Eugenia calycina and Eugenia stigmatosa as Promising Sources of Antioxidant Phenolic Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition of Eugenia Fruits
2.2. Sugar and Oligosaccharide Content in Eugenia Fruits
2.3. Phytochemical Content and Antioxidant Activity in Eugenia Fruits
2.4. Phenolic Compound Profile and Content in Eugenia Fruits
3. Materials and Methods
3.1. Fruit Collection and Botanical Identification
3.2. Ultrasound-Assisted Extraction
3.3. Proximate Composition
3.4. Chromatographic Analysis of Sugars and Oligosaccharides
3.5. Determination of Total Phenolic Content
3.6. Determination of Total Flavonoid Content
3.7. Total Monomeric Anthocyanins
3.8. Condensed Tannin Content
3.9. Antioxidant Activity Assays
3.9.1. Ferric Reducing Antioxidant Power (FRAP)
3.9.2. Trolox Equivalent Antioxidant Capacity (TEAC) Assay
3.9.3. Oxygen Radical Absorbance Capacity (ORACFL) Assay
3.9.4. Chromatographic Analysis of Phenolic Compounds
3.9.5. Chromatographic Analysis of Anthocyanins
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brasil. Ministério Do Meio Ambiente Flora Do Brasil. Available online: http://dspace.jbrj.gov.br (accessed on 31 May 2024).
- REFLORA. Flora E Funga Do Brasil. Available online: https://floradobrasil.jbrj.gov.br/consulta/ficha.html?idDadosListaBrasil=10541 (accessed on 18 July 2024).
- Miller, V.; Mente, A.; Dehghan, M.; Rangarajan, S.; Zhang, X.; Swaminathan, S.; Dagenais, G.; Gupta, R.; Mohan, V.; Lear, S.; et al. Fruit, Vegetable, and Legume Intake, and Cardiovascular Disease and Deaths in 18 Countries (PURE): A Prospective Cohort Study. Lancet 2017, 390, 2037–2049. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, F.F.; Neri-Numa, I.A.; de Paulo Farias, D.; da Cunha, G.R.M.C.; Pastore, G.M. Wild Brazilian Species of Eugenia Genera (Myrtaceae) as an Innovation Hotspot for Food and Pharmacological Purposes. Food Res. Int. 2019, 121, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Luna-Vital, D.; Gonzalez de Mejia, E. Anthocyanins from Colored Maize Ameliorated the Inflammatory Paracrine Interplay between Macrophages and Adipocytes through Regulation of NF-ΚB and JNK-Dependent MAPK Pathways. J. Funct. Foods 2019, 54, 175–186. [Google Scholar] [CrossRef]
- Vendrame, S.; Klimis-Zacas, D. Anti-Inflammatory Effect of Anthocyanins via Modulation of Nuclear Factor-ΚB and Mitogen-Activated Protein Kinase Signaling Cascades. Nutr. Rev. 2015, 73, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Santos-Buelga, C.; González-Paramás, A.M.; Oludemi, T.; Ayuda-Durán, B.; González-Manzano, S. Plant Phenolics as Functional Food Ingredients. Adv. Food Nutr. Res. 2019, 90, 183–257. [Google Scholar] [CrossRef] [PubMed]
- Fallah, A.A.; Sarmast, E.; Jafari, T. Effect of Dietary Anthocyanins on Biomarkers of Oxidative Stress and Antioxidative Capacity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Funct. Foods 2020, 68, 103912. [Google Scholar] [CrossRef]
- Poulsen, N.B.; Lambert, M.N.T.; Jeppesen, P.B. The Effect of Plant Derived Bioactive Compounds on Inflammation: A Systematic Review and Meta-Analysis. Mol. Nutr. Food Res. 2020, 64, 202000473. [Google Scholar] [CrossRef]
- Baseggio, A.M.; Kido, L.A.; Viganó, J.; Carneiro, M.J.; Lamas, C.d.A.; Martínez, J.; Sawaya, A.C.H.F.; Cagnon, V.H.A.; Maróstica Júnior, M.R. Systemic Antioxidant and Anti-Inflammatory Effects of Yellow Passion Fruit Bagasse Extract during Prostate Cancer Progression. J. Food Biochem. 2022, 46, e13885. [Google Scholar] [CrossRef] [PubMed]
- Romero-Díez, R.; Matos, M.; Rodrigues, L.; Bronze, M.R.; Rodríguez-Rojo, S.; Cocero, M.J.; Matias, A.A. Microwave and Ultrasound Pre-Treatments to Enhance Anthocyanins Extraction from Different Wine Lees. Food Chem. 2019, 272, 258–266. [Google Scholar] [CrossRef]
- Arruda, H.S.; Silva, E.K.; Pereira, G.A.; Angolini, C.F.F.; Eberlin, M.N.; Meireles, M.A.A.; Pastore, G.M. Effects of High-Intensity Ultrasound Process Parameters on the Phenolic Compounds Recovery from Araticum Peel. Ultrason. Sonochem. 2019, 50, 82–95. [Google Scholar] [CrossRef]
- UN General Assembly Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 15 December 2023).
