QTL Mapping and Candidate Gene Analysis for Cotton Fiber Quality and Early Maturity Using F2 and F3 Generations
Abstract
:1. Introduction
2. Results
2.1. Basic Statistics of the Phenotypic Traits
2.2. Correlation Analysis
2.3. QTL Mapping Analysis
2.4. Candidate Gene Analysis
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Materials and Field Trials
5.2. Trait Collection and Data Analysis
5.3. QTL Mapping
5.4. Candidate Gene Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wendel, J.; Cronn, R.; Johnston, S.; Price, H. Feast and famine in plant genomes. Genetica 2002, 115, 37–47. [Google Scholar]
- Chen, Z.J.; Scheffler, B.E.; Dennis, E.; Triplett, B.A.; Zhang, T.; Guo, W.; Chen, X.; Stelly, D.M.; Rabinowicz, P.D.; Town, C.D.; et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol. 2007, 145, 1303–1310. [Google Scholar]
- Gao, C.; Han, X.; Xu, Z.; Yang, Z.; Yan, Q.; Zhang, Y.; Song, J.; Yu, H.; Liu, R.; Yang, L.; et al. Oil candidate genes in seeds of cotton (Gossypium hirsutum L.) and functional validation of GhPXN1. Biotechnol. Biofuels Bioprod. 2023, 16, 169. [Google Scholar]
- Wang, W.; Li, J.; Liu, J.; Ren, M.; Li, F. Utilising cottonseed in animal feeding: A dialectical perspective. Mod. Agric. 2023, 1, 112–121. [Google Scholar]
- Liu, Y.; Guan, S.; Wang, W.; Ren, M.; Li, F. Nutritional value, detexification methods, and application research of cottonseed as animal feed. China Cotton 2023, 50, 13–19. [Google Scholar]
- Zhang, Z.; Li, J.; Jamshed, M.; Shi, Y.; Liu, A.; Gong, J.; Wang, S.; Zhang, J.; Sun, F.; Jia, F.; et al. Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population. Plant Biotechnol. J. 2020, 18, 239–253. [Google Scholar]
- Jia, X.; Wang, H.; Wei, H.; Yu, S. Correlation and genetic analysis for cotton earliness, yield and fiber quality traits. Acta Agric. Boreali-Occident. Sin. 2021, 36, 95–101. [Google Scholar]
- Li, Y.; Si, Z.; Wang, G.; Shi, Z.; Chen, J.; Qi, G.; Jin, S.; Han, Z.; Gao, W.; Tian, Y.; et al. Genomic insights into the genetic basis of cotton breeding in China. Mol. Plant. 2023, 16, 662–677. [Google Scholar]
- Zhao, H.; Chen, Y.; Liu, J.; Wang, Z.; Li, F.; Ge, X. Recent advances and future perspectives in early-maturing cotton research. New Phytol. 2023, 237, 1100–1114. [Google Scholar]
- Li, L.; Zhang, C.; Huang, J.; Liu, Q.; Wei, H.; Wang, H.; Liu, G.; Gu, L.; Yu, S. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (Gossypium hirsutum L.). Plant Biotechnol. J. 2021, 19, 109–123. [Google Scholar]
- Su, J.; Li, L.; Zhang, C.; Wang, C.; Gu, L.; Wang, H.; Wei, H.; Liu, Q.; Huang, L.; Yu, S. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor. Appl. Genet. 2018, 131, 1299–1314. [Google Scholar] [PubMed]
