Microclimatic Influences on Soil Nitrogen Dynamics and Plant Diversity Across Rocky Desertification Gradients in Southwest China
Abstract
:1. Introduction
2. Results
2.1. Soil Properties and Enzyme Characteristics Across Four Desertification Grades and Three Soil Layers in Two Distinct Regions
2.2. Soil C/N, C/P, and N/P Ratios Across Four Grades of Rocky Desertification and Three Soil Layers in Two Regions
2.3. Variations in Herb and Shrub Regeneration Across Rocky Desertification Grades and Microclimates in Two Climate Zones
2.4. Effects of Rocky Desertification and Soil Depth on Soil Active Nitrogen in Two Climate Regions
2.5. The Relationships Between Soil Active Nitrogen Fractions and Physicochemical Properties
2.6. Comparative Analysis of Soil Active Nitrogen Fractions in the Two Climate Areas
3. Discussion
3.1. Variations in Soil Properties and Enzyme Activities Across Four Desertification Gradients and Three Soil Horizons in Two Contrasting Regions
3.2. Variations in Soil Stoichiometric Ratios Across Rocky Desertification Gradients and Soil Layers in Two Regions
3.3. Variations in Plant Diversity and Regeneration Across Rocky Desertification Grades and Microclimates in Two Climate Zones
3.4. Influence of Rocky Desertification and Soil Profile Depth on Soil Active Nitrogen Across Two Climatic Zones
3.5. Linkages Between Soil Active Nitrogen Fractions and Soil Physicochemical Characteristics
3.6. Comparative Analysis of Soil Active Nitrogen Fractions Across Two Climatic Regions
4. Materials and Methods
4.1. Study Sites
4.2. Experimental Design and Soil Sampling Collection
4.3. Soil Sampling Analysis
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wu, Q.; Guo, X.; Zhou, P.; Wu, J.; Yan, W. Rocky desertification succession alters soil microbial communities and survival strategies in the karst context. Sci. Total Environ. 2024, 927, 172171. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wu, Q.; Rao, C.; Chen, X.; Wang, E.; Liang, X.; Yan, W. Characteristics and interactions of soil bacteria, phytocommunity and soil properties in rocky desertification ecosystems of Southwest China. Catena 2023, 220, 106731. [Google Scholar] [CrossRef]
- Guo, B.; Wei, C.; Yu, Y.; Liu, Y.; Li, J.; Meng, C.; Cai, Y. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity? Sci. Total Environ. 2022, 813, 152512. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Liu, M.; Li, X.; Zhang, R.; Wang, K.; Xu, C. State-space prediction of spring discharge in a karst catchment in southwest China. J. Hydrol. 2017, 549, 264–276. [Google Scholar] [CrossRef]
- Du, W.P.; Yan, H.M.; Zhen, L.; Hu, Y.F. The experience and practice of desertification control in karst region of southwest China. Acta Ecol. Sin. 2019, 39, 5798–5808. [Google Scholar] [CrossRef]
