The Multi-Pistil Phenomenon in Higher Plants
Abstract
:1. Introduction
2. The Multi-Pistil Phenotype in Various Plants
2.1. Rice
2.2. Wheat
2.3. Rye
2.4. Sweet Cherry
2.5. Medicago Plants
2.6. Sorghum
2.7. Japanese Apricot
2.8. Tomato
2.9. Rapeseed
2.10. Arabidopsis
3. The Origin and Source of the Multi-Pistil Trait
4. Inheritance Patterns and Candidate Genes
Species | Accession Name | Source | Inheritance Pattern | References |
---|---|---|---|---|
Rice | mp3 | indica–japonica cross | Recessive gene | [3] |
mp3 | indica–japonica cross | Recessive gene | [6] | |
mfs3 | EMS chemical mutation | Recessive gene | [4] | |
afon1 | EMS chemical mutation | Recessive gene | [5] | |
fon(t) | Diploid × haploid | Recessive gene | [51] | |
TOR | indica C2 × Mianxiang 5B | Recessive gene | [56] | |
lf1 | Mutant | Dominant gene | [54] | |
Wheat | TP | Spontaneous mutant | Dominant gene | [11,12,55] |
DUOII | Common multi-ovary line | Dominant gene | [9,36] | |
dms | Mutant from Zhoumai 18 | Recessive gene | [10] | |
Rapeseed | Series of lines | B. napus × B. campestris or B. napus × B. rapa | Two recessive genes | [22,23,26,27] |
90-12 | B. napus × B. campestris | Three recessive genes | [52] | |
Not mentioned | Radiation mutation | Dominant gene(s) | [43] | |
M. truncatula | bip | T-DNA insertion | Recessive gene | [16] |
Sorghum | TX431 | Breeding | Dominant gene | [20] |
Shuangli (Huaide) | Breeding | Recessive gene | [20] | |
Tomato | - | Breeding | Double-recessive epistasis | [13] |
Gene | Species | Characteristics | References |
---|---|---|---|
FON1 | Rice | LRR receptor-like kinase; ortholog to CLV1 | [57] |
FON4 (FON2) | Rice | CLE domain; ortholog to CLV3 | [59,60,61] |
LF1 | Rice | HD-ZIP III | [54] |
WAG-2 | Wheat | MADS-domain | [66] |
PaMADS3/4/5/12 | Sweet cherry | MADS-box | [18,37] |
BnFUL | Rapeseed | MADS-box, K-box | [48,49] |
5. Factors Influencing the Multi-Pistil Trait
6. Impact on Yield and Agricultural Production
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Becker, A. A molecular update on the origin of the carpel. Curr. Opin. Plant Biol. 2020, 53, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Shimamoto, K.; Kyozuka, J. Rice as a model for comparative genomics of plants. Annu. Rev. Plant Biol. 2002, 53, 399–419. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Gong, J.; Yan, Y.; Peng, T.; Xiao, J.; Wang, S.; Nan, W.; Qin, X.; Zhang, H. Fine Mapping and Candidate-Gene Analysis of an open glume multi-pistil 3 (mp3) in Rice (Oryza sativa L.). Agriculture 2022, 12, 1731. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, J.; Zhuang, H.; Zeng, X.; Tang, J.; Wang, H.; Chen, H.; Li, Y.; Ling, Y.; He, G.; et al. Gene mapping and candidate gene analysis of multi-floret spikelet 3 (mfs3) in rice (Oryza sativa L.). J. Integr. Agric. 2019, 18, 2673–2681. [Google Scholar] [CrossRef]
- Yang, C.; Liang, R.; Qin, R.; Zeng, D.; Jin, X.; Shi, C. Phenotypical Analysis and Gene Mapping of Abnormal Floral Organ Number Mutant afon1 in Rice (Oryza sativa L.). Sci. Agric. Sin. 2017, 50, 3837–3847. (In Chinese) [Google Scholar]
- Jiang, L. Genetic Analysis and Gene Location of Rice Multi-pistil Mutant mp3. Master’s Thesis, Hebei Agricultural University, Baoding, China, 2003. (In Chinese). [Google Scholar]