- Mudgil, D.; Barak, S. Classification, Technological Properties, and Sustainable Sources. In Dietary Fiber: Properties, Recovery, and Applications; Academic Press: Cambridge, MA, USA, 2019; pp. 27–58. [Google Scholar] [CrossRef]
- World Health Organization. Carbohydrate Intake for Adults and Children: WHO Guideline; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Food and Drug Administration (FDA). Labeling & Nutrition—Guidance for Industry: A Food Labeling Guide (14. Appendix F: Calculate the Percent Daily Value for the Appropriate Nutrients). Center for Food Safety and Applied Nutrition. Available online: www.fda.gov/FoodLabelingGuide (accessed on 23 July 2024).
- Loubet Filho, P.S.; Baseggio, A.M.; Vuolo, M.M.; Reguengo, L.M.; Telles Biasoto, A.C.; Correa, L.C.; Junior, S.B.; Alves Cagnon, V.H.; Betim Cazarin, C.B.; Maróstica Júnior, M.R. Gut Microbiota Modulation by Jabuticaba Peel and Its Effect on Glucose Metabolism via Inflammatory Signaling. Curr. Res. Food Sci. 2022, 5, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Bagetti, M.; Facco, E.M.P.; Piccolo, J.; Hirsch, G.E.; Rodriguez-Amaya, D.; Kobori, C.N.; Vizzotto, M.; Emanuelli, T. Physicochemical Characterization and Antioxidant Capacity of Pitanga Fruits (Eugenia uniflora L.). Food Sci. Technol. 2011, 31, 147–154. [Google Scholar] [CrossRef]
- Baliga, M.S.; Bhat, H.P.; Baliga, B.R.V.; Wilson, R.; Palatty, P.L. Phytochemistry, Traditional Uses and Pharmacology of Eugenia jambolana Lam. (Black Plum): A Review. Food Res. Int. 2011, 44, 1776–1789. [Google Scholar] [CrossRef]
- Do Nascimento, V.T.; De Moura, N.P.; Da Silva Vasconcelos, M.A.; Maciel, M.I.S.; De Albuquerque, U.P. Chemical Characterization of Native Wild Plants of Dry Seasonal Forests of the Semi-Arid Region of Northeastern Brazil. Food Res. Int. 2011, 44, 2112–2119. [Google Scholar] [CrossRef]
- Muir, J.G.; Rose, R.; Rosella, O.; Liels, K.; Barrett, J.S.; Shepherd, S.J.; Gibson, P.R. Measurement of Short-Chain Carbohydrates in Common Australian Vegetables and Fruits by High-Performance Liquid Chromatography (HPLC). J. Agric. Food Chem. 2009, 57, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, M.R. Normal Roles for Dietary Fructose in Carbohydrate Metabolism. Nutrients 2014, 6, 3117–3129. [Google Scholar] [CrossRef] [PubMed]
- Biesiekierski, J.R.; Rosella, O.; Rose, R.; Liels, K.; Barrett, J.S.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. Quantification of Fructans, Galacto-Oligosacharides and Other Short-Chain Carbohydrates in Processed Grains and Cereals. J. Hum. Nutr. Diet. 2011, 24, 154–176. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Li, S.; Han, X.; Li, C.; Ni, Y.; Hao, J. Physico-Chemical Properties and Free Amino Acids Profiles of Six Wolfberry Cultivars in Zhongning. J. Food Compos. Anal. 2020, 88, 103460. [Google Scholar] [CrossRef]
- Nehring, P.; Siluana, K.T.S.; Schulz, M.; Della Betta, F.; Gonzaga, L.V.; Vitali, L.; da Silva, M.; Micke, G.A.; Costa, A.C.O.; Fett, R. Grumixama (Eugenia brasiliensis Lamarck) Functional Phytochemicals: Effect of Environmental Conditions and Ripening Process. Food Res. Int. 2022, 157, 111460. [Google Scholar] [CrossRef]
- Vidović, B.B.; Marčetić, M.D.; Djuriš, J.; Milinčić, D.D.; Kostić, A.; Pešić, M.B. Goji Berries: Valuable Sources of Nutrients and Bioactive Compounds. Sustain. Food Sci. A Compr. Approach 2023, 1–4, V3–247. [Google Scholar] [CrossRef]