- Zheng, W.; Guo, X.; Zhou, P.; Tang, L.; Lai, J.; Dai, Y.; Yan, W.; Wu, J. Vegetation restoration enhancing soil carbon sequestration in karst rocky desertification ecosystems: A meta-analysis. J. Environ. Manag. 2024, 370, 122530. [Google Scholar] [CrossRef]
- Tang, J.; Tang, X.X.; Qin, Y.M.; He, Q.S.; Yi, Y.; Ji, Z.L. Karst rocky desertification progress: Soil calcium as a possible driving force. Sci. Total Environ. 2019, 649, 1250–1259. [Google Scholar] [CrossRef]
- Cheng, J.; Lee, X.; Tang, Y.; Pan, W.; Gao, W.; Chen, Y.; Wang, B.; Cheng, H. Changes in above- and below-ground nitrogen stocks and allocations following the conversion of farmland to forest in rocky desertification regions. Agric. Ecosyst. Environ. 2016, 232, 9–16. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, F.; Jiang, Z.; Li, W.; Zhang, J.; Zeng, F.; Li, H. Relationship between soil depth and terrain attributes in karst region in Southwest China. J. Soils Sediments 2014, 14, 1568–1576. [Google Scholar] [CrossRef]
- Bai, Y.; Sheng, M.; Xiao, H.; Hu, Q. Effects of Typical Rocky Desertification Control Measures on Soil Organic Carbon, Nitrogen, and Components. J. Soil Water Conserv. 2020, 34, 170. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Peng, X.; Wang, X.; Dai, Q.; Ding, G.; Li, C. Soil structure and nutrient contents in underground fissures in a rock-mantled slope in the karst rocky desertification area. Environ. Earth Sci. 2020, 79, 3. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef]
- Yang, J.; Nie, S.; Yang, W.; Chen, C.; Zhang, L.; Zhou, B.; Xing, S. Effects of Various Influencing Factors of Soil Soluble Organic Nitrogen. Acta Pedol. Sin. 2018, 55, 968–979. [Google Scholar]
- Yang, J.; Nie, S.; Yang, W.; Chen, C.; Hang, L.; Zhou, B.; Xing, S. Components under Different Long-term Fertilization Treatments in Paddy Soil. Acta Pedol. Sin. 2018, 55, 955–966. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, L.; Peng, Y.; Wu, J.; Yan, W. Effect of peanut straw mulching on the soil nitrogen change and functional genes in the Camellia oleifera intercropping system. J. Soils Sediments 2024, 24, 3473–3484. [Google Scholar] [CrossRef]
- Xia, Q.; Chen, L.; Xiang, W.; Ouyang, S.; Wu, H.; Lei, P.; Xiao, W.; Li, S.; Zeng, L.; Kuzyakov, Y. Increase of soil nitrogen availability and recycling with stand age of Chinese-fir plantations. For. Ecol. Manag. 2021, 480, 118643. [Google Scholar] [CrossRef]
- Li, L.; Qiu, S.-J.; Chen, Y.-P.; Zhao, X.-M.; Liu, J.-T.; Lu, Z.-H. Response of active nitrogen to salinity in a soil from the Yellow River Delta. Environ. Sci. 2014, 35, 2358–2364. [Google Scholar]
- Chen, L.-X.; Duan, W.-B. Effects of simulated nitrogen deposition on soil available nitrogen forms and their contents in typicaltemperate forest stands. Chin. J. Appl. Ecol. 2011, 22, 2005–2012. [Google Scholar] [CrossRef]