- Li, Z.; Ma, S.; Liu, D.; Zhang, L.; Du, X.; Xia, Y.; Song, Q.; Li, Y.; Zhang, Y.; Li, Z.; et al. Morphological and proteomic analysis of young spikes reveals new insights into the formation of multiple-pistil wheat. Plant Sci. 2020, 296, 110503. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Z.; Peng, Z.; Yu, Y.; Liao, M.; Wei, S. Development of a high-density linkage map and mapping of the three-pistil gene (Pis1) in wheat using GBS markers. BMC Genom. 2017, 18, 567. [Google Scholar] [CrossRef]
- Guo, J.; Li, Z.; Zhang, G.; Tang, H.; Song, Q.; Song, Y.; Ma, S.; Niu, N.; Wang, J. Special heterogeneous cytoplasm suppresses the expression of the gene producing multi-ovary in common wheat. Euphytica 2017, 213, 247. [Google Scholar] [CrossRef]
- Duan, Z.; Shen, C.; Li, Q.; Lü, G.; Ni, Y.; Yu, D.; Niu, J. Identification of a novel male sterile wheat mutant dms conferring dwarf status and multi-pistils. J. Integr. Agric. 2015, 14, 1706–1714. [Google Scholar] [CrossRef]
- Peng, Z.; Martinek, P.; Kosuge, K.; Kuboyama, T.; Watanabe, N. Genetic mapping of a mutant gene producing three pistils per floret in common wheat. J. Appl. Genet. 2008, 49, 135–139. [Google Scholar] [CrossRef]
- Peng, Z.S. A New Mutation in Wheat Producing Three Pistils in a Floret. J. Agron. Crop Sci. 2003, 189, 270–272. [Google Scholar] [CrossRef]
- Mahfud, M.; Murti, R.H. Inheritance Pattern of Fruit Color and Shape in Multi-Pistil and Purple Tomato Crossing. Agrivita 2020, 42, 572–583. [Google Scholar] [CrossRef]
- Zhang, J.W. Cytological Observations of Multi-Pistil Mutant (mip) in Alfalfa (Medicago sativa L.). Master’s Thesis, Lanzhou University, Lanzhou, China, 2012. (In Chinese). [Google Scholar]
- Chen, L. Screening for Alfalfa Mutants in Male Sterility and their Cytological Observations. Master’s Thesis, Lanzhou University, Lanzhou, China, 2010. (In Chinese). [Google Scholar]
- Nair, R.M.; Peck, D.M.; Dundas, I.S.; Samac, D.A.; Moore, A.; Randles, J.W. Morphological characterisation and genetic analysis of a bi-pistil mutant (bip) in Medicago truncatula Gaertn. Sex. Plant Reprod. 2008, 21, 133–141. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; She, W.; Wang, L.; Luo, M.; Chen, Y.; Li, Y.; Wang, S.; Zhang, C. MADS-Box Genes are Involved in Cultivar- and Temperature-Dependent Formation of Multi-pistil and Polycarpy in Prunus avium L. J. Plant Growth Regul. 2019, 38, 1017–1027. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Jiu, S.; Li, Y.; Whiting, M.; She, W.; Wang, L.; Ma, C.; Xu, W.; Wang, S.; et al. The MADS-box genes PaMADS3/4/5 co-regulate multi-pistil formation induced by high temperature in Prunus avium L. Sci. Hortic. 2019, 256, 108593. [Google Scholar] [CrossRef]
- Malyshev, S.; Korzun, V.; Voylokov, A.; Smirnov, V.; Börner, A. Linkage mapping of mutant loci in rye (Secale cereale L.). Theor. Appl. Genet. 2001, 103, 70–74. [Google Scholar] [CrossRef]
- Liu, M.; Gao, Q. Genetic Analysis of Multiple Grain Sorghum Germ Plasm and Spikelet Structure Anatomical Analysis. Sci. Agric. Sin. 2007, 40, 628–632. (In Chinese) [Google Scholar]
- Shi, T.; Bai, Y.; Wu, X.; Wang, Y.; Iqbal, S.; Tan, W.; Ni, Z.; Gao, Z. PmAGAMOUS recruits polycomb protein PmLHP1 to regulate single-pistil morphogenesis in Japanese apricot. Plant Physiol. 2023, 193, 466–482. [Google Scholar] [CrossRef]
