Previous Issue
Volume 8, April
 
 

Designs, Volume 8, Issue 3 (June 2024) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 3138 KiB  
Article
A Current Design Approach for Ming Chairs
by Yifan Bai, Khairul Manami Kamarudin and Hassan Alli
Designs 2024, 8(3), 42; https://doi.org/10.3390/designs8030042 - 8 May 2024
Viewed by 245
Abstract
Ergonomics are key in the design and application of Ming-style chairs. However, there are presently few specific design frameworks to guide Ming-style chair design. Under this background, the present study developed a questionnaire on the ergonomic design of Ming-style chairs and assessed its [...] Read more.
Ergonomics are key in the design and application of Ming-style chairs. However, there are presently few specific design frameworks to guide Ming-style chair design. Under this background, the present study developed a questionnaire on the ergonomic design of Ming-style chairs and assessed its validity and reliability. Fifty-two respondents involved in the design and manufacture of Ming-style chairs participated in this study. The statistics of the questionnaire were analyzed and yielded a significant reliability coefficient (α > 0.70, p < 0.01). This ergonomic design framework study of Ming-style chairs analyzed the domains of Chair Form, Aesthetics, Safety, Comfort, Ease-of-use, and Productivity. To assess the importance of various design elements, we used a five-point Likert scale to score items within each domain. This scoring system enabled us to prioritize features, allowing the designers to focus on the essential elements before beginning the design process. We found that designers and manufacturers focused primarily on the Four-headed Official Chair with Armrests form. Full article
Show Figures

Figure 1

13 pages, 13613 KiB  
Article
A Simplified Design Method for the Mechanical Stability of Slit-Shaped Additively Manufactured Reactor Modules
by David F. Metzger, Christoph Klahn and Roland Dittmeyer
Designs 2024, 8(3), 41; https://doi.org/10.3390/designs8030041 - 7 May 2024
Viewed by 165
Abstract
Equipment integrity is an essential aspect of process engineering. Design guidelines facilitate the design and production of safe-to-operate and economic devices. Thin-walled, slit-shaped modules form a subgroup of process engineering devices made via additive manufacturing (AM). Being subject to internal pressure, they have [...] Read more.
Equipment integrity is an essential aspect of process engineering. Design guidelines facilitate the design and production of safe-to-operate and economic devices. Thin-walled, slit-shaped modules form a subgroup of process engineering devices made via additive manufacturing (AM). Being subject to internal pressure, they have lacked design guidelines until now. We derived a user-centered calculation model for such modules with regular internal structures. It was validated with Finite Element Analysis (FEA) and practical pressure tests for which the modules were manufactured additively. The performance of the calculation could be confirmed, and a design graph was derived. Slit-shaped modules with appropriate internal structures can withstand high pressure at a minimum wall thickness, and they are efficiently fabricated. These structures, being pins, fins, lattice, or heat transfer enhancing fluid-guiding elements (FGEs), occupied approximately 10% of the modules’ internal volume. Full article
Show Figures

Figure 1

26 pages, 6315 KiB  
Article
Scalable Compositional Digital Twin-Based Monitoring System for Production Management: Design and Development in an Experimental Open-Pit Mine
by Nabil El Bazi, Oussama Laayati, Nouhaila Darkaoui, Adila El Maghraoui, Nasr Guennouni, Ahmed Chebak and Mustapha Mabrouki
Designs 2024, 8(3), 40; https://doi.org/10.3390/designs8030040 - 7 May 2024
Viewed by 556
Abstract
While digital twins (DTs) have recently gained prominence as a viable option for creating reliable asset representations, many existing frameworks and architectures in the literature involve the integration of different technologies and paradigms, including the Internet of Things (IoTs), data modeling, and machine [...] Read more.
While digital twins (DTs) have recently gained prominence as a viable option for creating reliable asset representations, many existing frameworks and architectures in the literature involve the integration of different technologies and paradigms, including the Internet of Things (IoTs), data modeling, and machine learning (ML). This complexity requires the orchestration of these different technologies, often resulting in subsystems and composition frameworks that are difficult to seamlessly align. In this paper, we present a scalable compositional framework designed for the development of a DT-based production management system (PMS) with advanced production monitoring capabilities. The conducted approach used to design the compositional framework utilizes the Factory Design and Improvement (FDI) methodology. Furthermore, the validation of our proposed framework is illustrated through a case study conducted in a phosphate screening station within the context of the mining industry. Full article
(This article belongs to the Special Issue Mixture of Human and Machine Intelligence in Digital Manufacturing)
Show Figures