- Song, M.; He, T.; Chen, H.; Wang, K.; Li, D. Dynamics of soil gross nitrogen transformations during post-agricultural succession in a subtropical karst region. Geoderma 2019, 341, 1–9. [Google Scholar] [CrossRef]
- Hobley, E.; Willgoose, G.R.; Frisia, S.; Jacobsen, G. Stability and storage of soil organic carbon in a heavy-textured Karst soil from south-eastern Australia. Soil Res. 2014, 52, 476–482. [Google Scholar] [CrossRef]
- Schmitz, A.; Sanders, T.G.M.; Bolte, A.; Bussotti, F.; Dirnböck, T.; Johnson, J.; Peñuelas, J.; Pollastrini, M.; Prescher, A.-K.; Sardans, J.; et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 2019, 244, 980–994. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Dai, Q.; Hu, G.; Jiao, Q.; Mei, L.; Fu, W. Effects of vegetation type on the microbial characteristics of the fissure soil-plant systems in karst rocky desertification regions of SW China. Sci. Total Environ. 2020, 712, 136543. [Google Scholar] [CrossRef]
- Lins, C.M.T.; de Souza, E.R.; Souza, T.E.M.d.S.; Paulino, M.K.S.S.; Monteiro, D.R.; Júnior, V.S.d.S.; Dourado, P.R.M.; Junior, F.E.d.A.R.; da Silva, Y.J.A.; Schaffer, B. Influence of vegetation cover and rainfall intensity on soil attributes in an area undergoing desertification in Brazil. CATENA 2022, 221, 106751. [Google Scholar] [CrossRef]
- Daunoras, J.; Kačergius, A.; Gudiukaitė, R. Role of soil microbiota enzymes in soil health and activity changes depending on climate change and the type of soil ecosystem. Biology 2024, 13, 85. [Google Scholar] [CrossRef]
- Tariq, A.; Sardans, J.; Zeng, F.; Graciano, C.; Hughes, A.C.; Farré-Armengol, G.; Peñuelas, J. Impact of aridity rise and arid lands expansion on carbon-storing capacity, biodiversity loss, and ecosystem services. Global Change Biol. 2024, 30, e17292. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Li, F. Spatial distribution characteristics of soil water-salt gradients in the ecological buffer zone of arid zone lakes and their influencing factors. J. Clean. Prod. 2024, 444, 141299. [Google Scholar] [CrossRef]
- Fang, X.; Zhu, Y.-L.; Liu, J.-D.; Lin, X.-P.; Sun, H.-Z.; Tang, X.-H.; Hu, Y.-L.; Huang, Y.-P.; Yi, Z.-G. Effects of moisture and temperature on soil organic carbon decomposition along a vegetation restoration gradient of subtropical China. Forests 2022, 13, 578. [Google Scholar] [CrossRef]
- Baradwal, H.; Ghosh, A.; Singh, A.K.; Jiménez-Ballesta, R.; Yadav, R.K.; Misra, S.; Sannagoudar, M.S.; Kumar, S.; Kumar, R.V.; Singh, S.K.; et al. Soil nutrient dynamics under silviculture, silvipasture and hortipasture as alternate land-use systems in semi-arid environment. Forests 2023, 14, 125. [Google Scholar] [CrossRef]
- Díaz, F.J.; Sanchez-Hernandez, J.C.; Notario, J.S. Effects of irrigation management on arid soils enzyme activities. J. Arid Environ. 2021, 185, 104330. [Google Scholar] [CrossRef]
