Previous Issue
Volume 15, October
 
 

Metabolites, Volume 15, Issue 11 (November 2025) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 4435 KB  
Article
Impact of a Lifestyle Intervention on Gut Microbiome Composition: A Quasi-Controlled Before-and-After Analysis
by Fatma Shehata, Karen M. Dwyer, Michael Axtens, Sean L. McGee and Leni R. Rivera
Metabolites 2025, 15(11), 692; https://doi.org/10.3390/metabo15110692 (registering DOI) - 24 Oct 2025
Abstract
Background: The human gastrointestinal tract harbors a complex microbiota that plays a vital role in metabolic health. Dysbiosis of the gut microbiome has been linked to metabolic syndrome (MetS), a growing health concern characterized by obesity, hypertension, and dyslipidemia, all of which [...] Read more.
Background: The human gastrointestinal tract harbors a complex microbiota that plays a vital role in metabolic health. Dysbiosis of the gut microbiome has been linked to metabolic syndrome (MetS), a growing health concern characterized by obesity, hypertension, and dyslipidemia, all of which are strongly associated with insulin resistance and low-grade inflammation. This study aimed to analyze changes in gut microbiome composition and metabolic parameters in individuals with MetS following a 3-month shared medical appointment program driven by a patient-centered agenda with an emphasis on lifestyle pillars of diet, activity, sleep, and stress management. Methods: Thirty-six individuals with MetS were recruited. Of these, 14 completed a structured metabolic health program with facilitated group appointments, including personalized dietary adjustments, increased physical activity, stress management, and clinical monitoring, while 22 served as an untreated group. Fecal samples were collected for full-length 16S rRNA sequencing. Clinical and biochemical parameters, including body weight, blood pressure, HbA1c, triglycerides, and liver enzymes, were assessed. Microbiome data were analyzed for alpha and beta diversity and differential abundance. Correlations between microbial genera and clinical parameters were evaluated using Spearman correlation. Results: Post-intervention, significant improvements were observed in body weight (p = 0.0061), HbA1c (p = 0.033), triglycerides (p = 0.047), AST (p = 0.016), and systolic blood pressure (p = 0.020). Alpha and beta diversity of the gut microbiome showed no significant changes. However, differential abundance analysis revealed increased levels of butyrate-producing and anti-inflammatory genera including Duncaniella, Megasphaera, Pseudoruminococcus, and Oliverpabstia. Conclusions: A 3-month lifestyle intervention in individuals with MetS was associated with marked improvements in metabolic health and beneficial shifts in gut microbiota composition. These findings suggest that even small lifestyle modifications may be a potential therapeutic target for metabolic syndrome management, highlighting the need for personalized approaches in future research. Full article
(This article belongs to the Special Issue Diet, Gut Microbiota and Metabolic Health)
Show Figures

Figure 1

18 pages, 2322 KB  
Article
Iron Stress Reprograms Enterocyte Metabolism
by Shya E. Navazesh and Peng Ji
Metabolites 2025, 15(11), 691; https://doi.org/10.3390/metabo15110691 (registering DOI) - 24 Oct 2025
Abstract
Objectives: This study utilized IPEC-J2, a neonatal pig jejunum-derived cell line, to assess how iron deficiency (ID) and excess (IE) alter enterocyte metabolism and the transcription of inflammatory markers. Methods: Cells were treated with deferiprone (DFP) or ferric ammonium citrate (FAC) [...] Read more.
Objectives: This study utilized IPEC-J2, a neonatal pig jejunum-derived cell line, to assess how iron deficiency (ID) and excess (IE) alter enterocyte metabolism and the transcription of inflammatory markers. Methods: Cells were treated with deferiprone (DFP) or ferric ammonium citrate (FAC) to induce ID or IE, respectively. The study evaluated: (1) transcriptional changes in iron-regulatory genes over 96 h under ID or IE; (2) the interaction between iron imbalance and lipopolysaccharide (LPS) exposure on mRNA expression of inflammation markers and iron transporters; and (3) cellular metabolic responses to ID, IE, and iron repletion using untargeted metabolomics. Results: ID triggered dynamic transcriptional changes in iron regulatory genes and suppressed cellular proliferation via impaired DNA replication. IE resulted in a persistent reduction in TFRC expression. LPS increased CYBRD1 (p < 0.001) and IL8 (p = 0.004) and tended to elevate TLR4 and TNF expression (p ≤ 0.07), while iron deficiency upregulated IL8 expression (p < 0.001). ID disrupted the TCA cycle, reduced glucuronic acid synthesis, and elevated glycolysis for energy production, whereas IE increased cholesterol biosynthesis and decreased alpha-tocopherol levels. Repletion of iron partially reversed ID-induced metabolic changes. Conclusions: ID impaired enterocyte proliferation and profoundly disrupted cellular metabolism, whereas IE enhanced cholesterol synthesis and depleted alpha-tocopherol levels. Restoration of cellular metabolism following iron repletion was observed, highlighting the resilience of enterocytes. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