- Jiang, L.C.; Zhang, Q.X.; Pu, X.B.; Ma, X.L.; Dong, Y.L.; Zhang, D.F. The New Material for High-Yield Breeding--Aggregate Silique Rapeseed in B. napus. L. Southwest China J. Agric. Sci. 1998, 11, 227–233. (In Chinese) [Google Scholar]
- Jiang, L.; Zhang, Q.; Pu, X.; Zhang, Z. Evaluation of Genetic and Physiological Characteristics of Aggregate-siliqua Rapeseed. Southwest China J. Agric. Sci. 1998, 11, 62–68. (In Chinese) [Google Scholar]
- Hu, B.C.; Chen, F.X.; Li, Q.S.; Zhang, M.L. The Discovery of Multiple Pistils CMS in Brassica campestris L. and Its Potentiality for Breeding. Sci. Agric. Sin. 1994, 27, 90–91. (In Chinese) [Google Scholar]
- Chai, L.; Zhang, J.; Li, H.; Cui, C.; Jiang, J.; Zheng, B.; Wu, L.; Jiang, L. Investigation of Thermomorphogenesis-Related Genes for a Multi-Silique Trait in Brassica napus by Comparative Transcriptome Analysis. Front. Genet. 2021, 12, 678804. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.; Zhang, J.; Li, H.; Zheng, B.; Jiang, J.; Cui, C.; Jiang, L. Investigation for a multi-silique trait in Brassica napus by alternative splicing analysis. PeerJ 2020, 8, e10135. [Google Scholar] [CrossRef]
- Chai, L.; Zhang, J.; Lu, K.; Li, H.; Wu, L.; Wan, H.; Zheng, B.; Cui, C.; Jiang, J.; Jiang, L. Identification of genomic regions associated with multi-silique trait in Brassica napus. BMC Genom. 2019, 20, 304. [Google Scholar] [CrossRef]
- Ren, D.; Yu, H.; Rao, Y.; Xu, Q.; Zhou, T.; Hu, J.; Zhang, Y.; Zhang, G.; Zhu, L.; Gao, Z.; et al. ‘Two-floret spikelet’ as a novel resource has the potential to increase rice yield. Plant Biotechnol. J. 2018, 16, 351–353. [Google Scholar] [CrossRef]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Hashim, N.; Shamsudin, R.; Che Man, H. Rice for Food Security: Revisiting Its Production, Diversity, Rice Milling Process and Nutrient Content. Agriculture 2022, 12, 741. [Google Scholar] [CrossRef]
- Nagasawa, N.; Miyoshi, M.; Kitano, H.; Satoh, H.; Nagato, Y. Mutations associated with floral organ number in rice. Planta 1996, 198, 627–633. [Google Scholar] [CrossRef]
- Kushalappa, K.; Suresh Kumar, M.B.; Patwardhan, L.; Vijayraghavan, U. Isolation and Characterization of Genes That Control Inflorescence; World Scientific Publishing Company: Singapore, 2008; Volume 3, pp. 888–893. [Google Scholar]
- Chen, J.S.; Zhang, L.H.; Wu, B.L. A preliminary report on the discovery and breeding of the “trigrain wheat”. Acta Agron. Sin. 1983, 9, 69–71. (In Chinese) [Google Scholar]
- Sun, R.; Wang, K.; Guo, T.; Jones, D.C.; Cobb, J.; Zhang, B.; Wang, Q. Genome-wide identification of auxin response factor (ARF) genes and its tissue-specific prominent expression in Gossypium raimondii. Funct. Integr. Genom. 2015, 15, 481–493. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Wu, M.; Winter, C.M.; Berns, M.C.; Nole-Wilson, S.; Yamaguchi, A.; Coupland, G.; Krizek, B.A.; Wagner, D. A Molecular Framework for Auxin-Mediated Initiation of Flower Primordia. Dev. Cell 2013, 24, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, G.; Song, Y.; Li, Z.; Ma, S.; Niu, N.; Wang, J. Comparative proteomic analysis of multi-ovary wheat under heterogeneous cytoplasm suppression. BMC Plant Biol. 2019, 19, 175. [Google Scholar] [CrossRef]
- Wang, J.; Sun, W.; Wang, L.; Liu, X.; Xu, Y.; Sabir, I.A.; Jiu, S.; Wang, S.; Zhang, C. FRUITFULL is involved in double fruit formation at high temperature in sweet cherry. Environ. Exp. Bot. 2022, 201, 104986. [Google Scholar] [CrossRef]
