Effect of Fermentation Technology and Storage Time on the Quality of Salami-Type Sausages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Storage of Salami-Type Sausages
2.2. Microbiological Analyses
2.3. Determination of the Basic Chemical Composition
2.4. Measurement of pH Level and Water Activity
2.4.1. pH Level
2.4.2. Water Activity
2.5. Determination of the Acid Value and TBARS
2.5.1. Acid Value
2.5.2. TBARS Index
2.6. Color Measurement
2.7. Microscopic Observations
2.8. Texture Analyses
2.9. Sensory (Hedonic) Evaluation
2.10. Statistical Analyses
3. Results and Discussion
3.1. Influence of Fermentation Technology on the Microbiological Characteristics of Salami-Type Sausages
3.2. Influence of Fermentation Technology and Storage Time on the Primary Chemical Composition of Salami-Type Sausages
3.3. Influence of Fermentation Technology and Storage Time on the Physicochemical and Chemical Properties of Salami-Type Sausages
3.4. Influence of Fermentation Technology and Storage Time on the Color Parameters of Salami-Type Sausages
3.5. Influence of Fermentation Technology and Storage Time on the Textural Properties of Salami-Type Sausages
3.6. Influence of Fermentation Technology and Storage Time on the Sensory (Hedonic) Characteristics of Salami-Type Sausages
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laranjo, M.; Elias, M.; Fraqueza, M.J. The Use of Starter Cultures in Traditional Meat Products. J. Food Qual. 2017, 2017, 9546026. [Google Scholar] [CrossRef]
- Carballo, J. Sausages: Nutrition, Safety, Processing and Quality Improvement. Foods 2021, 10, 890. [Google Scholar] [CrossRef] [PubMed]
- Bal-Prylypko, L.; Danylenko, S.; Mykhailova, O.; Nedorizanyuk, L.; Bovkun, A.; Slobodyanyuk, N.; Omelian, A.; Ivaniuta, A. Influence of Starter Cultures on Microbiological and Physical-Chemical Parameters of Dry-Cured Products. Potravin. Slovak J. Food Sci. 2024, 18, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Ezzaky, Y.; Zanzan, M.; Achemchem, F.; Baddi, G.A.; Mamouni, R. Investigating the Effect of Commercial Starter Cultures on the Physicochemical and Microbiological Properties of Merguez, an Artisanal Moroccan Sausage. Malays. J. Microbiol. 2024, 20, 75–84. [Google Scholar] [CrossRef]
- Montanari, C.; Barbieri, F.; Gardini, F.; Tabanelli, G. Competition between Starter Cultures and Wild Microbial Population in Sausage Fermentation: A Case Study Regarding a Typical Italian Salami (Ventricina). Foods 2021, 10, 2138. [Google Scholar] [CrossRef]
- Yilmaz Topcam, M.M.; Arslan, B.; Soyer, A. Sucuk, Turkish-Style Fermented Sausage: Evaluation of the Effect of Bioprotective Starter Cultures on Its Microbiological, Physicochemical, and Chemical Properties. Appl. Microbiol. 2024, 4, 1215–1231. [Google Scholar] [CrossRef]
- Kaban, G.; Sallan, S.; Çinar Topçu, K.; Sayın Börekçi, B.; Kaya, M. Assessment of Technological Attributes of Autochthonous Starter Cultures in Turkish Dry Fermented Sausage (Sucuk). Int. J. Food Sci. Technol. 2022, 57, 4392–4399. [Google Scholar] [CrossRef]
- Ikonić, P.; Peulić, T.; Jokanović, M.; Delić, J.; Škaljac, S.; Šojić, B.; Šarić, L. Effect of Commercial Starter Culture on Physicochemical Properties and Biogenic Amine Formation in Traditional Dry-Fermented Beef Sausage. Meat Technol. 2023, 64, 63–68. [Google Scholar] [CrossRef]
- Bratulić, M.; Mikuš, T.; Cvrtila, Ž.; Cenci-Goga, B.T.; Grispoldi, L.; Pavunc, A.L.; Novak, J.; Kos, B.; Šušković, J.; Zadravec, M.; et al. Quality of Traditionally Produced Istrian Sausage and Identification of Autochthonous Lactic Acid Bacteria Strains as Potential Functional Starter Cultures. Eur. Food Res. Technol. 2021, 247, 2847–2860. [Google Scholar] [CrossRef]
- García-Díez, J.; Saraiva, C. Use of Starter Cultures in Foods from Animal Origin to Improve Their Safety. Int. J. Environ. Res. Public Health 2021, 18, 2544. [Google Scholar] [CrossRef]