- Lu, J.; Feng, S.; Wang, S.; Zhang, B.; Ning, Z.; Wang, R.; Chen, X.; Yu, L.; Zhao, H.; Lan, D.; et al. Patterns and driving mechanism of soil organic carbon, nitrogen, and phosphorus stoichiometry across northern China’s desert-grassland transition zone. Catena 2023, 220, 106695. [Google Scholar] [CrossRef]
- Filho, J.d.S.O.; Vieira, J.N.; da Silva, E.M.R.; de Oliveira, J.G.B.; Pereira, M.G.; Brasileiro, F.G. Assessing the effects of 17 years of grazing exclusion in degraded semi-arid soils: Evaluation of soil fertility, nutrients pools and stoichiometry. J. Arid Environ. 2019, 166, 1–10. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Bowker, M.A.; Wallenstein, M.D.; Quero, J.L.; Ochoa, V.; Gozalo, B.; García-Gómez, M.; Soliveres, S.; et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 2013, 502, 672–676. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Magallon-Servin, P.; Lopez, B.R.; Nannipieri, P. Biological activities affect the dynamic of P in dryland soils. Biol. Fertil. Soils 2022, 58, 105–119. [Google Scholar] [CrossRef]
- Yue, K.; Peng, Y.; Fornara, D.A.; Van Meerbeek, K.; Vesterdal, L.; Yang, W.; Peng, C.; Tan, B.; Zhou, W.; Xu, Z.; et al. Responses of nitrogen concentrations and pools to multiple environmental change drivers: A meta-analysis across terrestrial ecosystems. Glob. Ecol. Biogeogr. 2019, 28, 690–724. [Google Scholar] [CrossRef]
- Li, Y.; Duan, X.; Li, Y.; Li, Y.; Zhang, L. Interactive effects of land use and soil erosion on soil organic carbon in the dry-hot valley region of southern China. Catena 2021, 201, 105187. [Google Scholar] [CrossRef]
- Griffin-Nolan, R.J.; Felton, A.J.; Slette, I.J.; Smith, M.D.; Knapp, A.K. Traits that distinguish dominant species across aridity gradients differ from those that respond to soil moisture. Oecologia 2023, 201, 311–322. [Google Scholar] [CrossRef]
- Elrys, A.S.; Zhu, Q.; Jiang, C.; Liu, J.; Sobhy, H.H.H.; Shen, Q.; Uwiragiye, Y.; Wu, Y.; El-Tarabily, K.A.; Meng, L.; et al. Global soil nitrogen cycle pattern and nitrogen enrichment effects: Tropical versus subtropical forests. Glob. Change Biol. 2023, 29, 1905–1921. [Google Scholar] [CrossRef]
- Kumari, S.; Maiti, S.K. Nitrogen recovery in reclaimed mine soil under different amendment practices in tandem with legume and non-legume revegetation: A review. Soil Use Manag. 2022, 38, 1113–1145. [Google Scholar] [CrossRef]
- Smith, P.; Calvin, K.; Nkem, J.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Le Hoang, A.; Lwasa, S.; McElwee, P.; et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Global Change Biol. 2020, 26, 1532–1575. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Traoré, S.; Ouattara, K.; Ilstedt, U.; Schmidt, M.; Thiombiano, A.; Malmer, A.; Nyberg, G. Effect of land degradation on carbon and nitrogen pools in two soil types of a semi-arid landscape in West Africa. Geoderma 2015, 241–242, 330–338. [Google Scholar] [CrossRef]
