Previous Issue
Volume 9, June
 
 

Inventions, Volume 9, Issue 4 (August 2024) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 4943 KiB  
Article
Analysis of a Newly Developed Afterburner System Employing Hydrogen–Methane Blends
by Florin Gabriel Florean, Andreea Mangra, Marius Enache, Razvan Carlanescu, Alexandra Taranu and Madalina Botu
Inventions 2024, 9(4), 74; https://doi.org/10.3390/inventions9040074 (registering DOI) - 11 Jul 2024
Viewed by 127
Abstract
A considerable number of Combined Heat and Power (CHP) systems continue to depend on fossil fuels like oil and natural gas, contributing to significant environmental pollution and the release of greenhouse gases. Two V-gutter flame holder prototypes (P1 and P2) with the same [...] Read more.
A considerable number of Combined Heat and Power (CHP) systems continue to depend on fossil fuels like oil and natural gas, contributing to significant environmental pollution and the release of greenhouse gases. Two V-gutter flame holder prototypes (P1 and P2) with the same expansion angle, fueled with pure hydrogen (100% H2) or hydrogen–methane mixtures (60% H2 + 40% CH4, 80% H2 + 20% CH4), intended for use in cogeneration applications, have been designed, manufactured, and tested. Throughout the tests, the concentrations of CO2, CO, and NO in the flue gas were monitored, and particle image velocimetry (PIV) measurements were performed. The CO, CO2, respectively, and NO emissions gradually decreased as the percentage of H2 in the fuel mixture increased. The NO emissions were significantly lower in the case of prototype P2 in comparison with prototype P1 in all measurement points for all used fuel mixtures. The shortest recirculation zone was observed for P1, where the axial velocity reaches a negative peak of approximately 12 m/s at roughly 50 mm downstream of the edge of the flame holder, and the recirculation region spans about 90 mm. In comparison, the P2 prototype has a length of the recirculation region span of about 100 mm with a negative peak of approximately 14 m/s. The data reveal high gradients in flow velocity near the flow separation point, which gradually smooth out with increasing downstream distance. Despite their similar design, P2 consistently performs better across all measured velocity components. This improvement can be attributed to the larger fuel injection holes, which enhance fuel–air mixing and combustion stability. Additionally, the presence of side walls directing the flow around the flame stabilizer further aids in maintaining a stable combustion process. Full article
(This article belongs to the Special Issue Thermodynamic and Technical Analysis for Sustainability (Volume 3))
Show Figures

Figure 1

26 pages, 2408 KiB  
Article
Approximate Closed-Form Solution of the Differential Equation Describing Droplet Flight during Sprinkler Irrigation
by Dario Friso
Inventions 2024, 9(4), 73; https://doi.org/10.3390/inventions9040073 (registering DOI) - 10 Jul 2024
Viewed by 160
Abstract
Sprinkler irrigation is widely used in agriculture because it allows for rational use of water. However, it can induce negative effects of soil erosion and of surface waterproofing. The scholars of these phenomena use the numerical integration of the equation of motion, but [...] Read more.
Sprinkler irrigation is widely used in agriculture because it allows for rational use of water. However, it can induce negative effects of soil erosion and of surface waterproofing. The scholars of these phenomena use the numerical integration of the equation of motion, but if there was an analytical solution, the study would be facilitated, and this solution could be used as software for regulating sprinklers. Therefore, in this study, the solution of the differential equation of the flight of droplets produced by sprinklers in the absence of wind was developed. The impossibility of an exact analytical solution to the ballistic problem due to the variability of the drag coefficient of the droplets is known; therefore, to find the integrals in closed form, the following were adopted: a new formula for the drag coefficient; a projection of the dynamic’s equation onto two local axes, one tangent and one normal to the trajectory and some linearization. To reduce the errors caused by the latter, the linearization coefficients and their calculation formulas were introduced through multiple non-linear regressions with respect to the jet angle and the initial droplet speed. The analytical modeling obtained, valid for jet angles from 10° to 40°, was compared to the exact numerical solution, showing, for the total travel distance, a high accuracy with a mean relative error MRE of 1.8% ± 1.4%. Even the comparison with the experimental data showed high accuracy with an MRE of 2.5% ±1.1%. These results make the analytical modeling capable of reliably calculating the travel distance, the flight time, the maximum trajectory height, the final fall angle and the ground impact speed. Since the proposed analytical modeling uses only elementary functions, it can be implemented in PLC programmable logic controllers, which could be useful for controlling water waste and erosive effects on the soil during sprinkler irrigation. Full article
(This article belongs to the Special Issue New Sights in Fluid Mechanics and Transport Phenomena)
Show Figures