- Du, P.T.; Wu, G.J.; Wang, Z.G.; Li, Y.; Zhou, W.; Zhou, Y.X. Identification and Expression Analysis of CPP Gene Family in Sorghum. Biotechnol. Bull. 2024, 41, 1–11. (In Chinese) [Google Scholar]
- Wang, B.; Wu, Z.; Li, Z.; Zhang, Q.; Hu, J.; Xiao, Y.; Cai, D.; Wu, J.; King, G.J.; Li, H.; et al. Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus. Plant Biotechnol. J. 2018, 16, 1336–1348. [Google Scholar] [CrossRef]
- Xu, P.; Lv, Z.; Zhang, X.; Wang, X.; Pu, Y.; Wang, H.; Yi, B.; Wen, J.; Ma, C.; Tu, J.; et al. Identification of molecular markers linked to trilocular gene (mc1) in Brassica juncea L. Mol. Breed. 2014, 33, 425–434. [Google Scholar] [CrossRef]
- Wu, J.S.; Liu, H.L.; Shu, Z.B.; Shi, S.W. Rediscovery and Studies on the Characters of Multiple Siliqua in Brassica napus L. J. Huazhong Agric. Univ. 1995, 14, 232–235. (In Chinese) [Google Scholar]
- Wu, J.S.; Wei, Z.Z. Inheritance of polysiliqua character in Brassica napus. Hubei Agric. Sci. 1995, 26–29. (In Chinese) [Google Scholar]
- Guan, M.; Li, X. Effect of 12C Heavy Ion Beams Irradiation on Rapeseed (Brassica napus). Acta Agron. Sin. 2006, 32, 878–884. (In Chinese) [Google Scholar]
- Jiang, L.C.; Zhang, D.F.; Zhang, Q.X.; Yang, X.H. A Review of the Rapeseed Breeding in the past Forty Eight Years. Southwest China J. Agric. Sci. 1998, 11, 106–113. (In Chinese) [Google Scholar]
- Chai, L.; Li, H.; Zhao, X.; Cui, C.; Zheng, B.; Zhang, K.; Jiang, J.; Zhang, J.; Jiang, L. Analysis of Altered Flowering Related Genes in a Multi-Silique Rapeseed (Brassica napus L.) Line zws-ms Based on Combination of Genome, Transcriptome and Proteome Data. Plants 2023, 12, 2429. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhou, P.; Ni, Z.; Iqbal, S.; Ouma, K.O.; Huang, X.; Gao, F.; Ma, C.; Shi, T.; Gao, Z. AGAMOUS-LIKE24 controls pistil number in Japanese apricot by targeting the KNOTTED1-LIKE gene KNAT2/6-a. Plant Physiol. 2024, 195, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Wollmann, H.; Mica, E.; Todesco, M.; Long, J.A.; Weigel, D. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 2010, 137, 3633–3642. [Google Scholar] [CrossRef]
- Peng, P.F.; Hu, Q.; Fu, L.; Chen, Y.F.; Liu, J.; Wang, H.; Sang, S.F.; Mei, D.S. Effect of BnFUL over-expression on flower and silique development in Arabidopsis thaliana. Chin. J. Oil Crop Sci. 2016, 38, 13–18. (In Chinese) [Google Scholar]
- Peng, P.F.; Li, Y.C.; Mei, D.S.; Colasanti, J.; Fu, L.; Liu, J.; Chen, Y.F.; Hu, Q. Expression divergence of FRUITFULL homeologs enhanced pod shatter resistance in Brassica napus. Genet. Mol. Res. 2015, 14, 871–885. [Google Scholar] [CrossRef]
- Zhang, J.W.; Jin, L.; Feng, G.H.; Zhang, S.Z.; Wang, X.J. Advances in the Developmental Mechanisms and Molecular Regulation of Female Sterility in Alfalfa. J. Yunnan Agric. Univ. Nat. Sci. 2011, 26, 560–566. (In Chinese) [Google Scholar]
- Li, Y.; Xu, P.; Zhang, H.; Peng, H.; Zhang, Q.; Wang, X.; Wu, X. Characterization and Identification of a Novel Mutant fon(t) on Floral Organ Number and Floral Organ Identity in Rice. J. Genet. Genom. 2007, 34, 730–737. [Google Scholar] [CrossRef]
- Wu, J.S.; Zhou, Y.M.; Liu, H.L.; Shi, S.W. Inducation of Polysiliqua Rapeseed Through Crossing between Brassica napus and Brassica campestris. Sci. Agric. Sin. 1997, 30, 95–96. (In Chinese) [Google Scholar]