- Revanasiddayya; Mohan Nidagundi, J.; Fakrudin, B.; Kuchanur, P.; Yogeesh, L.N.; Hanchinal, S.; Chandrashekar Suma, T.; Sunkad, G.; Muralidhara, B.; Maheshkumar, D.; et al. Genetic diversity among coloured cotton genotypes in relation to their fibre colour and ploidy level based on SSR markers. Czech J. Genet. Plant Breed. 2024, 60, 12–24. [Google Scholar]
- Su, J.; Wang, C.; Yang, D.; Shi, C.; Zhang, A.; Ma, Q.; Liu, J.; Zhang, X.; Huang, L.; Ma, X. Decryption of favourable haplotypes and potential candidate genes for five fibre quality properties using a relatively novel genome-wide association study procedure in upland cotton. Ind. Crop Prod. 2020, 158, 113004. [Google Scholar]
- Wang, C.; Ma, Q.; Xie, X.; Zhang, X.; Yang, D.; Su, J.; Ma, X.; Lin, H. Identification of favorable haplotypes/alleles and candidate genes for three plant architecture-related traits via a restricted two-stage multilocus genome-wide association study in upland cotton. Ind. Crop Prod. 2022, 177, 114458. [Google Scholar]
- Jia, X.; Zhu, J.; Zhao, H.; Wang, S.; Li, M.; Wang, G. QTL analysis and candidate gene annotation for cotton yield related traits. Acta Agric. Boreali-Occident. Sin. 2021, 36, 54–61. [Google Scholar]
- Sun, Z.; Wang, X.; Liu, Z.; Gu, Q.; Zhang, Y.; Li, Z.; Ke, H.; Yang, J.; Wu, J.; Wu, L.; et al. A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton. Theor. Appl. Genet. 2018, 131, 2413–2425. [Google Scholar] [PubMed]
- Jia, X.; Wang, H.; Pang, C.; Ma, Q.; Su, J.; Wei, H.; Song, M.; Fan, S.; Yu, S. QTL delineation for five fiber quality traits based on an intra-specific Gossypium hirsutum L. recombinant inbred line population. Mol. Genet. Genom. 2018, 293, 831–843. [Google Scholar]
- Sun, Z.; Wang, X.; Liu, Z.; Gu, Q.; Zhang, Y.; Li, Z.; Ke, H.; Yang, J.; Wu, J.; Wu, L.; et al. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol. J. 2017, 15, 982–996. [Google Scholar]
- Jia, X.; Pang, C.; Wei, H.; Wang, H.; Ma, Q.; Yang, J.; Cheng, S.; Su, J.; Fan, S.; Song, M.; et al. High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. BMC Genom. 2016, 17, 909. [Google Scholar]
- Su, J.; Pang, C.; Wei, H.; Li, L.; Liang, B.; Wang, C.; Song, M.; Wang, H.; Zhao, S.; Jia, X.; et al. Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. BMC Genom. 2016, 17, 687. [Google Scholar]
- Wang, P.; He, S.; Sun, G.; Pan, Z.; Sun, J.; Geng, X.; Peng, Z.; Gong, W.; Wang, L.; Pang, B.; et al. Favorable pleiotropic loci for fiber yield and quality in upland cotton (Gossypium hirsutum). Sci. Rep. 2021, 11, 15935. [Google Scholar]
- Jia, X.; Wang, S.; Zhu, J.; Zhao, H.; Li, M.; Wang, G. Construction of a high-density genetic map and QTL mapping for yield related traits in upland cotton. Sci. Agric. Sin. 2023, 56, 587–598. [Google Scholar]
- Zhang, Z.; Shang, H.; Shi, Y.; Huang, L.; Li, J.; Ge, Q.; Gong, J.; Liu, A.; Chen, T.; Wang, D.; et al. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to quantitative trait loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.). BMC Plant Biol. 2016, 16, 79. [Google Scholar]