- Tarrasón, D.; Ravera, F.; Reed, M.; Dougill, A.; Gonzalez, L. Land degradation assessment through an ecosystem services lens: Integrating knowledge and methods in pastoral semi-arid systems. J. Arid Environ. 2016, 124, 205–213. [Google Scholar] [CrossRef]
- Smith, J.L. Cycling of nitrogen through microbial activity. In Soil Biology; CRC Press: Boca Raton, FL, USA, 2018; pp. 91–120. [Google Scholar]
- Mandal, S.; Donner, E.; Vasileiadis, S.; Skinner, W.; Smith, E.; Lombi, E. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil. Sci. Total Environ. 2018, 627, 942–950. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.; Parra-Saldívar, R. Soil carbon sequestration—An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef]
- Schleuss, P.M.; Widdig, M.; Heintz-Buschart, A.; Kirkman, K.; Spohn, M. Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant-growth responses. Ecology 2020, 101, e03003. [Google Scholar] [CrossRef]
- Kooch, Y.; Amani, M.; Abedi, M. The effect of shrublands degradation intensity on soil organic matter-associated properties in a semi-arid ecosystem. Sci. Total Environ. 2022, 853, 158664. [Google Scholar] [CrossRef]
- Ramond, J.-B.; Jordaan, K.; Díez, B.; Heinzelmann, S.M.; Cowan, D.A. Microbial Biogeochemical Cycling of Nitrogen in Arid Ecosystems. Microbiol. Mol. Biol. Rev. 2022, 86, e0010921. [Google Scholar] [CrossRef]
- Parfitt, R.; Yeates, G.; Ross, D.; Mackay, A.; Budding, P. Relationships between soil biota, nitrogen and phosphorus availability, and pasture growth under organic and conventional management. Appl. Soil Ecol. 2005, 28, 1–13. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, Y.; Zhang, Y.; Cui, Y.; Wu, J.; Zhang, W.; Wang, D.; Zou, J. Interactions between nitrogen and phosphorus in modulating soil respiration: A meta-analysis. Sci. Total Environ. 2023, 905, 167346. [Google Scholar] [CrossRef] [PubMed]
- Homyak, P.M.; Allison, S.D.; Huxman, T.E.; Goulden, M.L.; Treseder, K.K. Effects of drought manipulation on soil nitrogen cycling: A meta-analysis. J. Geophys. Res. Biogeosci. 2017, 122, 3260–3272. [Google Scholar] [CrossRef]
- Rial, M.; Cortizas, A.M.; Rodríguez-Lado, L. Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils. Sci. Total Environ. 2017, 609, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Pang, P.; Kang, Q.; Li, X. Determination of Total Phosphorus in Soil by Ammonium Molybdate Spectrophotometry. Chin. J. Spectrosc. Lab. 2003, 20, 697–699. [Google Scholar]
Dry-Hot Valley Climate Zone | ||||||||
---|---|---|---|---|---|---|---|---|
Rocky Desertification Grades | Depth | SMC (%) | pH | SOC (g/kg) | TN (g/kg) | TP (g/kg) | Urease (mg/g) | Protease (mg/g) |