- Vona, R.; Pallotta, L.; Cappelletti, M.; Severi, C.; Matarrese, P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants 2021, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.S.; Mar, J.M.; da Silva, L.S.; Acho, L.D.R.; Silva, B.J.P.; Lima, E.S.; Campelo, P.H.; Sanches, E.A.; Bezerra, J.A.; Chaves, F.C.M.; et al. Pedra-Ume Caá Fruit: An Amazon Cherry Rich in Phenolic Compounds with Antiglycant and Antioxidant Properties. Food Res. Int. 2019, 123, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Braga, E.C.d.O.; Pacheco, S.; de Araujo Santiago, M.C.P.; de Oliveira Godoy, R.L.; de Jesus, M.S.C.; de Carvalho Martins, V.; da Costa Souza, M.; Porte, A.; Borguini, R.G. Bioactive Compounds of Eugenia punicifolia Fruits: A Rich Source of Lycopene. Braz. J. Food Technol. 2023, 26, e2022130. [Google Scholar] [CrossRef]
- Araujo, N.M.P.; Silva, E.K.; Arruda, H.S.; Rodrigues de Morais, D.; Angela, A.; Meireles, M.; Pereira, G.A.; Pastore, G.M. Recovering Phenolic Compounds from Eugenia calycina Cambess Employing High-Intensity Ultrasound Treatments: A Comparison among Its Leaves, Fruit Pulp, and Seed as Promising Sources of Bioactive Compounds. Sep. Purif. Technol. 2021, 272, 118920. [Google Scholar] [CrossRef]
- Araujo, N.M.P.; Arruda, H.S.; dos Santos, F.N.; de Morais, D.R.; Pereira, G.A.; Pastore, G.M. LC-MS/MS Screening and Identification of Bioactive Compounds in Leaves, Pulp and Seed from Eugenia calycina Cambess. Food Res. Int. 2020, 137, 109556. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Guo, S.; Zhang, F.; Yan, H.; Qian, D.-W.; Shang, E.-X.; Wang, H.-Q.; Duan, J.-A. Nutritional Components Characterization of Goji Berries from Different Regions in China. J. Pharm. Biomed. Anal. 2021, 195, 113859. [Google Scholar] [CrossRef] [PubMed]
- Popoola, O.O. Phenolic Compounds Composition and in Vitro Antioxidant Activity of Nigerian Amaranthus Viridis Seed as Affected by Autoclaving and Germination. Meas. Food 2022, 6, 100028. [Google Scholar] [CrossRef]
- Bonin, A.M.F.; Ávila, S.; Etgeton, S.A.P.; de Lima, J.J.; dos Santos, M.P.; Grassi, M.T.; Krüger, C.C.H. Ripening Stage Impacts Nutritional Components, Antiglycemic Potential, Digestibility and Antioxidant Properties of Grumixama (Eugenia brasiliensis Lam.) Fruit. Food Res. Int. 2024, 178, 113956. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Pinela, J.; Prieto, M.A.; Pereira, E.; Jabeur, I.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Optimization of Heat- and Ultrasound-Assisted Extraction of Anthocyanins from Hibiscus Sabdariffa Calyces for Natural Food Colorants. Food Chem. 2019, 275, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Pinela, J.; Pereira, C.; Mandim, F.; Heleno, S.; Oliveira, M.B.P.P.; Barros, L. Recovery of Anthocyanins from Eugenia spp. Fruit Peels: A Comparison between Heat- and Ultrasound-Assisted Extraction. Sustain. Food Technol. 2024, 2, 189–201. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, Y.; Diao, T.; Zeng, W.; Zuo, Y. Experimental and Theoretical Study on Antioxidant Activity of the Four Anthocyanins. J. Mol. Struct. 2020, 1204, 127509. [Google Scholar] [CrossRef]