- Su, J.; Fan, S.; Li, L.; Wei, H.; Wang, C.; Wang, H.; Song, M.; Zhang, C.; Gu, L.; Zhao, S.; et al. Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese upland cotton. Front. Plant Sci. 2016, 7, 1576. [Google Scholar]
- Guo, A.H.; Su, Y.; Huang, Y.; Wang, Y.M.; Nie, H.S.; Zhao, N.; Hua, J.P. QTL controlling fiber quality traits under salt stress in upland cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 2021, 134, 661–685. [Google Scholar] [PubMed]
- Wang, H.; Zhang, R.; Shen, C.; Li, X.; Zhu, D.; Lin, Z. Transcriptome and QTL analyses reveal candidate genes for fiber quality in upland cotton. Crop J. 2020, 8, 98–106. [Google Scholar]
- Thyssen, G.N.; Jenkins, J.N.; McCarty, J.C.; Zeng, L.; Campbell, B.T.; Delhom, C.D.; Islam, M.S.; Li, P.; Jones, D.C.; Condon, B.D.; et al. Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 2019, 132, 989–999. [Google Scholar]
- Jia, X.; Wang, S.; Zhao, H.; Zhu, J.; Li, M.; Wang, G. QTL mapping and BSA-seq map a major QTL for the node of the first fruiting branch in cotton. Front. Plant Sci. 2023, 14, 1113059. [Google Scholar]
- Gu, Q.; Ke, H.; Liu, Z.; Lv, X.; Sun, Z.; Zhang, M.; Chen, L.; Yang, J.; Zhang, Y.; Wu, L.; et al. A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton. Theor. Appl. Genet. 2020, 133, 3395–3408. [Google Scholar]
- Osmail, S.; Adawy, S.; Gamal, E.; Hussein, E. Linkage map construction and detection of QTLs associated with earliness, fiber quality and yield in an interspecific cross between Gossypium hirsutum L. and Gossypium barbadense L. Int. J. Adv. Res. 2015, 3, 637–649. [Google Scholar]
- Zhang, R.; Shen, C.; Zhu, D.; Le, Y.; Wang, N.; Li, Y.; Zhang, X.; Lin, Z. Fine-mapping and candidate gene analysis of qFL-c10-1 controlling fiber length in upland cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 2022, 135, 4483–4494. [Google Scholar] [PubMed]
- Yu Yu, J.; Hui, Y.; Chen, J.; Yu, H.; Gao, X.; Zhang, Z.; Li, Q.; Zhu, S.; Zhao, T. Whole-genome resequencing of 240 Gossypium barbadense accessions reveals genetic variation and genes associated with fiber strength and lint percentage. Theor. Appl. Genet. 2021, 134, 3249–3261. [Google Scholar]
- Wang, C.; Liu, J.; Xie, X.; Wang, J.; Ma, Q.; Chen, P.; Yang, D.; Ma, X.; Hao, F.; Su, J. GhAP1-D3 positively regulates flowering time and early maturity with no yield and fiber quality penalties in upland cotton. J. Integr. Plant Biol. 2023, 65, 985–1002. [Google Scholar] [PubMed]
- Liu, Y.H.; Zhang, M.; Scheuring, C.F.; Cilkiz, M.; Sze, S.H.; Smith, C.W.; Murray, S.C.; Xu, W.; Zhang, H.B. Accurate prediction of complex traits for individuals and offspring from parents using a simple, rapid, and efficient method for gene-based breeding in cotton and maize. Plant Sci. 2022, 316, 111153. [Google Scholar]