- Rocchetti, G.; Rebecchi, A.; Maria Lopez, C.; Dallolio, M.; Dallolio, G.; Trevisan, M.; Lucini, L. Impact of Axenic and Mixed Starter Cultures on Metabolomic and Sensory Profiles of Ripened Italian Salami. Food Chem. 2023, 402, 134182. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Wang, X.; Chen, H.; Zhao, Z.; Liu, D.; Zhang, Y.; Nie, X. The Contribution of Microorganisms to the Quality and Flavor Formation of Chinese Traditional Fermented Meat and Fish Products. Foods 2024, 13, 608. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Ren, H.; Zhan, Y. Comparison of bacterial diversity profiles and microbial safety assessment of salami, Chinese dry-cured sausage and Chinese smoked-cured sausage by high-throughput sequencing. LWT 2018, 90, 108–115. [Google Scholar] [CrossRef]
- Palavecino Prpich, N.Z.; Camprubí, G.E.; Cayré, M.E.; Castro, M.P. Indigenous Microbiota to Leverage Traditional Dry Sausage Production. Int. J. Food Sci. 2021, 2021, 6696856. [Google Scholar] [CrossRef]
- Barbieri, F.; Tabanelli, G.; Montanari, C.; Dall’Osso, N.; Šimat, V.; Smole Možina, S.; Baños, A.; Özogul, F.; Bassi, D.; Fontana, C.; et al. Mediterranean Spontaneously Fermented Sausages: Spotlight on Microbiological and Quality Features to Exploit Their Bacterial Biodiversity. Foods 2021, 10, 2691. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Domínguez, R.; Pateiro, M.; Munekata, P.E.S. (Eds.) Production of Traditional Mediterranean Meat Products; Methods and Protocols in Food Science; Springer: New York, NY, USA, 2022; ISBN 978-1-07-162102-8. [Google Scholar]
- Oliveira, M.; Ferreira, V.; Magalhães, R.; Teixeira, P. Biocontrol strategies for Mediterranean-style fermented sausages. Food Res. Int. 2018, 103, 438–449. [Google Scholar] [CrossRef]
- Agüero, N.D.L.; Frizzo, L.S.; Ouwehand, A.C.; Aleu, G.; Rosmini, M.R. Technological Characterisation of Probiotic Lactic Acid Bacteria as Starter Cultures for Dry Fermented Sausages. Foods 2020, 9, 596. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, Y.; Seo, Y.; Sung, M.; Oh, J.; Yoon, Y. Effect of Starter Cultures on Quality of Fermented Sausages. Food Sci. Anim. Resour. 2023, 43, 1–9. [Google Scholar] [CrossRef]
- Amadoro, C.; Rossi, F.; Poltronieri, P.; Marino, L.; Colavita, G. Diversity and Safety Aspects of Coagulase-Negative Staphylococci in Ventricina Del Vastese Italian Dry Fermented Sausage. Appl. Sci. 2022, 12, 13042. [Google Scholar] [CrossRef]
- Leroy, S.; Vermassen, A.; Talon, R. Staphylococcus: Occurrence and Properties. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 140–145. ISBN 978-0-12-384953-3. [Google Scholar]
- Yalçın, H.; Ertürkmen, P. Characterization of Turkish dry fermented sausage produced with spontaneous microbiota and some lactic acid bacteria mixed culture. Rev. Mex. Ing. Química 2024, 23, 24183. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, L.; Su, R.; Jin, Y. Effects of different starter culture combinations on microbial counts and physico-chemical properties in dry fermented mutton sausages. Food Sci. Nutr. 2019, 7, 1957–1968. [Google Scholar] [CrossRef] [PubMed]
- Dasiewicz, K.; Szymanska, I.; Opat, D.; Hac-Szymanczuk, E. Development and Characterization of Hybrid Burgers Made from Pork and Multi-Ingredient Plant Mixtures and Protected with Lactic Acid Bacteria. Appl. Sci. 2024, 14, 6272. [Google Scholar] [CrossRef]
- Radulović, Z.; Živković, D.; Mirković, N.; Petrušić, M.; Stajić, S.; Perunović, M.; Paunović, D. Effect of probiotic bacteria on chemical composition and sensory quality of fermented sausages. Procedia Food Sci. 2011, 1, 1516–1522. [Google Scholar] [CrossRef]
- Bennett, R.W.; Hait, J.M.; Tallent, S.M. Staphylococcus aureus and staphylococcal enterotoxins. In Compendium of Methods for the Microbiological Examination of Foods, 5th ed.; American Public Health Association: Washington, DC, USA, 2015; Chapter 39; pp. 509–526. [Google Scholar]
- Coton, M.; Deniel, F.; Mounier, J.; Joubrel, R.; Robieu, E.; Pawtowski, A.; Jeuge, S.; Taminiau, B.; Daube, G.; Coton, E.; et al. Microbial ecology of french dry fermented sausages and mycotoxin risk evaluation during storage. Front. Microbiol. 2021, 12, 737140. [Google Scholar] [CrossRef]
- PN-A-82109:2010; Meat and Meat Products—Determination of Fat, Protein and Water Content—Near Infrared Transmission Spectrometry (NIT) Method Using Calibration on Artificial Neural Networks (ANN). Polish Committee for Standardization: Warsaw, Poland, 2010.