13 pages, 640 KB  
Review
Methylglyoxal, a Knot to Be Untied in Brain Glucose Hypometabolism
by Vitor Gayger-Dias, Vanessa-Fernanda Da Silva, Thomas Michel Sobottka, Marina Concli Leite, Adriana Fernanda K. Vizuete and Carlos-Alberto Gonçalves
Metabolites 2025, 15(11), 690; https://doi.org/10.3390/metabo15110690 (registering DOI) - 24 Oct 2025
Abstract
Background: Advanced glycation end products (AGEs) and receptors for AGEs (RAGE) have been extensively implicated in metabolic and neurodegenerative disorders due to their capacity to alter protein structure and function through non-enzymatic glycation. More recently, methylglyoxal (MG), a highly reactive glycolytic byproduct, has [...] Read more.
Background: Advanced glycation end products (AGEs) and receptors for AGEs (RAGE) have been extensively implicated in metabolic and neurodegenerative disorders due to their capacity to alter protein structure and function through non-enzymatic glycation. More recently, methylglyoxal (MG), a highly reactive glycolytic byproduct, has gained attention as a critical mediator of AGE formation and an independent contributor to cellular distress, particularly in the context of diabetes mellitus and Alzheimer’s disease. Objectives: This review synthesizes evidence from experimental and clinical studies addressing MG generation and metabolism in brain tissue, emphasizing the glyoxalase system as the primary detoxification mechanism, the functional contribution of astrocytes, and the downstream consequences of MG accumulation. In addition, we examined the interplay between MG, RAGE signaling, unfolded protein response, and regulatory mechanisms involving the hexosamine biosynthesis pathway and O-GlcNAcylation of key proteins in glucose metabolism and insulin signaling. Results and Conclusions: Brain glucose hypometabolism is a consequence of insulin resistance and results in a metabolic rearrangement that expands the glycolytic pathway and generates more MG, which, in turn, can affect insulin signaling, further compromising the molecular basis of insulin resistance and creating a vicious cycle. Astrocytes are key cells in the generation and detoxification of MG in the brain, making them a therapeutic target. Full article
(This article belongs to the Special Issue Metabolic Profiling in Neurometabolisms)
Show Figures

Graphical abstract

14 pages, 1767 KB  
Article
Maturation-Dependent Changes in Volatile Aroma Profile and β-Glucosidase Activity in Kozan Misket Orange (Citrus sinensis L.)
by Selin Yabacı Karaoğlan
Metabolites 2025, 15(11), 689; https://doi.org/10.3390/metabo15110689 (registering DOI) - 24 Oct 2025
Abstract
Background/Objectives: Kozan Misket orange (Citrus sinensis L.) is a regional Turkish cultivar valued for its unique flavor, yet the mechanisms underlying its aroma development remain unclear. Volatile compounds are key contributors to citrus sensory quality, and β-glucosidase is involved in releasing glycosidically [...] Read more.
Background/Objectives: Kozan Misket orange (Citrus sinensis L.) is a regional Turkish cultivar valued for its unique flavor, yet the mechanisms underlying its aroma development remain unclear. Volatile compounds are key contributors to citrus sensory quality, and β-glucosidase is involved in releasing glycosidically bound aroma precursors. However, no previous study has examined the interaction between enzyme activity and volatile production during maturation in this cultivar. This study aimed to characterize the dynamic changes in volatile composition and β-glucosidase activity across different maturation stages of Kozan Misket orange. Methods: Fruits were harvested at three maturity stages (green, green–yellow, yellow). Physicochemical traits (TSS, TA, TSS/TA), volatile profiles (HS-SPME/GC-MS), and specific β-glucosidase activity were analyzed. Volatile compounds were identified, quantified, and compared across stages. Results: A total of 47 volatile compounds were identified, with monoterpenes dominating at all stages. D-limonene was the most abundant compound, exceeding 86% of total volatiles. Total volatile content increased with maturation, particularly monoterpenes and sesquiterpenes, whereas oxygenated monoterpenes (e.g., linalool, 4-terpineol, α-terpineol) declined at full maturity. Specific β-glucosidase activity decreased markedly from 20.15 to 8.25 U mg−1 protein. This shift suggests that bound precursors contribute more to early-stage aroma release, while later-stage aroma accumulation may rely on metabolic conversions. Conclusions: This study provides the first integrated insight into aroma development in Kozan Misket orange, revealing a dual-phase mechanism linking volatile formation and β-glucosidase activity. These findings clarify cultivar-specific flavor development and offer guidance for harvest optimization and flavor management. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Graphical abstract