- Yang, Z.; Gao, C.; Zhang, Y.; Yan, Q.; Hu, W.; Yang, L.; Wang, Z.; Li, F. Recent progression and future perspectives in cotton genomic breeding. J. Integr. Plant Biol. 2023, 65, 548–569. [Google Scholar]
- Said, J.I.; Song, M.; Wang, H.; Lin, Z.; Zhang, X.; Fang, D.D.; Zhang, J. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol. Genet. Genom. 2015, 290, 1003–1025. [Google Scholar]
- Said, J.; Lin, Z.; Zhang, X.; Song, M.; Zhang, J. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom. 2013, 14, 776. [Google Scholar]
- Si, Z.; Jin, S.; Chen, J.; Wang, S.; Fang, L.; Zhu, X.; Zhang, T.; Hu, Y. Construction of a high-density genetic map and identification of QTLs related to agronomic and physiological traits in an interspecific (Gossypium hirsutum × Gossypium barbadense) F2 population. BMC Genom. 2022, 23, 307. [Google Scholar]
- Zhao, N.; Wang, W.; Grover, C.E.; Jiang, K.; Pan, Z.; Guo, B.; Zhu, J.; Su, Y.; Wang, M.; Nie, H.; et al. Genomic and GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fibre length, lint percentage and Fusarium wilt resistance. Plant Biotechnol. J. 2022, 20, 691–710. [Google Scholar]
- Wang, F.; Zhang, J.; Chen, Y.; Zhang, C.; Gong, J.; Song, Z.; Zhou, J.; Wang, J.; Zhao, C.; Jiao, M.; et al. Identification of candidate genes for key fibre-related QTLs and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with G. barbadense introgressions. Plant Biotechnol. J. 2020, 18, 707–720. [Google Scholar]
- Qian, H.; Lu, H.; Ding, H.; Lavoie, M.; Li, Y.; Liu, W.; Fu, Z. Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity. Sci. Rep. 2015, 5, 11975. [Google Scholar] [CrossRef]
- Zhong, R.; Cui, D.; Richardson, E.A.; Phillips, D.R.; Azadi, P.; Lu, G.; Ye, Z.H. Cytosolic acetyl-CoA generated by ATP-citrate lyase is essential for acetylation of cell wall polysaccharides. Plant Cell Physiol. 2020, 61, 64–75. [Google Scholar] [CrossRef]
- Gallie, D. L-ascorbic acid: A multifunctional molecule supporting plant growth and development. Scientifica 2013, 2013, 795964. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Wang, F.; Chen, L.; Ma, R.; Zuo, X.; Cao, A.; Xie, S.; Chen, X.; Jin, X.; Li, H. The key gene for ascorbate biosynthesis in Gossypium hirsutum, involves in cell elongation under control of ethylene. Cells 2019, 8, 1039. [Google Scholar] [CrossRef]
- Li, R.; Xin, S.; Tao, C.; Jin, X.; Li, H. Cotton ascorbate oxidase promotes cell growth in cultured tobacco bright yellow-2 cells through generation of apoplast oxidation. Int. J. Mol. Sci. 2017, 18, 1346. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, T. MIXTAs and phytohormones orchestrate cotton fiber development. Curr. Opin. Plant Biol. 2021, 59, 101975. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.H.; Li, D.M.; Yin, M.H.; Li, X.B.; Zhang, M.; Wang, Y.J.; Dong, J.; Zhao, J.; Luo, M.; Luo, X.Y.; et al. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. J. Plant Physiol. 2010, 167, 829–837. [Google Scholar] [CrossRef]