- Wu, J.S.; Liu, H.L.; Zhou, Y.M.; Shi, S.W. Creation and Researches of Polysiliqua Rapeseed New Germplasm. J. Huazhong Agric. Univ. 1996, 15, 16–21. (In Chinese) [Google Scholar]
- Zhang, T.; Li, Y.; Ma, L.; Sang, X.; Ling, Y.; Wang, Y.; Yu, P.; Zhuang, H.; Huang, J.; Wang, N.; et al. LATERAL FLORET 1 induced the three-florets spikelet in rice. Proc. Natl. Acad. Sci. USA 2017, 114, 9984–9989. [Google Scholar] [CrossRef]
- Peng, Z.S.; Yang, J.; Wei, S.H.; Zeng, J.H. Characterization of the common wheat (Triticum aestivum L.) mutation line producing three pistils in a floret. Hereditas 2004, 141, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Li, S.C.; Wang, S.Q.; He, T.H.; Li, P. Phenotypic and Genetic Characterization of a Twin-ovary Mutant (TOR) in Rice. Chin. J. Rice Sci. 2007, 21, 253–258. (In Chinese) [Google Scholar]
- Suzaki, T.; Sato, M.; Ashikari, M.; Miyoshi, M.; Nagato, Y.; Hirano, H. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 2004, 131, 5649–5657. [Google Scholar] [CrossRef]
- Clark, S.E.; Running, M.P.; Meyerowitz, E.M. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 1993, 119, 397–418. [Google Scholar] [CrossRef]
- Xu, W.; Tao, J.; Chen, M.; Dreni, L.; Luo, Z.; Hu, Y.; Liang, W.; Zhang, D. Interactions between FLORAL ORGAN NUMBER4 and floral homeotic genes in regulating rice flower development. J. Exp. Bot. 2017, 68, 483–498. [Google Scholar] [CrossRef]
- Suzaki, T.; Toriba, T.; Fujimoto, M.; Tsutsumi, N.; Kitano, H.; Hirano, H. Conservation and Diversification of Meristem Maintenance Mechanism in Oryza sativa: Function of the FLORAL ORGAN NUMBER2 Gene. Plant Cell Physiol. 2006, 47, 1591–1602. [Google Scholar] [CrossRef]
- Chu, H.; Qian, Q.; Liang, W.; Yin, C.; Tan, H.; Yao, X.; Yuan, Z.; Yang, J.; Huang, H.; Luo, D.; et al. The FLORAL ORGAN NUMBER4 Gene Encoding a Putative Ortholog of Arabidopsis CLAVATA3 Regulates Apical Meristem Size in Rice. Plant Physiol. 2006, 142, 1039–1052. [Google Scholar] [CrossRef]
- Mallory, A.C.; Reinhart, B.J.; Jones-Rhoades, M.W.; Tang, G.; Zamore, P.D.; Barton, M.K.; Bartel, D.P. MicroRNA control of PHABULOSA in leaf development: Importance of pairing to the microRNA 5′ region. EMBO J. 2004, 23, 3356–3364. [Google Scholar] [CrossRef]
- Zhong, R.; Ye, Z. Amphivasal vascular bundle 1, a Gain-of-Function Mutation of the IFL1/REV Gene, Is Associated with Alterations in the Polarity of Leaves, Stems and Carpels. Plant Cell Physiol. 2004, 45, 369–385. [Google Scholar] [CrossRef]
- Zhong, R.; Ye, Z. IFL1, a Gene Regulating Interfascicular Fiber Differentiation in Arabidopsis, Encodes a Homeodomain-Leucine Zipper Protein. Plant Cell 1999, 11, 2139–2152. [Google Scholar] [CrossRef]
- Otsuga, D.; DeGuzman, B.; Prigge, M.J.; Drews, G.N.; Clark, S.E. REVOLUTA regulates meristem initiation at lateral positions. Plant J. 2001, 25, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.H. Characterization and expression of WAG-2 transcripts in a wheat three-pistil mutant line. Russ. J. Plant Physiol. 2017, 64, 680–687. [Google Scholar] [CrossRef]
- Saha, G.; Park, J.; Jung, H.; Ahmed, N.U.; Kayum, M.A.; Chung, M.; Hur, Y.; Cho, Y.; Watanabe, M.; Nou, I. Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genom. 2015, 16, 178. [Google Scholar] [CrossRef]