- PN-ISO 2917:2001; Meat and Meat Products—Measurement of pH-Reference Method. Polish Committee for Standardization: Warsaw, Poland, 2001.
- ISO 660:2020; Animal and Vegetable Fats and Oils. Determination of Acid Value and Acidity. Polish Committee for Standardization: Warsaw, Poland, 2020.
- Shahidi, F. The 2-thiobarbituric acid (TBA) methodology for the evaluation of warmed-over flavour and rancidity in meat products. In Proceedings of the 36th International Congress of Meat Science and Technology (ICoMST), Havana, Cuba, 27 August–1 September 2019; pp. 1008–1015. [Google Scholar]
- Mokrzycki, W.S.; Tatol, M. Color Difference ∆E—A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Russ, J.C. Image Analysis of Food Microstructure; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Dolik, K.; Kubiak, M.S. Instrumental test of texture profile analysis in the study of selected food quality. Nauki Inż. Technol. 2013, 3, 35–43. [Google Scholar] [CrossRef]
- Cegiełka, A.; Dasiewicz, K.; Hać-Szymańczuk, E. The effect of selected fiber preparations the quality of pork burgers. Postępy Nauki Technol. Prz. Rol.-Spoż. 2017, 72, 26–40. [Google Scholar]
- Tolik, D.; Słowiński, M.; Desperak, K. The influence of type of thermal treatment on changes in quality of pates from desinewed poultry meat during storage. Nauki Inż. Technol. 2015, 4, 85–93. [Google Scholar]
- PN-ISO 4121: 1998; Sensory Analysis. Methodology. Evaluation of Food Products Using The Method of Scaling. Polish Committee for Standardization: Warsaw, Poland, 1998.
- Tabachnick, B.G.; Fidell, L.S. Experimental Designs Using ANOVA, 1st ed.; Duxbury Press: Belmont, CA, USA, 2007; p. 25. [Google Scholar]
- Abdulrahman, R.S.; Qoja, A.O. Effects of microbial starter culture on some microbial properties of fermented sausage. Ann. Trop. Med. Public Health 2020, 23, SP231817. [Google Scholar] [CrossRef]
- Yanmaz, B.; Gelen, S.U.; Gedikli, S. Determination of some microbiological, chemical and histological properties of salami and sausages sold in markets. Int. J. Adv. Res. 2021, 9, 96–99. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Dolatowski, Z.J. Oxidative stability of fermented meat products. Acta Sci. Pol. Technol. Aliment. 2012, 11, 99–109. [Google Scholar] [PubMed]
- Gianni, C.; Lopez, C.; Medina, L.M.; Serrano, S.; Jordano, R. Dynamics and characterization of a yeast population from an Italian fermented sausage. Ital. J. Food Sci. 2008, 20, 39–244. [Google Scholar]
- Wang, Y.; Zhang, M.; Wu, Y.; Lu, P.; Bao, D.; Mei, L. Changes in Antioxidant Properties and Structure of Pediococcus Acidilactici’s Polysaccharide: In Vitro Simulated Digestion. LWT 2024, 205, 116415. [Google Scholar] [CrossRef]
- Milicevic, B.; Danilovic, B.; Zdolec, N.; Kozachinski, L.; Dobranic, V.; Savic, D. Microbiota of the fermented sausages: Influence to product quality and safety. Bulg. J. Agric. Sci. 2014, 20, 1061–1078. [Google Scholar]
