a CRS with nasal polyps (CRSwNP), is characterized by eosinophilic infiltration with type 2 inflammation and is highly associated with bronchial asthma. Intractable ECRS with poorly controlled asthma is recognized as a difficult-to-treat eosinophilic airway inflammation. Although eosinophils are [...] Read more.
Eosinophilic chronic rhinosinusitis (ECRS), a CRS with nasal polyps (CRSwNP), is characterized by eosinophilic infiltration with type 2 inflammation and is highly associated with bronchial asthma. Intractable ECRS with poorly controlled asthma is recognized as a difficult-to-treat eosinophilic airway inflammation. Although eosinophils are activated and coincubation with airway epithelial cells prolongs their survival, the interaction mechanism between eosinophils and epithelial cells is unclear. This study examined the effect of eosinophils on mucin glycoprotein 1 (MUC1), a member of membrane-bound mucin, in the airway epithelial cells, to elucidate the mechanisms of the eosinophil–airway epithelial cell interaction. Nasal polyp samples from patients with CRSwNP and BEAS-2B airway epithelial cells, coincubated with purified eosinophils, were stained with two MUC1 antibodies. To confirm the involvement of CCL4, an anti-CCL4 neutralizing antibody or recombinant CCL4 was used as needed. The immunofluorescence results revealed a negative correlation between the expression of full-length MUC1 and eosinophil count in nasal polyps. In BEAS-2B coincubated with eosinophils, full-length MUC1, but not the C-terminal domain, was reduced, and eosinophil survival was prolonged, which was concomitant with CCL4 increase, whereas the anti-CCL4 neutralizing antibody decreased these reactions. The survival of eosinophils that contacted recombinant MUC1 without the N-terminal domain was prolonged, and recombinant CCL4 increased the expression of metalloproteases. Increased CCL4 induces the contact between eosinophils and airway epithelial cells by shedding the MUC1 N-terminal domain and enhances eosinophil survival in eosinophilic airway inflammation. This novel mechanism may be a therapeutic target for difficult-to-treat eosinophilic airway inflammation. Full article
(This article belongs to the Special Issue Eosinophils and Their Role in Allergy and Related Diseases)
Show Figures

Figure 1

18 pages, 2911 KiB  
Article
Flow Cytometric Assessment of FcγRIIIa-V158F Polymorphisms and NK Cell Mediated ADCC Revealed Reduced NK Cell Functionality in Colorectal Cancer Patients
by Phillip Schiele, Stefan Kolling, Stanislav Rosnev, Charlotte Junkuhn, Anna Luzie Walter, Jobst Christian von Einem, Sebastian Stintzing, Wenzel Schöning, Igor Maximilian Sauer, Dominik Paul Modest, Kathrin Heinrich, Lena Weiss, Volker Heinemann, Lars Bullinger, Marco Frentsch and Il-Kang Na
Cells 2025, 14(1), 32; https://doi.org/10.3390/cells14010032 - 31 Dec 2024
Viewed by 1331
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed [...] Read more.
Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed two complementary flow cytometry assays: one to predict the FcγRIIIa-V158F polymorphism using a machine learning model, and a 15-color flow cytometry panel to assess antibody-induced NK cell functionality and cancer-immune cell interactions. Samples were collected from healthy donors and metastatic colorectal cancer (mCRC) patients from the FIRE-6-Avelumab phase II study. The machine learning model accurately predicted the FcγRIIIa-V158F polymorphism in 94% of samples. FF homozygous patients showed diminished cetuximab-mediated ADCC compared to VF or VV carriers. In mCRC patients, NK cell dysfunctions were evident as impaired ADCC, decreased CD16 downregulation, and reduced CD137/CD107a induction. Elevated PD1+ NK cell levels, reduced lysis of PDL1-expressing CRC cells and improved NK cell activation in combination with the PDL1-targeting avelumab indicate that the PD1-PDL1 axis contributes to impaired cetuximab-induced NK cell function. Together, these optimized assays effectively identify NK cell dysfunctions in mCRC patients and offer potential for broader application in evaluating NK cell functionality across cancers and therapeutic settings. Full article
(This article belongs to the Special Issue Advances in the Study of Natural Killer (NK) Cells)
Show Figures

Figure 1

12 pages, 3119 KiB  
Article
Epigenetic Inhibitors Differentially Impact TGF-β1 Signaling Cascades in COPD Airway Smooth Muscle Cells
by Karosham Diren Reddy, Dikaia Xenaki, Ian M. Adcock, Brian G. G. Oliver and Razia Zakarya
Cells 2025, 14(1), 31; https://doi.org/10.3390/cells14010031 - 31 Dec 2024
Viewed by 1028
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, [...] Read more.
Background: Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, are associated with COPD progression. However, a deeper understanding of the complex mechanisms associated with DNA methylation, histone post-translational changes and RNA methylation in the context of regulatory pathways remains to be elucidated. We here report on how DNA methylation and histone acetylation inhibition differentially affect CXCL8 signaling in primary human non-COPD and COPD airway cells. Methods: Airway smooth muscle (ASM) cells, a pivotal cell type in COPD, were isolated from the small airways of heavy smokers with and without COPD. Histone acetylation and DNA methylation were inhibited before the TGF-β1 stimulation of cells. Subsequently, CXCL8 production and the abundance and activation of pertinent transcription regulatory proteins (NF-κB, p38 MAPK and JNK) were analyzed. Results: TGF-β1-stimulated CXCL8 release from ASM cells from ‘healthy’ smoker subjects was significantly modulated by DNA methylation (56.32 pg/mL and 56.60 pg/mL) and acetylation inhibitors (27.50 pg/mL and 48.85 pg/mL) at 24 and 48 h, respectively. However, modulation via the inhibition of DNA methylation (34.06 pg/mL and 43.18 pg/mL) and acetylation (23.14 pg/mL and 27.18 pg/mL) was observed to a lesser extent in COPD ASM cells. These changes were associated with differences in the TGF-β1 activation of NF-κB and MAPK pathways at 10 and 20 min. Conclusions: Our findings offer insight into differential epigenetics in controlling COPD ASM cells and provide a foundation warranting future studies on epigenetic differences associated with COPD diagnosis. This would provide a scope for developing therapeutic interventions targeting signaling and epigenetic pathways to improve patient outcomes. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop