Molecular Phylogenomics Reveals the Deep Evolutionary History of Carnivory across Land Plants
Abstract
:1. Introduction
2. Monocots: Poales
2.1. Bromeliaceae
2.2. Eriocaulaceae
3. Monocots: Alismatales
Toldfeldiaceae
4. Superasterids: Lamiales
4.1. Plantaginaceae and Linderniaceae
4.2. Byblidaceae and Lentibulariaceae
5. Superasterids: Ericales
Sarraceniaceae and Roridulaceae
6. Superasterids: Caryophyllales
7. Superrosids: Oxalidales
Cephalotaceae
8. Carnivorous Plant Genomes
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albert, V.A.; Williams, S.E.; Chase, M.W. Carnivorous plants: Phylogeny and structural evolution. Science 1992, 257, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Givnish, T.J.; Burkhardt, E.L.; Happel, R.E.; Weintraub, J.D. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am. Nat. 1984, 124, 479–497. [Google Scholar] [CrossRef]
- Givnish, T.J.; Sytsma, K.; Smith, J.; Hahn, W.; Benzing, D.; Burkhardt, E. Molecular evolution and adaptive radiation n Brocchinia (Bromeliaceae: Pitcairnioideae) atop tepuis of the Guayana Shield. In Molecular Evolution and Adaptive Radiation; Givnish, T.J., Sytsma, K.J., Eds.; Cambridge University Press: New York, NY, USA, 1997; pp. 259–311. [Google Scholar]
- Givnish, T.J. Ecology and evolution of carnivorous plants. In Plant-Animal Interactions; Abrahamson, W.G., Ed.; McGraw-Hill: New York, NY, USA, 1989; pp. 243–290. [Google Scholar]
- Nishi, A.H.; Vasconcellos-Neto, J.; Romero, G.Q. The role of multiple partners in a digestive mutualism with a protocarnivorous plant. Ann. Bot. 2013, 111, 143–150. [Google Scholar] [CrossRef]
- Midgley, J.J.; Stock, W.D. Natural abundance of δ15N confirms insectivorous habit of Roridula gorgonias, despite it having no proteolytic enzymes. Ann. Bot. 1998, 82, 387–388. [Google Scholar] [CrossRef]
- Scatigna, A.V.; Gonçalves da Silva, N.; Valka Alves, R.J.; Souza, V.C.; Simões, A.O. Two new species of the carnivorous genus Philcoxia (Plantaginaceae) from the Brazilian Cerrado. Syst. Bot. 2017, 42, 351–357. [Google Scholar] [CrossRef]
- Scatigna, A.V.; Souza, V.C.; Pereira, C.G.; Sartori, M.A.; Simoes, A.O. Philcoxia rhizomatosa (Gratioleae, Plantaginaceae): A new carnivorous species from Minas Gerais, Brazil. Phytotaxa 2015, 226, 275–280. [Google Scholar] [CrossRef]
- Fleischmann, A.; Schlauer, J.; Smith, S.A.; Givnish, T.J.; Ellison, A.; Adamec, L. Evolution of carnivory in angiosperms. In Carnivorous Plants: Physiology, Ecology, and Evolution; Ellison, A., Adamec, L., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 22–41. [Google Scholar]
- Givnish, T.J. New evidence on the origin of carnivorous plants. Proc. Natl. Acad. Sci. USA 2015, 112, 10–11. [Google Scholar] [CrossRef]
- Ross, T.G.; Barrett, C.F.; Soto Gomez, M.; Lam, V.K.; Henriquez, C.L.; Les, D.H.; Davis, J.I.; Cuenca, A.; Petersen, G.; Seberg, O.; et al. Plastid phylogenomics and molecular evolution of Alismatales. Cladistics 2016, 32, 160–178. [Google Scholar] [CrossRef]
- Lin, Q.; Ané, C.; Givnish, T.J.; Graham, S.W. A new carnivorous plant lineage (Triantha) with a unique sticky-inflorescence trap. Proc. Natl. Acad. Sci. USA 2021, 118, e2022724118. [Google Scholar] [CrossRef]
- Fischer, E.; Wursten, B.; Darbyshire, I. A new and possibly carnivorous species of Crepidorhopalon (Linderniaceae) from Mozambique. Phytotaxa 2023, 603, 191–198. [Google Scholar] [CrossRef]
- APG. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- Juniper, B.E.; Robins, R.J.; Joel, D.M. The Carnivorous Plants; Academic Press: Cambridge, MA, USA, 1989. [Google Scholar]
- Bauer, U.; Jetter, R.; Poppinga, S. Non-motile traps. In Carnivorous Plants: Physiology, Ecology, and Evolution; Ellison, A., Adamec, L., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 194–205. [Google Scholar]
- Poppinga, S.; Bauer, U.; Speck, T.; Volkov, A.G. Motile traps. In Carnivorous Plants: Physiology, Ecology, and Evolution; Ellison, A., Adamec, L., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 180–192. [Google Scholar]
- Jobson, R.W.; Playford, J.; Cameron, K.M.; Albert, V.A. Molecular phylogenetics of Lentibulariaceae inferred from plastid rps16 intron and trnL-F DNA sequences: Implications for character evolution and biogeography. Syst. Bot. 2003, 28, 157–171. [Google Scholar]
- Müller, K.; Borsch, T.; Legendre, L.; Porembski, S.; Theisen, I.; Barthlott, W. Evolution of carnivory in Lentibulariaceae and the Lamiales. Plant Biol. 2004, 6, 477–490. [Google Scholar] [CrossRef]
- Cameron, K.M.; Wurdack, K.J.; Jobson, R.W. Molecular evidence for the common origin of snap-traps among carnivorous plants. Am. J. Bot. 2002, 89, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, A.; Cross, A.T.; Gibson, R.; Gonella, P.M.; Dixon, K.W. Systematics and evolution of Droseraceae. In Carnivorous Plants: Physiology, Ecology, and Evolution; Ellison, A., Adamec, L., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 45–57. [Google Scholar]
- Ellison, A.; Adamec, L. Carnivorous Plants: Physiology, Ecology, and Evolution; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Baker, W.J.; Dodsworth, S.; Forest, F.; Graham, S.W.; Johnson, M.G.; McDonnell, A.; Pokorny, L.; Tate, J.A.; Wicke, S.; Wickett, N.J. Exploring Angiosperms353: An open, community toolkit for collaborative phylogenomic research on flowering plants. Am. J. Bot. 2021, 108, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Baker, W.J.; Bailey, P.; Barber, V.; Barker, A.; Bellot, S.; Bishop, D.; Botigué, L.R.; Brewer, G.; Carruthers, T.; Clarkson, J.J.; et al. A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Syst. Biol. 2022, 71, 301–319. [Google Scholar] [CrossRef] [PubMed]
- Zuntini, A.R.; Carruthers, T.; Maurin, O.; Bailey, P.C.; Leempoel, K.; Brewer, G.E.; Epitawalage, N.; Françoso, E.; Gallego-Paramo, B.; McGinnie, C.; et al. Phylogenomics and the rise of the angiosperms. Nature Submitted.
- Gonsiska, P.A. Aspects of the Evolutionary Ecology of the Genus Catopsis (Bromeliaceae). Ph.D. Thesis, University of Wisconsin, Milwaukee, WI, USA, 2016. [Google Scholar]
- Cross, A.; Paniw, M.; Scatigna, A.; Kalfas, N.; Anderson, B.; Givnish, T.; Fleischmann, A. Systematics and evolution of small genera of carnivorous plants. In Carnivorous Plants: Physiology, Ecology, and Evolution; Oxford University Press: Oxford, UK, 2018; pp. 120–134. [Google Scholar]
- Givnish, T.J.; Givnish, T.J.; Barfuss, M.H.; Van Ee, B.; Riina, R.; Schulte, K.; Horres, R.; Gonsiska, P.A.; Jabaily, R.S.; Crayn, D.M.; et al. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight-locus plastid phylogeny. Am. J. Bot. 2011, 98, 872–895. [Google Scholar] [CrossRef]
- Soltis, D.E.; Smith, S.A.; Cellinese, N.; Wurdack, K.J.; Tank, D.C.; Brockington, S.F.; Refulio-Rodriguez, N.F.; Walker, J.B.; Moore, M.J.; Carlsward, B.S.; et al. Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 2011, 98, 704–730. [Google Scholar] [CrossRef]
- Magallón, S.; Gómez-Acevedo, S.; Sánchez-Reyes, L.L.; Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 2015, 207, 437–453. [Google Scholar] [CrossRef]
- Trovó, M.; De Andrade, M.J.G.; Sano, P.T.; Ribeiro, P.L.; Van den Berg, C. Molecular phylogenetics and biogeography of Neotropical Paepalanthoideae with emphasis on Brazilian Paepalanthus (Eriocaulaceae). Bot. J. Linn. Soc. 2013, 171, 225–243. [Google Scholar] [CrossRef]
- Andrino, C.O.; Costa, F.N.; Simon, M.F.; Missagia, R.V.; Sano, P.T. Eriocaulaceae: A new classification system based on morphological evolution and molecular evidence. Taxon 2023, 72, 515–549. [Google Scholar] [CrossRef]
- Taylor, P.; Souza, V.C.; Giulietti, A.M.; Harley, R.M. Philcoxia: A new genus of Scrophulariaceae with three new species from eastern Brazil. Kew Bull. 2000, 55, 155–163. [Google Scholar] [CrossRef]
- Pereira, C.G.; Almenara, D.P.; Winter, C.E.; Fritsch, P.W.; Lambers, H.; Oliveira, R.S. Underground leaves of Philcoxia trap and digest nematodes. Proc. Natl. Acad. Sci. USA 2012, 109, 1154–1158. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, P.W.; Almeda, F.; Martins, A.B.; Cruz, B.C.; Estes, D. Rediscovery and phylogenetic placement of Philcoxia minensis (Plantaginaceae), with a test of carnivory. Proc. Calif. Acad. Sci. 2007, 58, 447. [Google Scholar]
- Scatigna, A.V.; Fritsch, P.W.; Souza, V.C.; Simões, A.O. Phylogenetic relationships and morphological evolution in the carnivorous genus Philcoxia (Plantaginaceae, Gratioleae). Syst. Bot. 2018, 43, 910–919. [Google Scholar] [CrossRef]
- Scatigna, A.V.; Souza, V.C.; Sosa, M.D.L.M.; Colletta, G.D.; Machado, R.M.; Simões, A.O. Phylogenetics of Gratioleae (Plantaginaceae): Paraphyly of Stemodia and its implications for generic circumscriptions, with insights from floral evolution. Bot. J. Linn. Soc. 2022, 200, 194–217. [Google Scholar] [CrossRef]
- Bremer, B.; Bremer, K.; Heidari, N.; Erixon, P.; Olmstead, R.G.; Anderberg, A.A.; Källersjö, M.; Barkhordarian, E. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Mol. Phylogenet. Evol. 2002, 24, 274–301. [Google Scholar] [CrossRef]
- Müller, K.; Borsch, T.; Legendre, L.; Porembski, S.; Barthlott, W. Recent progress in understanding the evolution of carnivorous Lentibulariaceae (Lamiales). Plant Biol. 2006, 8, 748–757. [Google Scholar] [CrossRef]
- Li, H.-T.; Luo, Y.; Gan, L.; Ma, P.F.; Gao, L.M.; Yang, J.B.; Cai, J.; Gitzendanner, M.A.; Fritsch, P.W.; Zhang, T.; et al. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 2021, 19, 232. [Google Scholar] [CrossRef]
- Mabberley, D. Mabberley’s Plant-Book: A Portable Dictionary of Plants, Their Classification and Uses, 3rd ed.; [Second Reprint with Corrections 2014]; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Fleischmann, A.; Roccia, A. Systematics and evolution of Lentibulariaceae: I. Pinguicula. In Carnivorous Plants: Physiology, Ecology, and Evolution; Ellison, A., Adamec, L., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 70–80. [Google Scholar]
- Fleischmann, A. Systematics and evolution of Lentibulariaceae: II. Genlisea. In Carnivorous Plants: Physiology, Ecology and Evolution; Oxford University Press: Oxford, UK, 2018; pp. 81–88. [Google Scholar]
- Jobson, R.W.; Baleeiro, P.C.; Guisande, C. Systematics and evolution of Lentibulariaceae: III. Utricularia. In Carnivorous Plants: Physiology, Ecology, and Evolution; Oxford University Press: Oxford, UK, 2018; pp. 89–104. [Google Scholar]
- Naczi, R.F. Systematics and evolution of Sarraceniaceae. In Carnivorous Plants: Physiology, Ecology, and Evolution; Oxford University Press: Oxford, UK, 2018; Volume 9, pp. 105–119. [Google Scholar]
- Thanikaimoni, G.; Vasanthy, G. Sarraceniaceae: Palynology and systematics. Pollen Spores 1974, 14, 143–155. [Google Scholar]
- Takhtajan, A.L. Outline of the classification of flowering plants (Magnoliophyta). Bot. Rev. 1980, 46, 225–359. [Google Scholar] [CrossRef]
- Cronquist, A. An Integrated System of Classification of Flowering Plants; Columbia University Press: New York, NY, USA, 1981. [Google Scholar]
- Dahlgren, R. A revised system of classification of the angiosperms. Bot. J. Linn. Soc. 1980, 80, 91–124. [Google Scholar] [CrossRef]
- Thorne, R.F. Classification and geography of the flowering plants. Bot. Rev. 1992, 58, 225–327. [Google Scholar] [CrossRef]
- Bayer, R.J.; Hufford, L.; Soltis, D.E. Phylogenetic relationships in Sarraceniaceae based on rbcL and ITS sequences. Syst. Bot. 1996, 21, 121–134. [Google Scholar] [CrossRef]
- Albach, D.C.; Soltis, P.S.; Soltis, D.E.; Olmstead, R.G. Phylogenetic analysis of asterids based on sequences of four genes. Ann. Mo. Bot. Gard. 2001, 88, 163–212. [Google Scholar] [CrossRef]
- Ellison, A.M.; Butler, E.D.; Hicks, E.J.; Naczi, R.F.; Calie, P.J.; Bell, C.D.; Davis, C.C. Phylogeny and biogeography of the carnivorous plant family Sarraceniaceae. PLoS ONE 2012, 7, e39291. [Google Scholar] [CrossRef]
- Loefstrand, S.D.; Schoenenberger, J. Molecular phylogenetics and floral evolution in the sarracenioid clade (Actinidiaceae, Roridulaceae and Sarraceniaceae) of Ericales. Taxon 2015, 64, 1209–1224. [Google Scholar] [CrossRef]
- Plachno, B.; Muravnik, L.E. Functional anatomy of carnivorous traps. In Carnivorous Plants: Physiology, Ecology, and Evolution; Ellison, A., Adamec, L., Eds.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Meimberg, H.; Wistuba, A.; Dittrich, P.; Heubl, G. Molecular phylogeny of Nepenthaceae based on cladistic analysis of plastid trnK intron sequence data. Plant Biol. 2001, 3, 164–175. [Google Scholar] [CrossRef]
- Nauheimer, L.; Cui, L.; Clarke, C.; Crayn, D.M.; Bourke, G.; Nargar, K. Genome skimming provides well resolved plastid and nuclear phylogenies, showing patterns of deep reticulate evolution in the tropical carnivorous plant genus Nepenthes (Caryophyllales). Aust. Syst. Bot. 2019, 32, 243–254. [Google Scholar] [CrossRef]
- Clarke, C.; Schlauer, J.; Moran, J.A.; Robinson, A. Systematics and evolution of Nepenthes. In Carnivorous Plants: Physiology, Ecology, and Evolution; Ellison, A., Adamec, L., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 58–69. [Google Scholar]
- Sun, M.; Naeem, R.; Su, J.X.; Cao, Z.Y.; Burleigh, J.G.; Soltis, P.S.; Soltis, D.E.; Chen, Z.D. Phylogeny of the Rosidae: A dense taxon sampling analysis. J. Syst. Evol. 2016, 54, 363–391. [Google Scholar] [CrossRef]
- Heibl, C.; Renner, S.S. Distribution models and a dated phylogeny for Chilean Oxalis species reveal occupation of new habitats by different lineages, not rapid adaptive radiation. Syst. Biol. 2012, 61, 823–834. [Google Scholar] [CrossRef]
- Saul, F.; Scharmann, M.; Wakatake, T.; Rajaraman, S.; Marques, A.; Freund, M.; Bringmann, G.; Channon, L.; Becker, D.; Carroll, E.; et al. Subgenome dominance shapes novel gene evolution in the decaploid pitcher plant Nepenthes gracilis. bioRxiv 2023. [Google Scholar] [CrossRef]
- Lan, T.; Renner, T.; Ibarra-Laclette, E.; Farr, K.M.; Chang, T.H.; Cervantes-Pérez, S.A.; Zheng, C.; Sankoff, D.; Tang, H.; Purbojati, R.W.; et al. Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proc. Natl. Acad. Sci. USA 2017, 114, E4435–E4441. [Google Scholar] [CrossRef] [PubMed]
- Leushkin, E.V.; Sutormin, R.A.; Nabieva, E.R.; Penin, A.A.; Kondrashov, A.S.; Logacheva, M.D. The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genom. 2013, 14, 476. [Google Scholar] [CrossRef]
- Vu, G.T.; Schmutzer, T.; Bull, F.; Cao, H.X.; Fuchs, J.; Tran, T.D.; Jovtchev, G.; Pistrick, K.; Stein, N.; Pecinka, A.; et al. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome 2015, 8, plantgenome2015-04. [Google Scholar] [CrossRef]
- Silva, S.R.; Moraes, A.P.; Penha, H.A.; Julião, M.H.; Domingues, D.S.; Michael, T.P.; Miranda, V.F.; Varani, A.M. The terrestrial carnivorous plant Utricularia reniformis sheds light on environmental and life-form genome plasticity. Int. J. Mol. Sci. 2019, 21, 3. [Google Scholar] [CrossRef]
- Hartmann, S.; Preick, M.; Abelt, S.; Scheffel, A.; Hofreiter, M. Annotated genome sequences of the carnivorous plant Roridula gorgonias and a non-carnivorous relative, Clethra arborea. BMC Res. Notes 2020, 13, 426. [Google Scholar] [CrossRef]
- Gao, Y.; Liao, H.B.; Liu, T.H.; Wu, J.M.; Wang, Z.F.; Cao, H.L. Draft genome and transcriptome of Nepenthes mirabilis, a carnivorous plant in China. BMC Genom. Data 2023, 24, 21. [Google Scholar] [CrossRef]
- Palfalvi, G.; Hackl, T.; Terhoeven, N.; Shibata, T.F.; Nishiyama, T.; Ankenbrand, M.; Becker, D.; Förster, F.; Freund, M.; Iosip, A.; et al. Genomes of the Venus flytrap and close relatives unveil the roots of plant carnivory. Curr. Biol. 2020, 30, 2312–2320.e5. [Google Scholar] [CrossRef]
- Butts, C.T.; Bierma, J.C.; Martin, R.W. Novel proteases from the genome of the carnivorous plant Drosera capensis: Structural prediction and comparative analysis. Proteins Struct. Funct. Bioinform. 2016, 84, 1517–1533. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Fang, X.; Alvarez-Ponce, D.; Cai, H.; Carretero-Paulet, L.; Chen, C.; Chang, T.H.; Farr, K.M.; Fujita, T.; Hiwatashi, Y.; et al. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat. Ecol. Evol. 2017, 1, 0059. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, A.; Michael, T.P.; Rivadavia, F.; Sousa, A.; Wang, W.; Temsch, E.M.; Greilhuber, J.; Müller, K.F.; Heubl, G. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann. Bot. 2014, 114, 1651–1663. [Google Scholar] [CrossRef]