12 pages, 224 KB  
Article
Riboflavin Transporter Deficiency as a Cause of Progressive Encephalopathy
by Justyna Paprocka, Julia Karpierz, Michał Hutny, Jagoda Hofman-Hutna and Artur Dobosz
Metabolites 2025, 15(11), 688; https://doi.org/10.3390/metabo15110688 - 24 Oct 2025
Abstract
Background/Objective: Riboflavin transporter deficiency (RTD) is a rare neurodegenerative disease, with under 500 cases genetically confirmed since the early 2000s. Thus far, three separate subtypes of RTD2 are described—type 1, 2 and 3—but, previously, RTD was classified as two separate genetic defects: Brown–Vialetto–Van [...] Read more.
Background/Objective: Riboflavin transporter deficiency (RTD) is a rare neurodegenerative disease, with under 500 cases genetically confirmed since the early 2000s. Thus far, three separate subtypes of RTD2 are described—type 1, 2 and 3—but, previously, RTD was classified as two separate genetic defects: Brown–Vialetto–Van Laere syndrome and Fazio–Londe syndrome, caused by mutations in the SLC52A2 and SLC52A3 genes, respectively. The most prominent symptoms found in patients include encephalopathy, expressed as peripheral and cranial nerve neuropathy, which in turn lead to a series of complications: decreased muscle strength, hypotonia, visual impairment, sensorineural hearing loss, bulbar palsy, sensory ataxia and respiratory insufficiency secondary to diaphragmatic paresis. At the cellular level, riboflavin is modified into active flavin cofactors: FMN, mediating riboflavin phosphorylation through riboflavin kinase, and FAD, involved in FMN adenylation through the flavin dinucleotide 1 synthesis. FMN and FAD are two of approximately 100 proteins collectively described as the ‘flavoproteome’. Most of them are mitochondrial oxidoreductases, catalyzing the electron transport in many metabolic reactions, as well as regulating important cell processes, such as the production of reactive oxygen species, protein conformation and damage repair. FMN and FAD are also responsible for the conversion of B6 and B9 vitamins into their active forms, which allows for healthy cell growth and immune function. Methods: In this article, the authors describe two children, a 6-year-old girl and her 5-year-old sister, both presenting with RTD2 caused by mutations in the SLC52A2 gene (c.916G>C (p.Gly306Arg); c.477C>G (p.Cys159Trp)), in whom the disease progression was successfully inhibited by vitamin B2 supplementation in varying doses. Results: Their clinical image consists of psychomotor developmental delay, ataxia, horizontal nystagmus, hearing loss and a lack of visual fixation. Conclusions: The phenotype and clinical signs presented by the described sisters are further discussed in relation to the previously published reports of RTD2 cases. Full article
(This article belongs to the Special Issue Neurometabolics in a Nutshell)
12 pages, 752 KB  
Article
Metabolomic Signatures of MASLD Identified by the Fatty Liver Index Reveal Gamma-Glutamyl Cycle Disruption and Lipid Remodeling
by Khaled Naja, Najeha Anwardeen and Mohamed A. Elrayess
Metabolites 2025, 15(11), 687; https://doi.org/10.3390/metabo15110687 - 23 Oct 2025
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disorder worldwide and a key driver of cardiometabolic complications. Despite its growing burden, the underlying metabolic perturbations remain incompletely understood. The Fatty Liver Index (FLI) provides a validated non-invasive tool [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disorder worldwide and a key driver of cardiometabolic complications. Despite its growing burden, the underlying metabolic perturbations remain incompletely understood. The Fatty Liver Index (FLI) provides a validated non-invasive tool for stratifying MASLD in large-scale and clinical studies. Methods: This study utilized data from the Qatar Biobank, applying strict exclusion criteria and propensity score matching, to select 110 adults stratified by FLI into the MASLD group (≥60, n = 55) and the control group (<30, n = 55) with balanced age, sex, and BMI. Untargeted serum metabolomics was performed. Differential metabolite profiles were identified using linear regression adjusted for covariates and validated by multivariate modeling. Functional enrichment analyses were conducted to highlight perturbed metabolic pathways. Results: Metabolomic profiling revealed distinct metabolic signatures: the MASLD group was characterized by elevated glutamate and phospholipids, while the control group showed enrichment of gamma-glutamyl amino acids, plasmalogens, and sphingomyelins. Conclusions: This contrasting pattern reflects disruption of the gamma-glutamyl cycle and consistent depletion of antioxidant plasmalogen species, suggesting impaired redox homeostasis and lipid remodeling as hallmarks of MASLD pathogenesis. These findings provide a foundation for future research into targeted metabolic biomarkers and therapeutic strategies. Longitudinal and mechanistic studies are warranted to determine causal relationships and clinical utility. Full article
(This article belongs to the Special Issue Metabolomics and Lipidomics in MASLD and Related Liver Disorders)
Show Figures

Figure 1

14 pages, 548 KB  
Review
New Frontier in Cancer Immunotherapy: Sexual Dimorphism of Immune Response
by Nadeem Bilani, Nicole Charbel, Joe Rizkallah, Sam Sater and Firas Kreidieh
Metabolites 2025, 15(11), 686; https://doi.org/10.3390/metabo15110686 - 23 Oct 2025
Abstract
Sexual dimorphism influences immune responses, cancer progression, and therapeutic outcomes, yet its metabolic underpinnings remain underexplored. Metabolomics enables the comprehensive profiling of biochemical pathways that shape sex-based differences in immune function and immunotherapy efficacy. Meta-analytic data indicate that men achieve a larger overall [...] Read more.
Sexual dimorphism influences immune responses, cancer progression, and therapeutic outcomes, yet its metabolic underpinnings remain underexplored. Metabolomics enables the comprehensive profiling of biochemical pathways that shape sex-based differences in immune function and immunotherapy efficacy. Meta-analytic data indicate that men achieve a larger overall survival benefit from immune checkpoint inhibitors than women (pooled hazard ratio 0.72, 95% CI 0.65–0.79 vs. 0.86, 95% CI 0.79–0.93), while women may experience higher major pathologic response rates in neoadjuvant settings. At the biomarker level, elevated kynurenine-to-tryptophan ratios—reflecting indoleamine 2,3-dioxygenase activity—and distinct lipidomic signatures associate with reduced immunotherapy efficacy and may vary by sex. Sex-specific differences in microbiome-derived metabolites, including short-chain fatty acids, further modulate systemic immunity and treatment response. Ongoing clinical investigations combine hormone modulation with immune checkpoint blockade and increasingly integrate metabolomic profiling to identify predictors of benefit and toxicity. This review will synthesize meta-analytic and mechanistic evidence on sex differences in immunotherapy outcomes, highlight metabolomic biomarkers linked to response, and summarize ongoing clinical trials that incorporate metabolomics to guide sex-aware precision oncology. Understanding sex-specific metabolic pathways can refine patient stratification and optimize immunotherapeutic strategies. Full article
Show Figures

Figure 1

16 pages, 1974 KB  
Article
Altered Carnitine Metabolism in Ischemic and Non-Ischemic Cardiomyopathy: A Comparative Metabolomics Study Using LC–MS/MS
by Yasemin Behram Kandemir, Ünal Güntekin, Veysel Tosun, İsmail Koyuncu and Özgür Yüksekdağ
Metabolites 2025, 15(11), 685; https://doi.org/10.3390/metabo15110685 - 22 Oct 2025
Abstract
Background: Cardiomyopathy is a major cause of heart failure. Ischemic cardiomyopathy (IC) and non-ischemic cardiomyopathy (NIC) have distinct pathophysiological mechanisms. Carnitine plays a critical role in transporting long-chain fatty acids into mitochondria for β-oxidation. Disruptions in carnitine and acylcarnitine homeostasis have been implicated [...] Read more.
Background: Cardiomyopathy is a major cause of heart failure. Ischemic cardiomyopathy (IC) and non-ischemic cardiomyopathy (NIC) have distinct pathophysiological mechanisms. Carnitine plays a critical role in transporting long-chain fatty acids into mitochondria for β-oxidation. Disruptions in carnitine and acylcarnitine homeostasis have been implicated in cardiomyopathy; however, comparative profiling between IC and NIC remains limited. Methods: Serum samples were obtained from 40 IC patients, 40 NIC patients, and 40 age- and sex-matched controls. Free carnitine and 27 acylcarnitine species were quantified using LC–MS/MS. Multivariate analyses (PCA, PLS-DA), univariate statistics (ANOVA with Tukey’s HSD), and ROC curve analyses were performed to identify discriminatory metabolites and assess their diagnostic performance. Results: Compared with controls, IC patients exhibited reduced levels of short- and medium-chain acylcarnitines (C2, C4DC, C6, C8, C10, and C14), whereas NIC patients showed elevations in medium- and long-chain species (C6DC and C16). Heatmaps demonstrated clear group clustering. PCA and PLS-DA revealed partial separation, with C2, C6DC, and C16 emerging as the most influential metabolites (highest VIP scores). ROC analysis indicated modest diagnostic performance, with AUC values ranging from 0.623 to 0.635. Conclusions: IC and NIC are characterized by distinct alterations in serum carnitine profiles, reflecting differential metabolic remodeling. These findings may clarify disease mechanisms and highlight potential metabolic biomarkers or therapeutic targets. Acylcarnitine profiling could support differential diagnosis and personalized management in cardiomyopathy. Full article
Show Figures

Graphical abstract

20 pages, 5998 KB  
Article
Land Use Shapes the Rhizosphere Microbiome and Metabolome of Naturally Growing Barbarea vulgaris
by Emoke Dalma Kovacs and Melinda Haydee Kovacs
Metabolites 2025, 15(11), 684; https://doi.org/10.3390/metabo15110684 - 22 Oct 2025
Viewed by 32
Abstract
Background: Land use change fundamentally alters soil microbial communities and biochemical processes, yet the integrated effects on rhizosphere microbiome–metabolome networks remained poorly understood. Objective: This study investigated land uses as forest, grassland and intermediary edge shape the rhizosphere biochemical networks of naturally grown [...] Read more.
Background: Land use change fundamentally alters soil microbial communities and biochemical processes, yet the integrated effects on rhizosphere microbiome–metabolome networks remained poorly understood. Objective: This study investigated land uses as forest, grassland and intermediary edge shape the rhizosphere biochemical networks of naturally grown Barbarea vulgaris. Methods: Rhizosphere soils of Barbarea vulgaris were analysed for microbial community structure abundance, and metabolomic profile applying phospholipid fatty acid (PLFA) profiling and mass spectrometric untargeted metabolomics (GC–MS/MS and MALDI–TOF/TOF MS). These were coupled with co–inertia analysis to assess microbiome–metabolome interactions. Results: Microbial community analysis revealed significant effects of land use on bacterial community structure (G+/G−, p < 0.001). Untargeted metabolomics identified 248 metabolites, of which 161 were mapped to KEGG pathways. Amino acids and derivatives (21.1%) followed by organic acids (16.8%) were the most representative among identified metabolites. Pathway enrichment analysis revealed coordinated reprogramming of central carbon and nitrogen metabolism across land use gradients, particularly in the amino acid metabolism, TCA cycle, and glycolysis/gluconeogenesis pathways. Microbiome–metabolome coupling analysis revealed distinct correlation patterns between microbial phenotypes and metabolite classes, with forest environments showing the strongest biochemical network integration (RV = 0.91). Edge habitats presented intermediate signatures, supporting their role as transitional zones with unique biochemical properties. Conclusions: The environmental context fundamentally shapes rhizosphere biochemical network organization through coordinated shifts in bacterial community structure and metabolic pathway activity. These habitat-specific metabolic signatures suggest that land use change triggers adaptive biochemical responses that may influence plant performance and ecosystem functioning across environmental gradients. Full article
Show Figures