- Pyrcz, J.; Kowalski, R.; Danyluk, B. The technological process of production of ripened raw sausages. In Meat—The Basics of Science and Technology, 2nd ed.; Pisula, A., Pospiech, E., Eds.; Wydawnictwo SGGW: Warszawa, Poland, 2011; pp. 408–415. [Google Scholar]
- Holck, A.; Heir, E.; Johannessen, T.C.; Axelsson, L. Northern European Products. In Handbook of Fermented Meat and Poultry; Wiley: Chichester, UK, 2014; pp. 313–320. [Google Scholar]
- Stangierski, J.; Rezler, R.; Kawecki, K. An Analysis of Changes in the Physicochemical and Mechanical Properties during the Storage of Smoked and Mould Salamis Made in Poland. Molecules 2023, 28, 5122. [Google Scholar] [CrossRef]
- Mitrovic, R.R.; Jankovic, V.V.; Ciric, J.S.; Djordjevic, V.Z.; Juric, Z.L.; Mitrovic-Stanivuk, M.R.; Baltic, B.M. Physical Properties (pH and aw Value) of Fermented Sausages Inoculated with Yersinia Enterocolitica. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 012081. [Google Scholar] [CrossRef]
- Karwowska, M.; Wójciak, K.M.; Dolatowski, Z.J. The influence of acid whey and mustard seed on lipid oxidation of organic fermented sausage without nitrite. J. Sci. Food Agric. 2015, 95, 628–634. [Google Scholar] [CrossRef]
- De Mey, E.; De Klerck, K.; De Maere, H.; Dewulf, L.; Derdelinckx, G.; Peeters, M.; Fraeye, I.; Vander Heyden, Y.; Paelinck, H. The occurrence of N-nitrosamines, residual nitrite and biogenic amines in commercial dry fermented sausages and evaluation of their occasional relation. Meat Sci. 2014, 96, 821–828. [Google Scholar] [CrossRef]
- Hu, G.; Wang, D.; Zhao, L.; Su, L.; Tian, J.; Ye, J. Effects of ripening time on meat quality and flavor compounds of fermented mutton sausages. J. Chin. Inst. Food Sci. Technol. 2021, 21, 194–202. [Google Scholar]
- Pasini, F.; Soglia, F.; Petracci, M.; Caboni, M.F.; Marziali, S.; Montanari, C.; Gardini, F.; Grazia, L.; Tabanelli, G. Effect of Fermentation with Different Lactic Acid Bacteria Starter Cultures on Biogenic Amine Content and Ripening Patterns in Dry Fermented Sausages. Nutrients 2018, 10, 1497. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Yohannes Woldemariam, K.; Zhong, S.; Yu, Q.; Wang, J. Antioxidant effect of yeast on lipid oxidation in salami sausage. Front. Microbiol. 2023, 13, 1113848. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, S.; Gemmell, C.; Lau, A.T.Y.; Arvaj, L.; Strange, P.; Gao, A.; Barbut, S. High Pressure Processing during Drying of Fermented Sausages Can Enhance Safety and Reduce Time Required to Produce a Dry Fermented Product. Food Control 2020, 113, 107224. [Google Scholar] [CrossRef]
- Berardo, A.; Claeys, E.; Vossen, E.; Leroy, F.; De Smet, S. Protein oxidation affects proteolysis in a meat model system. Meat Sci. 2015, 106, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Ameer, A.; Seleshe, S.; Kim, B.J.; Kang, S.N. Inoculation of Lactobacillus sakei on Quality Traits of Dry Fermented Sausages. Prev. Nutr. Food Sci. 2021, 26, 476–484. [Google Scholar] [CrossRef]