- Veleba, A.; Bureš, P.; Adamec, L.; Šmarda, P.; Lipnerová, I.; Horová, L. Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae. New Phytol. 2014, 203, 22–28. [Google Scholar] [CrossRef]
- Greilhuber, J.; Borsch, T.; Müller, K.; Worberg, A.; Porembski, S.; Barthlott, W. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol. 2006, 8, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Laclette, E.; Lyons, E.; Hernández-Guzmán, G.; Pérez-Torres, C.A.; Carretero-Paulet, L.; Chang, T.H.; Lan, T.; Welch, A.J.; Juárez, M.J.A.; Simpson, J.; et al. Architecture and evolution of a minute plant genome. Nature 2013, 498, 94–98. [Google Scholar] [CrossRef]
- Renner, T.; Lan, T.; Farr, K.M.; Ibarra-Laclette, E.; Herrera-Estrella, L.; Schuster, S.C.; Hasebe, M.; Fukushima, K.; Albert, V.A. Carnivorous plant genomes. In Carnivorous Plants: Physiology, Ecology, and Evolution; Oxford University Press: Oxford, UK, 2018; pp. 135–154. [Google Scholar]
- Veleba, A.; Zedek, F.; Horová, L.; Veselý, P.; Srba, M.; Šmarda, P.; Bureš, P. Is the evolution of carnivory connected with genome size reduction? Am. J. Bot. 2020, 107, 1253–1259. [Google Scholar] [CrossRef]
- Hanson, L.; McMahon, K.A.; Johnson, M.A.; Bennett, M.D. First nuclear DNA C-values for 25 angiosperm families. Ann. Bot. 2001, 87, 251–258. [Google Scholar] [CrossRef]
- Albert, V.A.; Jobson, R.W.; Michael, T.P.; Taylor, D.J. The carnivorous bladderwort (Utricularia, Lentibulariaceae): A system inflates. J. Exp. Bot. 2010, 61, 5–9. [Google Scholar] [CrossRef]
- Van de Peer, Y.; Ashman, T.L.; Soltis, P.S.; Soltis, D.E. Polyploidy: An evolutionary and ecological force in stressful times. Plant Cell 2021, 33, 11–26. [Google Scholar] [CrossRef]
- Hoshi, Y.; Azumatani, M.; Suyama, C.; Adamec, L. Determination of ploidy level and nuclear DNA content in the Droseraceae by flow cytometry. Cytologia 2017, 82, 321–327. [Google Scholar] [CrossRef]
- Michael, T.P. Plant genome size variation: Bloating and purging DNA. Brief. Funct. Genom. 2014, 13, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Wicke, S.; Schäferhoff, B.; Depamphilis, C.W.; Müller, K.F. Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae. Mol. Biol. Evol. 2014, 31, 529–545. [Google Scholar] [CrossRef] [PubMed]
- Jobson, R.W.; Albert, V.A. Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics 2002, 18, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Laclette, E.; Albert, V.A.; Pérez-Torres, C.A.; Zamudio-Hernández, F.; Ortega-Estrada, M.D.J.; Herrera-Estrella, A.; Herrera-Estrella, L. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome. BMC Plant Biol. 2011, 11, 101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleck, S.J.; Jobson, R.W. Molecular Phylogenomics Reveals the Deep Evolutionary History of Carnivory across Land Plants. Plants 2023, 12, 3356. https://doi.org/10.3390/plants12193356
Fleck SJ, Jobson RW. Molecular Phylogenomics Reveals the Deep Evolutionary History of Carnivory across Land Plants. Plants. 2023; 12(19):3356. https://doi.org/10.3390/plants12193356
Chicago/Turabian StyleFleck, Steven J., and Richard W. Jobson. 2023. "Molecular Phylogenomics Reveals the Deep Evolutionary History of Carnivory across Land Plants" Plants 12, no. 19: 3356. https://doi.org/10.3390/plants12193356
APA StyleFleck, S. J., & Jobson, R. W. (2023). Molecular Phylogenomics Reveals the Deep Evolutionary History of Carnivory across Land Plants. Plants, 12(19), 3356. https://doi.org/10.3390/plants12193356