- Schmidt, H.d.O.; Rockett, F.C.; Klen, A.V.B.; Schmidt, L.; Rodrigues, E.; Tischer, B.; Augusti, P.R.; de Oliveira, V.R.; da Silva, V.L.; Flôres, S.H.; et al. New Insights into the Phenolic Compounds and Antioxidant Capacity of Feijoa and Cherry Fruits Cultivated in Brazil. Food Res. Int. 2020, 136, 109564. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and Antioxidant Assays of Polyphenols: A Review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Ayoub, M.; De Camargo, A.C.; Shahidi, F. Antioxidants and Bioactivities of Free, Esterified and Insoluble-Bound Phenolics from Berry Seed Meals. Food Chem. 2016, 197, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Toshima, S.; Hirano, T.; Kunitake, H. Comparison of Anthocyanins, Polyphenols, and Antioxidant Capacities among Raspberry, Blackberry, and Japanese Wild Rubus Species. Sci. Hortic. 2021, 285, 110204. [Google Scholar] [CrossRef]
- Frutos, M.J.; Rincón-Frutos, L.; Valero-Cases, E. Rutin. Nonvitamin and Nonmineral Nutritional Supplements; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 111–117. [Google Scholar] [CrossRef]
- Kang, I.; Buckner, T.; Shay, N.F.; Gu, L.; Chung, S. Improvements in Metabolic Health with Consumption of Ellagic Acid and Subsequent Conversion into Urolithins: Evidence and Mechanisms. Adv. Nutr. 2016, 7, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.P.D.F.; Pereira, A.L.D.; Barbero, G.F.; Martínez, J. Recovery of Anthocyanins from Residues of Rubus Fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by Ultrasound Assisted Extraction, Pressurized Liquid Extraction and Their Combination. Food Chem. 2017, 231, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Flores, G.; Dastmalchi, K.; Paulino, S.; Whalen, K.; Dabo, A.J.; Reynertson, K.A.; Foronjy, R.F.; D’Armiento, J.M.; Kennelly, E.J. Anthocyanins from Eugenia brasiliensis Edible Fruits as Potential Therapeutics for COPD Treatment. Food Chem. 2012, 134, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Dametto, A.C.; Agustoni, D.; Moreira, T.F.; Plaza, C.V.; Prieto, A.M.; Silva, T.G.A.; Souza, F.O.; Boralle, N.; Maria Sorbo, J.; Silva, D.H.S.; et al. Chemical Composition and in Vitro Chemoprevention Assessment of Eugenia jambolana Lam. (Myrtaceae) Fruits and Leaves. J. Funct. Foods 2017, 36, 490–502. [Google Scholar] [CrossRef]
- Teixeira, L.D.L.; Bertoldi, F.C.; Lajolo, F.M.; Hassimotto, N.M.A. Identification of Ellagitannins and Flavonoids from Eugenia brasilienses Lam. (Grumixama) by HPLC-ESI-MS/MS. J. Agric. Food Chem. 2015, 63, 5417–5427. [Google Scholar] [CrossRef] [PubMed]
- Hariri, M.; Amirkalali, B.; Gholami, A. Effects of Purified Anthocyanins Supplementation on Serum Concentration of Inflammatory Mediators: A Systematic Review and Dose-Response Meta-Analysis on Randomized Clinical Trials. Phytother. Res. 2024, 38, 1494–1508. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, N.; Farrell, M.; O’Sullivan, L.; Langan, A.; Franchin, M.; Azevedo, L.; Granato, D. Effectiveness of Anthocyanin-Containing Foods and Nutraceuticals in Mitigating Oxidative Stress, Inflammation, and Cardiovascular Health-Related Biomarkers: A Systematic Review of Animal and Human Interventions. Food Funct. 2024, 15, 3274–3299. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Fruit and Vegetables for Health: Report of a Joint FAO/WHO Workshop; WHO: Kobe, Japan, 2004. [Google Scholar]