Figure 1

15 pages, 2366 KiB  
Article
Computational Fluid Dynamics Heat Transfer Analysis of Double Pipe Heat Exchanger and Flow Characteristics Using Nanofluid TiO2 with Water
by Abdulaziz S. Alhulaifi
Designs 2024, 8(3), 39; https://doi.org/10.3390/designs8030039 - 30 Apr 2024
Viewed by 406
Abstract
A device called a heat exchanger is used to exchange heat transfer between two fluids with different temperatures. Because of its durability and ability to handle high-pressure application, the concentric double pipe heat exchangers are widely utilized for numerous industrial applications. To conserve [...] Read more.
A device called a heat exchanger is used to exchange heat transfer between two fluids with different temperatures. Because of its durability and ability to handle high-pressure application, the concentric double pipe heat exchangers are widely utilized for numerous industrial applications. To conserve pumping power energy, many researchers were involved in study of the nanoparticles to be embedded in the fluid, which will enrich the fluid thermal conductivity and surface area. This article demonstrates the flow characteristics and convective heat transfer of nanofluids containing 0.2, 0.4 and 0.6 of vol% TiO2 nanoparticles dispersed in water under turbulent conditions, which mainly can be used for cooling nuclear reactors applications. Reynolds numbers varying from 4000 to 18,000 are examined numerically. The convective heat transfer coefficient results of the nanofluid agree well against experimental data, which are slightly more than that of base water at 1.94%. The results of the numerical model showed that the convective heat transfer coefficient of nanofluids will increase when the Reynolds and volume fraction increases. By increasing the temperature of the annular hot water, the heat transfer rate will increase, showing no major impact to the convective heat transfer coefficient of nanofluids. A generalised solution predicting the convective heat transfer coefficient for extensive nanoparticle materials is proposed. The conclusion of the empirical equation is tested among published data and the results are highly congruent, confirming the strength of the gamma equation. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage)
Show Figures

Figure 1

14 pages, 2081 KiB  
Article
The Impact of Utilizing Waste Sunflower Oil as a Biodiesel Blend on Four-Stroke Engine Performance and Emissions
by Qais Hussein Hassan, Alaa Salahuddin Araibi, Akram Hatem Shather, Malik Mustafa Mohammed and Hayder Abdulkhaleq Alalwan
Designs 2024, 8(3), 38; https://doi.org/10.3390/designs8030038 - 27 Apr 2024
Viewed by 423
Abstract
The blending of biodiesel with petroleum diesel attracts much attention due to its high potential in reducing emissions. In this work, waste sunflower oil was converted to biodiesel by the trans-esterification method, and it was blended with petroleum diesel in three ratios (10, [...] Read more.
The blending of biodiesel with petroleum diesel attracts much attention due to its high potential in reducing emissions. In this work, waste sunflower oil was converted to biodiesel by the trans-esterification method, and it was blended with petroleum diesel in three ratios (10, 30, and 50%). The impact of using these blended fuels in a four-stroke engine on engine performance and exhaust emissions at three engine loads (2, 4, and 6 N.m) was investigated and compared with the use of petroleum diesel and biodiesel. The engine performance was evaluated by determining the brake-specific fuel consumption (BSFC), engine effective power (Ne), brake-specific energy consumption (BSEC), brake thermal efficiency (BTE), and noise intensity. The evaluation of emissions from the engine exhaust was carried out by measuring the levels of carbon oxides (CO and CO2), hydrocarbons (HC), nitrogen oxides (NO and NO2), and particulate matter (PM). The results show that blending diesel with up to 30% biodiesel can reduce CO, HC, and PM emissions by 29.6 ± 1%, 26.0 ± 4%, and 31.0 ± 3%, respectively. However, this decrease is associated with increasing CO2 and NOx emissions by 18.5 ± 2.5% and 29.0 ± 6%, respectively. In addition, the engine showed acceptable performance when using up to 30% biodiesel, where the increase in fuel consumption was limited to 5.8 ± 0.3%. In addition, the engine’s effective power increased with the blending ratio of 10% by 2.0 ± 0.6%, but then decreased with the blending ratio of 30% by only 2.0 ± 0.6%. The noise intensity was also decreased by 2.4%, while BSEC and BTE were reduced by only 2.9 ± 0.9% and 3.5 ± 1%, respectively. The results of this work provide deep insights regarding the utilization of waste sunflower oil as biodiesel to be blended with petroleum diesel, which is a considerable novel approach in the energy and environmental sectors. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

Previous Issue
Back to TopTop