Graphical abstract

13 pages, 265 KB  
Communication
Investigation of Metabolites in Feces and Plasma Associated with the Number of Piglets Weaned per Sow per Year
by Takamitsu Tsukahara, Hiroto Miura, Takahiro Kawase, Shu Yoshimura, Yoshihiro Mizukami, Yoshihiro Yahara, Kikuto Fukuta and Ryo Inoue
Metabolites 2025, 15(11), 683; https://doi.org/10.3390/metabo15110683 - 22 Oct 2025
Viewed by 77
Abstract
Background: Sow reproductive performance is a critical parameter for the productivity of commercial pig farms. Gut microbiota is associated with performance in sow reproduction. At least, under healthy conditions, microbial metabolites from the gut microbiota are considered major contributors to host physiological [...] Read more.
Background: Sow reproductive performance is a critical parameter for the productivity of commercial pig farms. Gut microbiota is associated with performance in sow reproduction. At least, under healthy conditions, microbial metabolites from the gut microbiota are considered major contributors to host physiological regulation and productivity. However, information on the differences in gut-derived metabolites related to the sow reproductive performance remain scarce. Our aim was to investigate the relationship between the reproductive performance and microbial metabolite levels in sow’s feces and plasma. Methods: We selected four commercial farms: two with high- (group H) and two with low-reproductive performance (group L). Sows had their feces and blood collected. Results: Except for the iso-butyrate concentration, fecal short-chain fatty acid concentrations remained unchanged between groups. Among intestinal putrefactive metabolites, the indole concentration was higher (p < 0.05) in group H. The concentrations of plasma metabolites p-cresyl sulfate, p-cresyl glucuronide and trimethylamine N-oxide (TMAO) were higher (p < 0.05) in group L than in group H, while the opposite was true for the acetate concentration (p < 0.05). Among plasma biochemicals, tumor necrosis factor (TNF)-alpha and potassium concentrations were higher (p < 0.05) in group L. Conclusions: Blood metabolites, especially gut microbiota-derived metabolites, seemed to be associated with the performance related to sow reproduction. Particularly, harmful metabolites such as p-cresyl glucuronide, p-cresyl sulfate and TMAO were of importance, because they are potentially inflammation factors. In fact, TNF-alpha was stimulated in group L. According to our results, we estimated that p-cresyl glucuronide, p-cresyl sulfate, TMAO and TNF-alpha could be useful physiological indicators to understand sow reproductive performance. Full article
15 pages, 5989 KB  
Article
Metabolic Signatures of Four Polygonatum Rhizoma Species Mapped Using Untargeted Metabolomics
by Ning Jia, Jinlan Jiang, Wei Ye and Jiqin Liu
Metabolites 2025, 15(11), 682; https://doi.org/10.3390/metabo15110682 - 22 Oct 2025
Viewed by 156
Abstract
Background/Objectives: Polygonati rhizoma (PR) is a common traditional Chinese medicine that has been used for 2000 years in China, serving as both food and medicine. It is known for various health benefits, including antidiabetic effects, regulation of gut microbiota, and enhancement of immunity. [...] Read more.
Background/Objectives: Polygonati rhizoma (PR) is a common traditional Chinese medicine that has been used for 2000 years in China, serving as both food and medicine. It is known for various health benefits, including antidiabetic effects, regulation of gut microbiota, and enhancement of immunity. The most popular PR varieties are Polygonatum kingianum Coll. et Hemsl. (PK), Polygonatum sibiricum Red. (PS), Polygonatum cyrtonema Hua (PC), and Polygonatum odoratum (Mill.) Druce (PO). We aimed to determine the differences among these four PR species. Methods: Using an untargeted mass spectrometer we conducted a metabolomic analysis. Results: We detected 2360, 2336, 2381, and 2355 unique polysaccharide, steroid, alkaloid, nucleoside, and peptide metabolites, among which 10, 36, 5, and 26 were specific to PK, PS, PC, and PO, respectively. Differentially expressed polysaccharide, steroid, and alkaloid metabolites were identified in the four species. A total of 61, 56, 61, and 57 carbohydrates were identified in the PK, PS, PC, and PO, respectively; 33, 32, 29, and 30 steroids were identified in the PK, PS, PC, and PO, respectively; and 10, 12, 12, and 11 alkaloids were identified in PK, PS, PC, and PO, respectively. Conclusions: Our findings provide novel insights into the overall metabolome of the four PR species, improve understanding of their functions and effectiveness, and provide a theoretical basis for qualitative evaluation and comprehensive PR applications. Full article
(This article belongs to the Special Issue Bioactive Metabolites from Plants)
Show Figures

Figure 1

Previous Issue
Back to TopTop