Figure 1

15 pages, 6067 KiB  
Article
TCAD Modelling of Magnetic Hall Effect Sensors
by Vartika Pandey, Vlad Marsic, Petar Igic and Soroush Faramehr
Inventions 2024, 9(4), 72; https://doi.org/10.3390/inventions9040072 - 10 Jul 2024
Viewed by 269
Abstract
In this paper, a gallium nitride (GaN) magnetic Hall effect current sensor is simulated in 2D and 3D using the TCAD Sentaurus simulation toolbox. The model takes into account the piezoelectric polarization effect and the Shockley–Read–Hall (SRH) and Fermi–Dirac statistics for all simulations. [...] Read more.
In this paper, a gallium nitride (GaN) magnetic Hall effect current sensor is simulated in 2D and 3D using the TCAD Sentaurus simulation toolbox. The model takes into account the piezoelectric polarization effect and the Shockley–Read–Hall (SRH) and Fermi–Dirac statistics for all simulations. The galvanic transport model of TCAD Sentaurus is used to model the Lorentz force and magnetic behaviour of the sensor. The current difference, total current, and sensitivity simulations are systematically calibrated against experimental data. The sensor is optimised using varying geometrical and biasing parameters for various ambient temperatures. This unintentionally doped ungated current sensor has enhanced sensitivity to 16.5 %T1 when reducing the spacing between the drains to 1 μm and increasing the source to drain spacing to 76 μm. It is demonstrated that the sensitivity degrades at 448 K (S = 12 %T−1), 373 K (S = 14.1 %T−1) compared to 300 K (S = 16.5 %T−1). The simulation results demonstrate a high sensitivity of GaN sensors at elevated temperatures, outperforming silicon counterparts. Full article
(This article belongs to the Special Issue Novel Magnetic Materials and Magnetism in Spintronics)
Show Figures