A | 18.64 ± 0.22 Ca | 8.24 ± 027 Aa | 13.65 ± 0.45 Aa | 1.84 ± 0.09 Da | 0.35 ± 0.08 Ca | 1.06 ± 0.10 Bc | 0.04 ± 0.00 Ab | |
NRD | B | 19.89 ± 1.0.9 Ba | 8.22 ± 0.02 Aa | 7.18 ± 0.67 Ab | 1.38 ± 0.08 Cb | 0.36 ± 0.05 Ca | 0.38 ± 0.07 Ab | 0.04 ± 0.00 Aab |
C | 21.27 ± 1.78 Ba | 8.12 ± 0.12 Aa | 4.40 ± 0.54 Ac | 1.14 ± 0.04 Cc | 0.29 ± 0.03 Ca | 0.12 ± 0.05 Aa | 0.04 ± 0.00 Ba | |
A | 20.32 ± 0.34 BCa | 8.13 ± 0.06 ABa | 26.79 ± 1.30 Ba | 2.49 ± 0.11 Ca | 0.92 ± 0.15 Ba | 1.93 ± 0.27 Ca | 0.05 ± 0.01 Ab | |
LRD | B | 20.83 ± 0.99 Ba | 8.08 ± 0.02 Ba | 21.97 ± 1.68 Bb | 2.05 ± 0.05 Bb | 0.84 ± 0.11 Ba | 2.09 ± 0.68 Ba | 0.04 ± 0.01 Ab |
C | 21.60 ± 1.03 Ba | 8.01 ± 0.07 Aa | 19.10 ± 0.07 Bc | 1.97 ± 0.04 Bb | 0.72 ± 0.04 Ba | 1.38 ± 0.37 Ca | 0.02 ± 0.00 Aa | |
A | 23.48 ± 0.89 ABb | 7.84 ± 0.07 BCa | 19.20 ± 1.95 Ca | 2.15 ± 0.036 Ba | 0.81 ± 0.26 BCa | 0.50 ± 0.09 Ab | 0.06 ± 0.01 Ab | |
MRD | B | 24.17 ± 0.06 Aab | 7.46 ± 0.06 Cb | 16.79 ± 2.01 Cab | 1.95 ± 0.08 Bb | 0.79 ± 0.24 Ba | 0.26 ± 0.07 Aa | 0.05 ± 0.01 Aab |
C | 24.24 ± 0.49 ABa | 7.37 ± 0.06 Bb | 13.71 ± 1.57 Cb | 1.83 ± 0.09 Bb | 0.67 ± 0.12 Ba | 0.14 ± 0.01 Aa | 0.04 ± 0.01 Ba | |
A | 25.90 ± 2.47 Aa | 7.52 ± 0.22 Ca | 30.83 ± 1.67 Da | 3.32 ± 0.05 Aa | 1.92 ± 0.24 Aa | 0.77 ± 0.08 ABa | 0.05 ± 0.01 Aab | |
IRD | B | 26.18 ± 1.40 Aa | 7.43 ± 0.04 Cab | 30.72 ± 1.31 Da | 3.04 ± 0.05 Ab | 1.79 ± 0.11 Aa | 0.75 ± 0.07 Aa | 0.05 ± 0.03 Ab |
C | 27.08 ± 1.70 Aa | 7.36 ± 0.04 Bb | 25.30 ± 2.61 Db | 2.74 ± 0.11 Ac | 1.61 ± 0.24 Aa | 0.71 ± 0.07 Ba | 0.02 ± 0.00 Aa | |
Humid Monsoon Climate Zone | ||||||||
A | 16.18 ± 3.15 Aa | 7.58 ± 0.02 Ca | 42.06 ± 4.25 Ba | 3.47 ± 0.22 Ba | 1.05 ± 0.27 Ba | 1.18 ± 0.29 Ba | 0.06 ± 0.01 Cb | |
NRD | B | 18.7 ± 4.66 Aa | 7.61 ± 0.10 Ca | 37.94 ± 5.44 Ba | 3.37 ± 0.22 Ba | 0.92 ± 0.19 Ba | 1.04 ± 0.07 Ca | 0.04 ± 0.01 Cab |
C | 18.85 ± 2.72 Aa | 7.65 ± 0.05 Ca | 37.89 ± 8.25 Ba | 2.97 ± 0.64 Ba | 0.83 ± 0.17 Ba | 0.86 ± 0.16 Ca | 0.04 ± 0.01 Ba | |
A | 17.24 ± 0.06 Aa | 6.04 ± 0.35 Aa | 20.36 ± 3.31 Aa | 1.68 ± 0.20 Ab | 0.37 ± 0.04 Ab | 0.73 ± 0.01 Ac | 0.05 ± 0.01 Bcb | |
LRD | B | 18.08 ± 0.58 Aa | 6.2 ± 0.41 Aa | 17.03 ± 0.09 Aa | 1.32 ± 0.09 Aab | 0.31 ± 0.01 Aab | 0.22 ± 0.08 Ab | 0.03 ± 0.00 Bca |
C | 19.41 ± 2.00 Aa | 6.38 ± 0.44 Aa | 16.96 ± 0.09 Aa | 1.09 ± 0.25 Aa | 0.27 ± 0.05 Aa | 0.11 ± 0.02 Aa | 0.03 ± 0.00 Ba | |
A | 19.18 ± 1.23 Aa | 5.99 ± 0.05 Aa | 21.98 ± 4.34 Aa | 1.88 ± 0.29 Aa | 0.59 ± 0.09 Aa | 0.51 ± 0.07 Ac | 0.04 ± 0.02 ABb | |
MRD | B | 19.88 ± 0.23 Aa | 6 ± 0.15 Aa | 20.91 ± 3.86 Aa | 1.56 ± 0.58 Aa | 0.42 ± 0.17 Aa | 0.36 ± 0.04 Bb | 0.03 ± 0.01 ABab |
C | 21.39 ± 1.98 ABa | 6.17 ± 0.20 Aa | 20.47 ± 5.54 Aa | 1.37 ± 0.61 Aa | 0.38 ± 0.19 Aa | 0.13 ± 0.02 Aa | 0.01 ± 0.00 Aa | |
A | 25.85 ± 1.47 Ba | 6.94 ± 0.18 Ba | 35.67 ± 1.92 Ba | 3.74 ± 0.32 Ba | 0.94 ± 0.05 Ba | 0.68 ± 0.11 Ab | 0.02 ± 0.00 Ab | |