- Bartlett, M.E. Changing MADS-Box Transcription Factor Protein–Protein Interactions as a Mechanism for Generating Floral Morphological Diversity. Integr. Comp. Biol. 2017, 57, 1312–1321. [Google Scholar] [CrossRef]
- Zhou, H.C. Transcriptome and Small RNA Sequencing Analysis of Multi-Pistil Mutant (mp1) in Alfalfa. Master’s Thesis, Lanzhou University, Lanzhou, China, 2017. (In Chinese). [Google Scholar]
- Li, H.; Liang, W.; Yin, C.; Zhu, L.; Zhang, D. Genetic Interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in Specifying Rice Floral Organ Identities and Meristem Determinacy. Plant Physiol. 2011, 156, 263–274. [Google Scholar] [CrossRef]
- Yasui, Y.; Tanaka, W.; Sakamoto, T.; Kurata, T.; Hirano, H. Genetic Enhancer Analysis Reveals that FLORAL ORGAN NUMBER2 and OsMADS3 Co-operatively Regulate Maintenance and Determinacy of the Flower Meristem in Rice. Plant Cell Physiol. 2017, 58, 893–903. [Google Scholar] [CrossRef]
- Ma, S.C.; Zhang, G.S.; Liu, H.W.; Wang, J.W.; Wang, X.L. Studies on the application of multi-ovary character to hybrid wheat I Multi-Ovary Gene Loci and Cytoplasm Effect. Acta Bot. Boreal. Occident. Sin. 2000, 20, 949–953. (In Chinese) [Google Scholar]
- Beppu, K.; Kataoka, I. Artificial shading reduces the occurrence of double pistils in ‘Satohnishiki’ sweet cherry. Sci. Hortic. 2000, 83, 241–247. [Google Scholar] [CrossRef]
- Whiting, M.; Martin, R. Reducing sweet cherry doubling. Good Fruit Grow. 2008, 59, 24–26. [Google Scholar]
- Takeoka, Y.; Hiroi, K.; Kitano, H.; Wada, T. Pistil hyperplasia in rice spikelets as affected by heat stress. Sex. Plant Reprod. 1991, 4, 39–43. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Luo, Q.; Peng, Z.S.; Wei, S.H.; Yang, Z.J.; Yamamoto, N. Genetic mapping of the three-pistil gene Pis1 in an F2 population derived from a synthetic hexaploid wheat using multiple molecular marker systems. Cereal Res. Commun. 2021, 49, 31–36. [Google Scholar] [CrossRef]
- Zhu, X.; Ni, Y.; He, R.; Jiang, Y.; Li, Q.; Niu, J. Genetic mapping and expressivity of a wheat multi-pistil gene in mutant 12TP. J. Integr. Agric. 2019, 18, 532–538. [Google Scholar] [CrossRef]
- Zhou, Y.; Miao, J.; Gu, H.; Peng, X.; Leburu, M.; Yuan, F.; Gu, H.; Gao, Y.; Tao, Y.; Zhu, J.; et al. Natural Variations in SLG7 Regulate Grain Shape in Rice. Genetics 2015, 201, 1591–1599. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, L.; Cui, C.; Zheng, B.; Zhang, K.; Li, Y.; Zhang, T.; Zhou, Y.; Jiang, J.; Li, H.; Zhang, J.; et al. The Multi-Pistil Phenomenon in Higher Plants. Plants 2025, 14, 1125. https://doi.org/10.3390/plants14071125
Chai L, Cui C, Zheng B, Zhang K, Li Y, Zhang T, Zhou Y, Jiang J, Li H, Zhang J, et al. The Multi-Pistil Phenomenon in Higher Plants. Plants. 2025; 14(7):1125. https://doi.org/10.3390/plants14071125
Chicago/Turabian StyleChai, Liang, Cheng Cui, Benchuan Zheng, Ka Zhang, Yanling Li, Tongyun Zhang, Yongchun Zhou, Jun Jiang, Haojie Li, Jinfang Zhang, and et al. 2025. "The Multi-Pistil Phenomenon in Higher Plants" Plants 14, no. 7: 1125. https://doi.org/10.3390/plants14071125
APA StyleChai, L., Cui, C., Zheng, B., Zhang, K., Li, Y., Zhang, T., Zhou, Y., Jiang, J., Li, H., Zhang, J., & Jiang, L. (2025). The Multi-Pistil Phenomenon in Higher Plants. Plants, 14(7), 1125. https://doi.org/10.3390/plants14071125