In order to alleviate the constraints of global warming and sustainable development, digitalization has made significant contributions to promoting agricultural carbon reduction through resources, technology, and platforms. Under this situation, China insists on developing agricultural scale management. However, what impact will scale management
[...] Read more.
In order to alleviate the constraints of global warming and sustainable development, digitalization has made significant contributions to promoting agricultural carbon reduction through resources, technology, and platforms. Under this situation, China insists on developing agricultural scale management. However, what impact will scale management in agricultural digital emission reduction have on mechanisms and pathways? Based on three rounds of follow-up surveys conducted by the Digital Countryside Research Institute of Nanjing Agricultural University in Jiangsu Province from 2022 to 2024, in this study a total of 258 valid questionnaires on the rice and wheat industry were collected. Methods such as member checking and audit trail were employed to ensure data reliability and validity. Using econometric approaches including Tobit, mediation, and moderation models, this study quantified the Scale Management Level (SML), examined the mechanism pathways of digital emission reduction in a scaled environment, further demonstrated the impact of scale management on digital emission reduction, and verified the mediating and moderating effects of internal and external scale management. We found that: (1) In scale and carbon reduction, the SBM-DEA model calculates that the scale of agricultural land in Jiangsu showed an “inverted S” trend with SML and an “inverted W” trend with the overall agricultural green production efficiency (AGPE), and the highest agricultural green production efficiency is 0.814 in the moderate scale range of 20–36.667 hm
2. (2) In digitalization and carbon reduction, the Tobit regression model results indicate that Network Platform Empowerment (NPE) significantly promotes carbon reduction (
p < 1%), but its squared terms exhibit an inverted U-shaped relationship with agricultural green production efficiency (
p < 1%), and SML is significant at the 5% level. From a local regression perspective, the strength of SML’s impact on the three core variables is: NPE > DRE > DTE. (3) Adding scale in agricultural digital emission reduction, the intermediary mechanism results showed that the significant intensity (
p < 5%) of the mediating role of Agricultural Mechanization Level (AML) is NPE > DTE > DRE, and that of the Employment of Labor (EOL) is DRE > NPE > DTE. (4) Adding scale in agricultural digital emission reduction, the regulatory effect results showed that the Organized Management Level (OML) and Social Service System (SSS) significantly positively regulate the inhibitory effect of DRE and DTE on AGPE. Finally, we suggest controlling the scale of land management reasonably and developing moderate agricultural scale management according to local conditions, enhancing the digital literacy and agricultural machinery training of scale entities while encouraging the improvement of organizational level and social service innovation, and reasonably reducing labor and mechanization inputs in order to standardize the digital emission reduction effect of agriculture under the background of scale.
Full article