IRD | B | 26.06 ± 4.12 Ba | 6.95 ± 0.09 Ba | 34.51 ± 3.92 Ba | 3.44 ± 0.60 Ba | 0.82 ± 0.16 Ba | 0.43 ± 0.09 Ba | 0.02 ± 0.00 Aab |
C | 27.26 ± 3.13 Ba | 7.02 ± 0.04 Ba | 31.21 ± 1.94 Ba | 3.18 ± 0.38 Ba | 0.76 ± 0.12 Ba | 0.35 ± 0.10 Ba | 0.01 ± 0.00 Aa |
Dry-Hot Valley Climate Zone | ||||
---|---|---|---|---|
Rocky Desertification Grades | Soil Depth | C/N | C/P | N/P |
A | 7.42 ± 0.38 Ac | 40.69 ± 9.10 Aa | 5.45 ± 1.00 Aa | |
NRD | B | 5.22 ± 0.20 Ab | 20.37 ± 2.60 ABb | 3.90 ± 0.43 Cb |
C | 3.85 ± 0.38 Aa | 15.40 ± 3.85 Ab | 3.96 ± 0.58 Cb | |
A | 10.77 ± 0.41 Cb | 29.59 ± 4.04 ABa | 2.76 ± 0.47 Ba | |
LRD | B | 10.71 ± 0.75 Cb | 26.54 ± 5.22 Ba | 2.47 ± 0.32 ABa |
C | 9.68 ± 0.20 Ca | 26.52 ± 1.56 Ca | 2.74 ± 0.21 Ba | |
A | 8.91 ± 0.81 Ba | 25.64 ± 9.31 Ba | 2.84 ± 0.82 Ba | |
MRD | B | 8.6 ± 0.68 Ba | 22.21 ± 5.34 ABa | 2.59 ± 0.63 Ba |
C | 7.51 ± 0.81 Ba | 20.80 ± 1.81 Ba | 2.80 ± 0.46 Ba | |
A | 9.3 ± 0.62 Ba | 16.26 ± 2.86 Ba | 1.74 ± 0.21 Ba | |
IRD | B | 10.11 ± 0.54 Ca | 17.17 ± 0.33 Aa | 1.70 ± 0.12 Aa |
C | 9.22 ± 0.73 Ca | 15.78 ± 1.42 Aa | 1.72 ± 0.20 Aa | |
Humid Monsoon Climate Zone | ||||
A | ||||
NRD | B | 11.2 ± 0.93 Aa | 42.82 ± 13.78 Aa | 3.78 ± 0.97 Aa |
C | 12.81 ± 1.18 Aa | 48.78 ± 21.81 Aa | 3.78 ± 1.50 Aa | |
A | 12.12 ± 0.85 Ba | 54.47 ± 4.31 Aa | 4.50 ± 0.45 Ba | |
LRD | B | 12.93 ± 0.86 Aa | 54.74 ± 2.36 Aa | 4.24 ± 0.32 Aa |
C | 16.12 ± 3.71 Aa | 63.08 ± 12.04 Aa | 3.95 ± 0.40 Aa | |
A | 11.74 ± 1.93 Ba | 37.78 ± 8.49 Aa | 3.19 ± 0.24 Aa | |
MRD | B | 14.67 ± 5.46 Aa | 54.83 ± 20.67 Aa | 3.75 ± 0.37 Aa |
C | 16.25 ± 5.49 Aa | 62.27 ± 28.60 Aa | 3.74 ± 0.42 Aa | |
A | 9.56 ± 0.49 Aa | 37.88 ± 0.30 Aa | 3.97 ± 0.24 ABa | |
IRD | B | 10.13 ± 0.73 Aa | 42.60 ± 3.75 Aa | 4.21 ± 0.28 Aa |
C | 9.87 ± 0.74 Aa | 41.79 ± 5.97 Aa | 4.22 ± 0.29 Aa |
Genus (Species) | NRD (Herb) Zone 1 | NRD (Shrub) Zone 1 | LRD (Herb) Zone 1 | LRD (Shrub) Zone 1 | MRD (Herb) Zone 1 | MRD (Shrub) Zone 1 | IRD (Herb) Zone 1 | IRD (Shrub) Zone 1 | NRD (Herb) Zone 2 | NRD (Shrub) Zone 2 | LRD (Herb) Zone 2 | LRD (Shrub) Zone 2 | MRD (Herb) Zone 2 | MRD (Shrub) Zone 2 | IRD (Herb) Zone 2 | IRD (Shrub) Zone 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Artemisia (Artemisia) | 24 (20%) | 5 (33%) | 48 (24%) | 5 (14%) | 69 (52%) | 1 (4%) | 5 (7%) | 4 (27%) | 5 (7%) | 0 | 0 | 0 | 5 (10%) | 0 | 0 | 0 |
Rubia (Rubia) | 5 (4%) | 9 (25%) | 0 | 0 | 0 | 0 | 1 (7%) | 4 (27%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Vicia (Vicia) | 14 (11%) | 1 (3%) | 0 | 0 | 25 (19%) | 1 (4%) | 23 (33%) | 0 | 0 | 0 | 0 | 0 | 14 (20%) | 1 (6%) | 0 | 0 |
Adiantum (Adiantum) | 8 (7%) | 1 (3%) | 0 | 0 | 0 | 1 (4%) | 2 (3%) | 1 (7%) | 0 | 0 | 0 | 0 | 8 (13%) | 0 | 0 | 0 |
Amaranthus (Amaranthus) | 3 (2%) | 4 (11%) | 0 | 0 | 0 | 0 | 9 (13%) | 4 (27%) | 0 | 0 | 0 | 0 | 3 (5%) | 4 (15%) | 0 | 0 |