- Paludo, M.C.; Colombo, R.C.; Filho, J.T.; Hermosín-Gutiérrez, I.; Ballus, C.A.; Godoy, H.T. Optimizing the Extraction of Anthocyanins from the Skin and Phenolic Compounds from the Seed of Jabuticaba Fruits (Myrciaria jabuticaba (Vell.) O. Berg) with Ternary Mixture Experimental Designs. J. Braz. Chem. Soc. 2019, 30, 1506–1515. [Google Scholar] [CrossRef]
- Instituto Adolfo Lutz (IAL). Métodos Físico-Químicos Para Análise de Alimentos, 1st ed.; Instituto Adolfo Lutz: São Paulo, Brazil, 2008. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- AACC. American Association of Cereal Chemist International AACC Approved Methods of Analysis, 11th ed.; Cereals & Grains Association: St Paul, MN, USA, 2010. [Google Scholar]
- Merril, A.L.; Watt, B.K. Energy Value of Foods: Basis and Derivation; Department of Agriculture: Washington, DC, USA, 1973. [Google Scholar]
- Pereira, G.A.; Arruda, H.S.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Carbohydrates, Volatile and Phenolic Compounds Composition, and Antioxidant Activity of Calabura (Muntingia calabura L.) Fruit. Food Res. Int. 2018, 108, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total Phenolic Compounds and Antioxidant Capacities of Major Fruits from Ecuador. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. In Current Protocols in Food Analytical Chemistry; John Wiley & Sons: New York, USA, 2001; pp. F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of Free, Esterified, Glycosylated and Insoluble-Bound Phenolics Composition in the Edible Part of Araticum Fruit (Annona crassiflora Mart.) and Its by-Products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Ramírez, D.; González-García, K.E.; Medrano-Hernández, J.M.; Famiani, F.; Cruz-Castillo, J.G. Antioxidants in Processed Fruit, Essential Oil, and Seed Oils of Feijoa. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 11988. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending Applicability of the Oxygen Radical Absorbance Capacity (ORAC-Fluorescein) Assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef] [PubMed]
Parameters | Eugenia calycina | Eugenia stigmatosa | p-Value |
---|---|---|---|
Moisture (g/100 g fw) | 87.57 ± 0.29 | 84.73 ± 0.16 | <0.001 * |
Ashes (g/100 g fw) | 0.34 ± 0.02 | 0.44 ± 0.05 | 0.039 ** |
Lipids (g/100 g fw) | 0.24 ± 0.02 | 0.54 ± 0.01 | <0.001 * |
Proteins (g/100 g fw) | 0.98 ± 0.01 | 0.40 ± 0.02 | <0.001 * |
Carbohydrates (g/100 g fw) | 10.86 ± 0.31 | 13.89 ± 0.21 | <0.001 * |
Insoluble Dietary Fibers (g/100 g fw) | 1.55 ± <0.01 | 2.37 ± 0.14 | <0.001 * |
Soluble Dietary Fibers (g/100 g fw) | 0.11 ± <0.01 | 0.88 ± 0.06 | <0.001 * |
Total Dietary Fibers (g/100 g fw) | 1.66 ± <0.01 | 3.26 ± 0.20 | <0.001 * |
Total Caloric Value (Kcal) | 49.55 ± 1.15 | 62.02 ± 0.78 | <0.001 * |
Sugar Content (mg/g fw) | ||||
---|---|---|---|---|
Class | Compound | Eugenia calycina | Eugenia stigmatosa | p-Value |
Polyols | Mannitol | n.d. | n.d. | - |
Sorbitol | n.d. | n.d. | - | |
Xylitol | n.d. | n.d. | - | |
Monosaccharides | Arabinose | n.d. | n.d. | - |
Fructose | 37.83 ± 0.84 | 37.21 ± 0.97 | 0.454 ns | |
Glucose | 38.76 ± 0.78 | 34.43 ± 0.82 | 0.003 * | |
Rhamnose | 0.47 ± 0.01 | 0.43 ± 0.01 | 0.006 * | |
Disaccharides | Maltose | n.d. | 0.73 ± 0.06 | - |
Sucrose | n.d. | n.d. | - | |
Maltooligosaccharides | Maltotriose | n.d. | t.r. | - |
Maltotetraose | n.d. | n.d. | - | |
Maltopentaose | n.d. | n.d. | - | |
Maltohexaose | n.d. | n.d. | - | |