- Marco, A.; Navarro, J.L.; Flores, M. The influence of nitrite and nitrate on microbial, chemical and sensory parameters of slow dry fermented sausage. Meat Sci. 2006, 73, 660–673. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, Q.; Xia, X.; Sun, F.; Kong, B. Effect of the Protease from Staphylococcus Carnosus on the Proteolysis, Quality Characteristics, and Flavor Development of Harbin Dry Sausage. Meat Sci. 2022, 189, 108827. [Google Scholar] [CrossRef]
- De Araújo, P.D.; Araújo, W.M.C.; Patarata, L.; Fraqueza, M.J. Understanding the Main Factors That Influence Consumer Quality Perception and Attitude towards Meat and Processed Meat Products. Meat Sci. 2022, 193, 108952. [Google Scholar] [CrossRef]
- Pegg, R.B.; Honikel, K.O. Principles of curing. In Handbook of Fermented Meat and Poultry; Toldrá, F., Hui, Y.H., Astiasarán, I., Sebranek, J.G., Talon, R., Eds.; Wiley Blackwell: West Sussex, UK, 2014; pp. 19–30. [Google Scholar]
- Zdolec, N. (Ed.) Fermented Meat Products: Health Aspects; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Premi, L.; Rocchetti, G.; Lucini, L.; Morelli, L.; Rebecchi, A. Replacement of Nitrates and Nitrites in Meat-Derived Foods through the Utilization of Coagulase-Negative Staphylococci: A Review. Curr. Res. Food Sci. 2024, 8, 100731. [Google Scholar] [CrossRef]
- Wen, R.; Hu, Y.; Zhang, L.; Wang, Y.; Chen, Q.; Kong, B. Effect of NaCl substitutes on lipid and protein oxidation and flavor development of Harbin dry sausage. Meat Sci. 2019, 156, 33–43. [Google Scholar] [CrossRef]
- Talon, R.; Leroy, S. Meat: Reduction of Nitrate and Nitrite Salts in Meat Products—What Are the Consequences and Possible Solutions? In Handbook of Molecular Gastronomy, 1st ed.; Burke, R.M., Kelly, A.L., Lavelle, C., Kientza, H.T.V., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 423–428. [Google Scholar]
- Palavecino Prpich, N.Z.; Castro, M.P.; Cayré, M.E.; Garro, O.A.; Vignolo, G.M. Indigenous Starter Cultures to Improve Quality of Artisanal Dry Fermented Sausages from Chaco (Argentina). Int. J. Food Sci. 2015, 2015, 931970. [Google Scholar] [CrossRef]
- Stadnik, J.; Kęska, P.; Gazda, P.; Siłka, Ł.; Kołożyn-Krajewska, D. Influence of LAB Fermentation on the Color Stability and Oxidative Changes in Dry-Cured Meat. Appl. Sci. 2022, 12, 11736. [Google Scholar] [CrossRef]
- Saccani, G.; Fornelli, G.; Zanardi, E. Characterization of Textural Properties and Changes of Myofibrillar and Sarcoplasmic Proteins in Salame Felino During Ripening. Int. J. Food Prop. 2013, 16, 1460–1471. [Google Scholar] [CrossRef]
- Polizzi, G.; Casalino, L.; Di Paolo, M.; Sardo, A.; Vuoso, V.; Franco, C.M.; Marrone, R. Influence of Different Starter Cultures on Physical–Chemical, Microbiological, and Sensory Characteristics of Typical Italian Dry-Cured “Salame Napoli”. Appl. Sci. 2024, 14, 3035. [Google Scholar] [CrossRef]