Bidens (Bidens) | 10 (8%) | 1 (3%) | 0 | 0 | 13 (10%) | 0 | 1 (1%) | 2 (13%) | 2 (3%) | 1 (3%) | 0 | 0 | 8 (10%) | 0 | 0 | 0 |
Ivy (Ivy) | 3 (2%) | 2 (6%) | 5 (2%) | 0 | 6 (5%) | 2 (13%) | 7 (10%) | 0 | 0 | 2 (3%) | 5 (6%) | 0 | 3 (8%) | 0 | 2 (3%) | |
Stachys (Stachys) | 2 (2%) | 5 (14%) | 0 | 0 | 11 (8%) | 3 (12%) | 9 (13%) | 4 (27%) | 0 | 5 (10%) | 0 | 0 | 12 (10%) | 0 | 0 | 0 |
Taraxacum (Taraxacum) | 10 (8%) | 1 (3%) | 10 (8%) | 0 | 4 (3%) | 1 (4%) | 5 (7%) | 0 | 0 | 0 | 5 (5%) | 0 | 10 (15%) | 0 | 5 (5%) | 0 |
Gynura (Gynura) | 10 (8%) | 0 | 0 | 5 (2%) | 0 | 5 (19%) | 5 (7%) | 2 (13%) | 0 | 0 | 0 | 0 | 10 (8%) | 0 | 0 | 0 |
Epimedium (Epimedium) | 2 (2%) | 0 | 0 | 1 (4%) | 0 | 2 (8%) | 0 | 4 (27%) | 0 | 0 | 0 | 0 | 2 (5%) | 0 | 0 | 0 |
Phyllitis (Phyllitis) | 16 (13%) | 0 | 23 (0%) | 9 (5%) | 0 | 4 (15%) | 5 (7%) | 2 (13%) | 0 | 0 | 0 | 0 | 16 (20%) | 0 | 0 | 0 |
Clematis (Clematis) | 3 (2%) | 0 | 0 | 0 | 0 | 1 (4%) | 0 | 4 (27%) | 0 | 0 | 0 | 0 | 3 (5%) | 0 | 0 | 0 |
Total Herbs | 101 | 60 | 30 | 31 | 15 | 5 | 45 | 3 | ||||||||
Total Shrubs | 73 | 56 | 14 | 14 |
Rocky Desertification Grades | Exposed Rate of Bedrock | Soil Depth Condition | Vegetation Characteristics |
---|---|---|---|
NRD | 0~30% | The soil layer is deep and easy to collect | Trees are dominant, shrubs and herbs are secondary |
LRD | 30~50% | The soil layer is shallow and it is difficult to collect samples | Few trees, mainly shrubs and herbs |
MRD | 50~70% | The soil layer is shallow and it is difficult to collect samples | There are almost no trees, mainly shrubs and herbs |
IRD | >70% | The soil layer is shallow and it is very difficult to collect samples | Mainly herbs and shrubs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Rao, C.; Yan, W.; Peng, Y.; Wang, E.; Chen, X. Microclimatic Influences on Soil Nitrogen Dynamics and Plant Diversity Across Rocky Desertification Gradients in Southwest China. Plants 2025, 14, 1251. https://doi.org/10.3390/plants14081251
Wu Q, Rao C, Yan W, Peng Y, Wang E, Chen X. Microclimatic Influences on Soil Nitrogen Dynamics and Plant Diversity Across Rocky Desertification Gradients in Southwest China. Plants. 2025; 14(8):1251. https://doi.org/10.3390/plants14081251
Chicago/Turabian StyleWu, Qian, Chengjiao Rao, Wende Yan, Yuanying Peng, Enwen Wang, and Xiaoyong Chen. 2025. "Microclimatic Influences on Soil Nitrogen Dynamics and Plant Diversity Across Rocky Desertification Gradients in Southwest China" Plants 14, no. 8: 1251. https://doi.org/10.3390/plants14081251
APA StyleWu, Q., Rao, C., Yan, W., Peng, Y., Wang, E., & Chen, X. (2025). Microclimatic Influences on Soil Nitrogen Dynamics and Plant Diversity Across Rocky Desertification Gradients in Southwest China. Plants, 14(8), 1251. https://doi.org/10.3390/plants14081251