- Li, H.; Ye, G.; Wang, J. A modified algorithm for the improvement of composite interval mapping. Genetics 2007, 175, 361–374. [Google Scholar] [CrossRef]
- Wang, M.; Tu, L.; Yuan, D.; Zhu, D.; Shen, C.; Li, J.; Liu, F.; Pei, L.; Wang, P.; Zhao, G.; et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat. Genet. 2019, 51, 224–229. [Google Scholar] [CrossRef]
- Fang, L.; Wang, Q.; Hu, Y.; Jia, Y.; Chen, J.; Liu, B.; Zhang, Z.; Guan, X.; Chen, S.; Zhou, B.; et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat. Genet. 2017, 49, 1089–1098. [Google Scholar]
- Huang, C.; Nie, X.; Shen, C.; You, C.; Li, W.; Zhao, W.; Zhang, X.; Lin, Z. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol. J. 2017, 15, 1374–1386. [Google Scholar]
Trait | Population | Parents | Offspring | ||||||
---|---|---|---|---|---|---|---|---|---|
Jifeng1271 | Jifeng173 | Max | Min | Mean | CV/% | Kurt | Skew | ||
FT/d | F2 | 66.00 | 63.00 | 72.00 | 61.00 | 65.23 | 3.60 | −0.42 | 0.54 |
F3 | 73.00 | 70.00 | 78.00 | 66.00 | 72.42 | 2.59 | 0.94 | 0.27 | |
FBP/d | F2 | 51.00 | 45.00 | 53.00 | 41.00 | 46.65 | 5.71 | −0.38 | 0.15 |
F3 | 54.00 | 49.50 | 59.00 | 46.00 | 51.60 | 4.18 | 0.62 | 0.55 | |
WGP/d | F2 | 117.00 | 108.00 | 122.00 | 105.00 | 111.88 | 3.32 | −0.50 | 0.10 |
F3 | 127.00 | 119.50 | 132.00 | 117.00 | 124.02 | 2.24 | −0.04 | 0.53 | |
NFFB/cm | F2 | 7.00 | 5.30 | 8.00 | 5.00 | 6.50 | 13.10 | −0.59 | 0.19 |
F3 | 7.20 | 5.70 | 8.10 | 5.20 | 6.74 | 7.47 | 0.09 | 0.12 | |
HNFFB/cm | F2 | 29.90 | 19.50 | 33.00 | 14.00 | 23.24 | 15.52 | −0.08 | −0.21 |
F3 | 21.65 | 16.03 | 23.56 | 15.80 | 19.45 | 7.55 | −0.20 | 0.15 | |
PH/cm | F2 | 103.00 | 74.40 | 97.00 | 51.00 | 79.66 | 9.22 | 1.23 | −0.58 |
F3 | 108.25 | 78.20 | 114.40 | 81.50 | 93.80 | 6.01 | 0.29 | 0.57 | |
FL/mm | F2 | 27.00 | 29.90 | 32.10 | 24.60 | 28.65 | 3.82 | 1.06 | 0.14 |
F3 | 29.80 | 32.85 | 32.60 | 27.70 | 30.83 | 3.00 | 0.67 | −0.68 | |
FS/cN·tex-1 | F2 | 25.00 | 31.40 | 34.00 | 23.80 | 29.49 | 5.38 | 0.47 | 0.02 |
F3 | 26.20 | 32.40 | 35.20 | 27.00 | 30.66 | 4.47 | −0.12 | 0.20 | |
MC | F2 | 5.50 | 4.00 | 5.90 | 3.90 | 5.17 | 5.61 | 1.17 | −0.67 |
F3 | 5.45 | 4.10 | 5.80 | 4.00 | 4.94 | 7.40 | −0.47 | −0.22 | |
FU/% | F2 | 83.80 | 86.20 | 87.20 | 81.50 | 84.76 | 1.20 | 0.67 | −0.52 |
F3 | 83.20 | 85.25 | 87.00 | 81.70 | 84.69 | 1.12 | −0.14 | −0.21 | |
FE/% | F2 | 6.80 | 6.70 | 6.90 | 6.60 | 6.76 | 0.85 | −0.34 | −0.21 |
F3 | 6.75 | 6.75 | 7.00 | 6.60 | 6.77 | 1.17 | −0.02 | 0.11 |
Trait | Population | FS | MC | FU | FE | FT | FBP | WGP | NFFB | HNFFB | PH |