- Hao, S.; Qian, M.; Wang, Y.; Zhang, K.; Tian, J.; Wang, X. Research Progress on the Gel Properties of Fermented Sausage. Food Mater. Res. 2024, 4, e007. [Google Scholar] [CrossRef]
- Kameník, J.; Saláková, A.; Bořilová, G.; Pavlík, Z.; Standarová, E.; Steinhauser, L. Effect of storage temperature on the quality of dry fermented sausage Poličan. Czech J. Food Sci. 2012, 30, 293–301. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, Y.J.; Shin, D.-M.; Lee, J.H.; Han, S.G. Drying Characteristics and Physicochemical Properties of Semi-Dried Restructured Sausage Depend on Initial Moisture Content. Food Sci. Anim. Resour. 2022, 42, 411–425. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Khalifa, I.; Mesak, M.A.; Lorenzo, J.M.; Farag, M.A. A comprehensive review of the role of microorganisms on texture change, flavor and biogenic amines formation in fermented meat with their action mechanisms and safety. Crit. Rev. Food Sci. 2021, 63, 3538–3555. [Google Scholar] [CrossRef]
- Jürkenbeck, K.; Spiller, A. Importance of sensory quality signals in consumers’ food choice. Food Qual. Prefer. 2021, 90, 104155. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Li, X.-A.; Zhang, H.; Chen, Q.; Kong, B. Application of lactic acid bacteria for improving the quality of reduced-salt dry fermented sausage: Texture, color, and flavor profiles. LWT 2022, 154, 110259. [Google Scholar] [CrossRef]
- Stollewerk, K.; Jofré, A.; Comaposada, J.; Guardia, M.D.; Arnau, J.; Kilcawley, K. Innovative strategies to enhance the sensory quality of dry fermented sausages containing lactic ingredients by the addition of exogenous enzymes. Food Sci. Technol. Int. 2022, 28, 451–460. [Google Scholar] [CrossRef]
Features | Lactobacillus sakei†† | Pediococcus acidilactici † | Staphylococcus carnosus †† |
---|---|---|---|
Growth temperatures (min/max/opt) [°C] | 15/45/35 | 15/52/43 | 10/45/30 |
Salt content limit [%] | 6 | 10 | 16 |
Oxygen tolerance | facultative anaerobic | ||
Metabolic activity | D(−)-lactic acid-producing | DL(+/−)-lactic acid-producing | D(−)-lactic acid-producing, coagulase-negative, catalase positive, nitrate reductase-positive, proteolytic, lipolytic |
Fermentable sugars | glucose, fructose, saccharose | glucose, fructose, saccharose, maltose | glucose, fructose, lactose |
Microorganisms | Total Cell Count [log CFU/g] | |
---|---|---|
“Warm” Technology | “Cold” Technology | |
Aerobic cell count (ACC) | 7.11 ± 0.30 b | 6.15 ± 0.22 a |
Lactic acid bacteria (LAB) | 7.08 ± 0.39 b | 5.92 ± 0.35 a |
Pediococcus spp. | ND | 5.43 ± 0.41 |
Coagulase-negative Staphylococcus spp. | 3.30 ± 0.46 a | 3.07 ± 0.50 a |
Yeasts | ND | 3.08 ± 0.42 |
Fermentation Technology | Storage Time [Days] | |||
---|---|---|---|---|
0 | 21 | 42 | 63 | |
Water [%] | ||||