Maltoheptaose | n.d. | n.d. | - | |
Frutooligosaccharides | GF2 | t.r. | n.d. | - |
GF3 | t.r. | n.d. | - | |
GF4 | n.d. | n.d. | - | |
Total | 77.06 ± 1.64 | 72.07 ± 1.80 | 0.024 |
Parameters | Eugenia calycina | Eugenia stigmatosa | p-Value * |
---|---|---|---|
Total Phenolics (mg GAE/g fw) | 3.95 ± 0.02 | 5.39 ± 0.07 | <0.001 * |
Total Flavonoids (mg CE/g fw) | 2.82 ± 0.01 | 2.18 ± 0.07 | <0.001 * |
Monomeric Anthocyanins (mg C3G/g fw) | 1.26 ± <0.01 | 0.01 ± <0.01 | <0.001 * |
Condensed Tannins (mg CE/g fw) | 2.63 ± 0.33 | 4.36 ± 0.09 | 0.002 * |
ORAC (µmol TE/g fw) | 83.46 ± 3.11 | 44.00 ± 1.54 | <0.001 * |
FRAP (µmol TE/g fw) | 53.29 ± 1.43 | 53.48 ± 0.93 | 0.857 ns |
ABTS (µmol TE/g fw) | 40.66 ± 0.60 | 47.13 ± 1.60 | 0.002 * |
TPC | TFC | MAC | CT | FRAP | ABTS | |
---|---|---|---|---|---|---|
TFC | −0.981 * | |||||
MAC | −0.998 * | 0.989 * | ||||
CT | 0.964 * | −0.974 * | −0.965 * | |||
FRAP | 0.075 ns | −0.090 ns | −0.096 ns | −0.095 ns | ||
ABTS | 0.943 * | −0.988 * | −0.959 * | 0.945 * | 0.164 ns | |
ORAC | −0.992 * | 0.984 * | 0.995 * | −0.976 * | −0.023 ns | −0.953 * |
Phenolic Compounds Content (µg/g fw) | ||||
---|---|---|---|---|
Class | Compound | Eugenia calycina | Eugenia stigmatosa | p-Value |
Phenolic Acids | Caffeic acid | traces | n.d | - |
Ellagic acid | 51.62 ± 1.29 | n.d | - | |
Gallic acid | n.d | 4.42 ± 0.04 | - | |
Gentisic acid | 1.90 ± 0.06 | n.d | - | |
Protocatechuic acid | 2.70 ± 0.04 | n.d | - | |
Trans-cinnamic acid | n.d | 0.20 ± 0.01 | - | |
Flavonoids | Kaempferol | n.d | 0.46 ± 0.01 | - |
Quercetin | 5.55 ± 0.07 | 0.75 ± 0.01 | <0.001 * | |
Quercetrin | n.d | 1.53 ± 0.01 | - | |
Rutin | 55.60 ± 1.05 | 10.45 ± 0.02 | <0.001 * | |
Anthocyanins | Cyanidin-3-O-β-D-glucoside | 242.97 ± 1.52 | 0.07 ± <0.01 | <0.001 * |
Delphinidin-3-O-β-D-glucoside | traces | n.d | - | |
Pelargonidin-3-O-β-D-glucoside | 8.15 ± 0.10 | n.d | - | |
Total | 368.49 ± 1.96 | 17.87 ± 0.06 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.D.R.; Arruda, H.S.; Andrade, A.C.; Berilli, P.; Borsoi, F.T.; Monroy, Y.M.; Rodrigues, M.V.N.; Sampaio, K.A.; Pastore, G.M.; Marostica Junior, M.R. Eugenia calycina and Eugenia stigmatosa as Promising Sources of Antioxidant Phenolic Compounds. Plants 2024, 13, 2039. https://doi.org/10.3390/plants13152039
Silva JDR, Arruda HS, Andrade AC, Berilli P, Borsoi FT, Monroy YM, Rodrigues MVN, Sampaio KA, Pastore GM, Marostica Junior MR. Eugenia calycina and Eugenia stigmatosa as Promising Sources of Antioxidant Phenolic Compounds. Plants. 2024; 13(15):2039. https://doi.org/10.3390/plants13152039
Chicago/Turabian StyleSilva, Juliana Dara Rabêlo, Henrique Silvano Arruda, Amanda Cristina Andrade, Patrícia Berilli, Felipe Tecchio Borsoi, Yaneth Machaca Monroy, Marili Villa Nova Rodrigues, Klicia Araujo Sampaio, Glaucia Maria Pastore, and Mario Roberto Marostica Junior. 2024. "Eugenia calycina and Eugenia stigmatosa as Promising Sources of Antioxidant Phenolic Compounds" Plants 13, no. 15: 2039. https://doi.org/10.3390/plants13152039
APA StyleSilva, J. D. R., Arruda, H. S., Andrade, A. C., Berilli, P., Borsoi, F. T., Monroy, Y. M., Rodrigues, M. V. N., Sampaio, K. A., Pastore, G. M., & Marostica Junior, M. R. (2024). Eugenia calycina and Eugenia stigmatosa as Promising Sources of Antioxidant Phenolic Compounds. Plants, 13(15), 2039. https://doi.org/10.3390/plants13152039