Figure 1

28 pages, 4064 KiB  
Article
Modeling and Simulation of a 2SPU-RU Parallel Mechanism for a Prosthetic Ankle with Three Degrees of Freedom
by Victoria E. Abarca and Dante A. Elias
Inventions 2024, 9(4), 71; https://doi.org/10.3390/inventions9040071 - 9 Jul 2024
Viewed by 178
Abstract
To assist an individual with an amputation in regaining daily quality of life, a 2SPU-RU type parallel mechanism was developed based on ankle biomechanics. The inverse kinematic analysis of this mechanism was performed using the vector method. Subsequently, the Jacobian matrices were analyzed. [...] Read more.
To assist an individual with an amputation in regaining daily quality of life, a 2SPU-RU type parallel mechanism was developed based on ankle biomechanics. The inverse kinematic analysis of this mechanism was performed using the vector method. Subsequently, the Jacobian matrices were analyzed. The dynamic model of the mechanism was then created based on the principle of virtual work, and its theoretical solution was compared with numerical results obtained in a simulation environment. Additionally, the validity of the dynamic model and the inverse kinematics was verified by comparing theoretical and simulation results for the movements of plantarflexion–dorsiflexion, eversion–inversion, and abduction–adduction during the gait cycle. Full article
19 pages, 1590 KiB  
Article
Adaptive Variable Design Algorithm for Improving Topology Optimization in Additive Manufacturing Guided Design
by Abraham Vadillo Morillas, Jesús Meneses Alonso, Alejandro Bustos Caballero, Cristina Castejón Sisamón and Alessandro Ceruti
Inventions 2024, 9(4), 70; https://doi.org/10.3390/inventions9040070 - 1 Jul 2024
Viewed by 378
Abstract
CAD-CAE software companies have introduced numerous tools aimed at facilitating topology optimization through Finite Element Simulation, thereby enhancing accessibility for designers via user-friendly interfaces. However, the imposition of intricate constraint conditions or additional restrictions during calculations may introduce instability into the resultant outcomes. [...] Read more.
CAD-CAE software companies have introduced numerous tools aimed at facilitating topology optimization through Finite Element Simulation, thereby enhancing accessibility for designers via user-friendly interfaces. However, the imposition of intricate constraint conditions or additional restrictions during calculations may introduce instability into the resultant outcomes. In this paper, an algorithm for updating the design variables called Adaptive Variable Design is proposed to keep the final design space volume of the optimized part consistently under the target value while giving the main algorithm multiple chances to update the optimization parameters and search for a valid design. This algorithm aims to produce results that are more conducive to manufacturability and potentially more straightforward in interpretation. A comparison between several commercial software packages and the proposed algorithm, implemented in MATLAB R2023a, is carried out to prove the robustness of the latter. By simulating identical parts under similar conditions, we seek to generate comparable results and underscore the advantages stemming from the adoption and comprehension of the proposed topology optimization methodology. Our findings reveal that the integrated enhancements within MATLAB pertaining to the topology optimization process yield favourable outcomes with respect to discretization and the manufacturability of the resultant geometries. Furthermore, we assert that the methodology evaluated within MATLAB holds promise for potential integration into commercial packages, thereby enhancing the efficiency of topology optimization processes. Full article
(This article belongs to the Special Issue Innovations in 3D Printing 3.0)
22 pages, 5609 KiB  
Article
Road Anomaly Detection with Unknown Scenes Using DifferNet-Based Automatic Labeling Segmentation
by Phuc Thanh-Thien Nguyen, Toan-Khoa Nguyen, Dai-Dong Nguyen, Shun-Feng Su and Chung-Hsien Kuo
Inventions 2024, 9(4), 69; https://doi.org/10.3390/inventions9040069 - 28 Jun 2024
Viewed by 358
Abstract
Obstacle avoidance is essential for the effective operation of autonomous mobile robots, enabling them to detect and navigate around obstacles in their environment. While deep learning provides significant benefits for autonomous navigation, it typically requires large, accurately labeled datasets, making the data’s preparation [...] Read more.
Obstacle avoidance is essential for the effective operation of autonomous mobile robots, enabling them to detect and navigate around obstacles in their environment. While deep learning provides significant benefits for autonomous navigation, it typically requires large, accurately labeled datasets, making the data’s preparation and processing time-consuming and labor-intensive. To address this challenge, this study introduces a transfer learning (TL)-based automatic labeling segmentation (ALS) framework. This framework utilizes a pretrained attention-based network, DifferNet, to efficiently perform semantic segmentation tasks on new, unlabeled datasets. DifferNet leverages prior knowledge from the Cityscapes dataset to identify high-entropy areas as road obstacles by analyzing differences between the input and resynthesized images. The resulting road anomaly map was refined using depth information to produce a robust drivable area and map of road anomalies. Several off-the-shelf RGB-D semantic segmentation neural networks were trained using pseudo-labels generated by the ALS framework, with validation conducted on the GMRPD dataset. Experimental results demonstrated that the proposed ALS framework achieved mean precision, mean recall, and mean intersection over union (IoU) rates of 80.31%, 84.42%, and 71.99%, respectively. The ALS framework, through the use of transfer learning and the DifferNet network, offers an efficient solution for semantic segmentation of new, unlabeled datasets, underscoring its potential for improving obstacle avoidance in autonomous mobile robots. Full article
Show Figures

Graphical abstract

13 pages, 4326 KiB  
Article
Design Principles for Laser-Printed Macrofluidics
by Gilad Gome, Ofra Benny, Oded Shoseyov and Jonathan Giron
Inventions 2024, 9(4), 68; https://doi.org/10.3390/inventions9040068 - 26 Jun 2024
Viewed by 717
Abstract
This paper presents a novel method for fabricating fluidic circuits using laser printing technology. The method allows for rapid prototyping of macrofluidic devices with control over fluid manipulation and environmental conditions. We employed a high-resolution laser cutter to etch fluidic channels into various [...] Read more.
This paper presents a novel method for fabricating fluidic circuits using laser printing technology. The method allows for rapid prototyping of macrofluidic devices with control over fluid manipulation and environmental conditions. We employed a high-resolution laser cutter to etch fluidic channels into various substrates, optimizing parameters such as laser power, speed, and substrate material. Our results demonstrate excellent performance in controlling fluid flow and maintaining environmental conditions, handling a wide range of fluids and flow rates. The devices were tested in multiple settings such as with high school students and in research laboratories in universities. We tested the laser-printed macrofluidcs mechanically for durability. We present previous works in microbiology with plants, microbial, and mammalian cell lines showing reliable operation with minimal leakage and consistent fluid dynamics. The versatility and scalability of this approach make it a promising tool for advancing research and innovation in fluidics, providing a robust platform for growing, manipulating, and experimenting with diverse biological systems from cells to whole organisms. We conclude that laser-printed macrofluidics can significantly contribute to fields such as biomedical research, synthetic biology, tissue engineering, and STEM education. Full article
(This article belongs to the Section Inventions and Innovation in Biotechnology and Materials)
Show Figures

Figure 1

Previous Issue
Back to TopTop