Warm | 30.49 ± 0.47 aA | 30.26 ± 0.58 aA | 28.68 ± 0.88 aA | 30.29 ± 0.21 aA |
Cold | 30.82 ± 0.44 aA | 30.73 ± 0.46 aA | 30.02 ± 0.34 aA | 30.58 ± 0.42 aA |
Protein [%] | ||||
Warm | 20.77 ± 0.44 aA | 20.21 ± 0.28 aA | 20.65 ± 0.15 aA | 20.57 ± 0.42 aA |
Cold | 20.11 ± 0.29 aA | 19.85 ± 0.17 aA | 19.99 ± 0.30 aA | 19.99 ± 0.43 aA |
Fat [%] | ||||
Warm | 42.25 ± 0.94 aA | 42.75 ± 0.46 aA | 43.74 ± 0.55 aA | 42.58 ± 0.83 aA |
Cold | 42.65 ± 0.59 aA | 42.93 ± 0.41 aA | 43.54 ± 0.59 aA | 42.64 ± 0.31 aA |
Salt [%] | ||||
Warm | 4.43 ± 0.04 aA | 4.56 ± 0.08 aA | 4.45 ± 0.09 aA | 4.59 ± 0.06 aA |
Cold | 4.40 ± 0.02 aA | 4.50 ± 0.08 aA | 4.41 ± 0.03 aA | 4.47 ± 0.05 aA |
Ash [%] | ||||
Warm | 6.12 ± 0.08 aA | 6.08 ± 0.12 aA | 5.88 ± 0.18 aA | 6.09 ± 0.12 aA |
Cold | 6.07 ± 0.05 aA | 5.99 ± 0.11 aA | 5.93 ± 0.07 aA | 6.00 ± 0.09 aA |
Fermentation Technology | Storage Time [Days] | |||
---|---|---|---|---|
0 | 21 | 42 | 63 | |
Water Activity [-] | ||||
Warm | 0.855 ± 0.003 bA | 0.857 ± 0.006 bA | 0.854 ± 0.010 bA | 0.834 ± 0.006 aA |
Cold | 0.858 ± 0.006 aA | 0.858 ± 0.007 aA | 0.865 ± 0.006 aA | 0.868 ± 0.008 aB |
pH Level [-] | ||||
Warm | 5.07 ± 0.06 aB | 4.97 ± 0.03 aA | 5.03 ± 0.04 aB | 4.92 ± 0.03 aB |
Cold | 4.87 ± 0.01 abA | 4.95 ± 0.09 bA | 4.81 ± 0.02 aA | 4.81 ± 0.04 aA |
Acid Value [mg KOH/g of fat] | ||||
Warm | 7.03 ± 0.53 aB | 11.05 ± 0.15 bB | 11.25 ± 0.76 bB | 11.08 ± 0.05 bB |
Cold | 4.45 ± 0.27 aA | 4.87 ± 0.20 aA | 7.39 ± 0.15 bA | 7.28 ± 0.15 bA |
TBARS [mg MDA/kg of product] | ||||
Warm | 0.88 ± 0.05 bB | 1.06 ± 0.01 cB | 0.76 ± 0.01 aB | 0.87 ± 0.02 bB |
Cold | 0.62 ± 0.10 bA | 0.64 ± 0.03 bA | 0.38 ± 0.01 aA | 0.47 ± 0.01 abA |
Fermentation Technology | Storage Time [Days] | |||
---|---|---|---|---|
0 | 21 | 42 | 63 | |
L* [-] | ||||
Warm | 52.21 ± 0.90 aA | 53.43 ± 1.19 aA | 53.64 ± 0.83 aA | 53.77 ± 0.87 aA |
Cold | 51.27 ± 0.89 aA | 51.89 ± 0.40 aA | 51.81 ± 0.39 aA | 51.34 ± 1.25 aA |
a* [-] | ||||
Warm | 18.72 ± 1.14 aA | 17.33 ± 2.68 aA | 18.23 ± 0.36 aA | 18.64 ± 0.87 aA |
Cold | 16.87 ± 0.22 aA | 17.24 ± 0.59 aA | 17.52 ± 0.38 aA | 17.29 ± 0.66 aA |
b* [-] | ||||
Warm | 5.95 ± 0.60 aA | 6.37 ± 0.20 aB | 6.42 ± 0.10 aB | 6.51 ± 0.24 aB |
Cold | 5.33 ± 0.38 aA | 5.43 ± 0.25 aA | 5.45 ± 0.15 aA | 5.28 ± 0.21 aA |
ΔE0 [-] | ||||
Warm | - | 1.90 ± 0.74 aA | 1.58 ± 0.69 aA | 1.66 ± 0.30 aA |
Cold | - | 0.73 ± 0.77 aA | 0.85 ± 0.57 aA | 0.65 ± 0.87 aA |
Fermentation Technology | Storage Time [Days] | |||
---|---|---|---|---|
0 | 21 | 42 | 63 | |
Hardness [N] | ||||
Warm | 63.38 ± 3.75 aB | 54.23 ± 6.95 aA | 53.16 ± 4.60 aA | 47.43 ± 3.10 aA |
Cold | 53.88 ± 2.76 aA | 58.36 ± 1.36 abA | 53.96 ± 1.52 aA | 62.26 ± 0.60 bB |
Cohesiveness [-] | ||||
Warm | 0.48 ± 0.02 aA | 0.51 ± 0.02 aA | 0.51 ± 0.01 aA | 0.48 ± 0.03 aA |
Cold | 0.54 ± 0.03 aA | 0.52 ± 0.02 aA | 0.53 ± 0.01 aA | 0.52 ± 0.01 aA |
Springiness [-] | ||||