---|---|---|---|---|---|---|---|---|---|---|---|
FL | F2 | 0.74 ** | −0.41 ** | 0.25 ** | 0.58 ** | 0 | 0.19 ** | 0.13 | −0.03 | −0.02 | 0.13 |
F3 | 0.41 ** | −0.41 ** | −0.07 | 0.30 ** | 0.06 | 0.07 | 0.10 | 0.08 | −0.13 | −0.20 ** | |
FS | F2 | 1 | −0.38 ** | 0.26 ** | 0.68 ** | 0.07 | 0.16 * | 0.16 * | 0.01 | 0.05 | 0.12 |
F3 | 1 | −0.45 ** | 0.29 ** | 0.39 ** | 0.15 * | 0.13 | 0.20 ** | 0.14 * | −0.05 | −0.12 | |
MC | F2 | 1 | 0.09 | −0.17 * | 0.12 | −0.02 | 0.06 | 0.12 | 0 | −0.09 | |
F3 | 1 | 0.11 | 0.08 | −0.08 | 0.01 | −0.04 | 0.09 | 0.22 ** | 0.13 | ||
FU | F2 | 1 | 0.25 ** | 0.02 | 0.18 * | 0.14 * | 0.04 | 0.01 | 0.14 | ||
F3 | 1 | 0.22 ** | 0 | 0.06 | 0.04 | 0.06 | 0.07 | 0.04 | |||
FE | F2 | 1 | 0.02 | 0.11 | 0.09 | −0.02 | −0.03 | 0 | |||
F3 | 1 | 0.08 | 0.19 ** | 0.20 ** | 0.24 ** | −0.04 | 0.03 | ||||
FT | F2 | 1 | 0.1 | 0.70 ** | 0.41 ** | 0.27 ** | 0.08 | ||||
F3 | 1 | −0.05 | 0.63 ** | 0.49 ** | 0.08 | −0.05 | |||||
FBP | F2 | 1 | 0.78 ** | 0.09 | 0.08 | 0.12 | |||||
F3 | 1 | 0.74 ** | 0.15 * | −0.07 | 0.02 | ||||||
WGP | F2 | 1 | 0.32 ** | 0.23 ** | 0.13 | ||||||
F3 | 1 | 0.45 ** | 0.11 | −0.02 | |||||||
NFFB | F2 | 1 | 0.52 ** | 0.20 ** | |||||||
F3 | 1 | 0.28 ** | 0.19 ** | ||||||||
HNFFB | F2 | 1 | 0.41 ** | ||||||||
F3 | 1 | 0.49 ** |
Material | Parental Combination | BW/g | LP/% | SI/g | FL/mm | FS/cN·tex-1 | MC |
---|---|---|---|---|---|---|---|
Jifeng 1271 | Jimian 20 × 97G1 | 6.3 | 37.3 | 10.9 | 29.0 | 30.4 | 5.0 |
Jifeng 173 | (99-68 × 97G1) × Jimian 20 | 5.3 | 35.5 | 11.7 | 32.7 | 35.5 | 4.5 |
Jifeng 914 | Ji 668 × 97G1 | 7.4 | 40.1 | 12.2 | 31.0 | 31.9 | 4.9 |
Jifeng 4 | 97-668 × 97G1 | 6.9 | 40.8 | 12.9 | 32.0 | 29.1 | 5.6 |
Jifeng 4xuan | 97-668 × 97G1 | 7.3 | 40.3 | 12.4 | 28.7 | 29.6 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Zhu, J.; Zhao, H.; Kong, L.; Wang, S.; Li, M.; Wang, G. QTL Mapping and Candidate Gene Analysis for Cotton Fiber Quality and Early Maturity Using F2 and F3 Generations. Plants 2025, 14, 1063. https://doi.org/10.3390/plants14071063
Jia X, Zhu J, Zhao H, Kong L, Wang S, Li M, Wang G. QTL Mapping and Candidate Gene Analysis for Cotton Fiber Quality and Early Maturity Using F2 and F3 Generations. Plants. 2025; 14(7):1063. https://doi.org/10.3390/plants14071063
Chicago/Turabian StyleJia, Xiaoyun, Jijie Zhu, Hongxia Zhao, Linglei Kong, Shijie Wang, Miao Li, and Guoyin Wang. 2025. "QTL Mapping and Candidate Gene Analysis for Cotton Fiber Quality and Early Maturity Using F2 and F3 Generations" Plants 14, no. 7: 1063. https://doi.org/10.3390/plants14071063
APA StyleJia, X., Zhu, J., Zhao, H., Kong, L., Wang, S., Li, M., & Wang, G. (2025). QTL Mapping and Candidate Gene Analysis for Cotton Fiber Quality and Early Maturity Using F2 and F3 Generations. Plants, 14(7), 1063. https://doi.org/10.3390/plants14071063