Warm | 0.63 ± 0.05 aA | 0.56 ± 0.04 aA | 0.55 ± 0.03 aA | 0.53 ± 0.03 aA |
Cold | 0.67 ± 0.02 aA | 0.68 ± 0.01 aB | 0.69 ± 0.02 aB | 0.70 ± 0.02 aB |
Chewiness [N] | ||||
Warm | 18.23 ± 1.76 aA | 16.57 ± 2.27 aA | 15.31 ± 1.62 aA | 12.73 ± 1.24 aA |
Cold | 19.57 ± 1.16 aA | 19.93 ± 0.62 aA | 18.50 ± 1.15 aA | 21.52 ± 0.82 aB |
Shear force [N] | ||||
Warm | 50.93 ± 0.87 bB | 46.06 ± 2.80 bA | 36.37 ± 0.61 aA | 35.60 ± 1.37 aA |
Cold | 43.75 ± 2.38 bA | 44.48 ± 4.34 bA | 31.76 ± 3.15 aA | 32.37 ± 2.31 aA |
Penetration force [N] | ||||
Warm | 50.93 ± 0.87 bB | 45.08 ± 1.89 aA | 43.18 ± 3.75 aA | 44.02 ± 1.01 aA |
Cold | 42.00 ± 2.20 aA | 41.05 ± 5.28 aA | 42.77 ± 1.62 aA | 46.05 ± 1.50 aA |
Fermentation Technology | Storage Time [Days] | |||
---|---|---|---|---|
0 | 21 | 42 | 63 | |
Color [points] | ||||
Warm | 8.13 ± 0.08 bA | 5.67 ± 0.54 aA | 7.27 ± 0.08 bA | 8.00 ± 0.00 bB |
Cold | 8.10 ± 0.08 bcA | 7.73 ± 0.36 bB | 8.53 ± 0.08 cB | 6.20 ± 0.00 aA |
Odor [points] | ||||
Warm | 7.00 ± 0.00 bA | 6.47 ± 0.08 aA | 6.80 ± 0.14 bA | 7.40 ± 0.00 cB |
Cold | 6.93 ± 0.29 aA | 6.67 ± 0.67 aA | 8.40 ± 0.16 bB | 6.87 ± 0.16 aA |
Consistency [points] | ||||
Warm | 6.47 ± 0.16 aA | 6.33 ± 0.73 aA | 6.53 ± 0.29 aA | 7.33 ± 0.08 aA |
Cold | 6.67 ± 0.33 aA | 6.67 ± 0.71 aA | 8.00 ± 0.14 aB | 7.80 ± 0.00 aB |
Flavor [points] | ||||
Warm | 6.13 ± 0.29 abA | 6.40 ± 0.42 bA | 5.13 ± 0.08 aA | 7.08 ± 0.20 bA |
Cold | 6.33 ± 0.41 aA | 7.13 ± 0.29 bcB | 7.93 ± 0.22 cB | 7.00 ± 0.00 abA |
Acid off-flavor [points] | ||||
Warm | 5.13 ± 0.33 abA | 5.47 ± 0.45 bA | 5.03 ± 0.22 abA | 6.87 ± 0.16 cA |
Cold | 6.07 ± 0.36 aA | 7.00 ± 0.28 bB | 7.67 ± 0.08 bB | 6.93 ± 0.08 abA |
Overall desirability [points] | ||||
Warm | 6.42 ± 0.27 bA | 6.27 ± 0.36 bA | 5.90 ± 0.34 abA | 5.43 ± 0.20 aA |
Cold | 6.83 ± 0.27 aA | 7.07 ± 0.29 abB | 7.87 ± 0.16 bB | 6.93 ± 0.08 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasiewicz, K.; Szymanska, I.; Slowinski, M.; Górska, A.; Dasiewicz, B. Effect of Fermentation Technology and Storage Time on the Quality of Salami-Type Sausages. Appl. Sci. 2024, 14, 8510. https://doi.org/10.3390/app14188510
Dasiewicz K, Szymanska I, Slowinski M, Górska A, Dasiewicz B. Effect of Fermentation Technology and Storage Time on the Quality of Salami-Type Sausages. Applied Sciences. 2024; 14(18):8510. https://doi.org/10.3390/app14188510
Chicago/Turabian StyleDasiewicz, Krzysztof, Iwona Szymanska, Miroslaw Slowinski, Agata Górska, and Beata Dasiewicz. 2024. "Effect of Fermentation Technology and Storage Time on the Quality of Salami-Type Sausages" Applied Sciences 14, no. 18: 8510. https://doi.org/10.3390/app14188510
APA StyleDasiewicz, K., Szymanska, I., Slowinski, M., Górska, A., & Dasiewicz, B. (2024). Effect of Fermentation Technology and Storage Time on the Quality of Salami-Type Sausages. Applied Sciences, 14(18), 8510. https://doi.org/10.3390/app14188510