The Use of Phytogenic Feed Additives to Enhance Productivity and Health in Animals

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Nutrition".

Deadline for manuscript submissions: closed (30 April 2023) | Viewed by 49604

Special Issue Editors


E-Mail Website
Guest Editor
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
Interests: phytogenic feed additives; plant extract; milk quality; animal production; immune response; nutrition metabolism
Special Issues, Collections and Topics in MDPI journals
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
Interests: development and regulation of ruminants; interaction of microorganism and rumen; unconventional feed resources

E-Mail
Guest Editor
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
Interests: molecular nutrition and immune; cattle perinatal nutrition; lipid metabolism

Special Issue Information

Dear Colleagues, 

Animal disease causes damage to animal production performance, milk, and meat quality. In general, treatment of animal disease using antibiotics is worrisome for animal and human health because of the presence of residues of these antibiotics in milk and meat. Therefore, the development of alternative phytogenic feed additives and novel plant extracts to mount the innate immune response to treat animal disease is urgent for improving animal productivity and human health.

This Special Issue publishes original research papers and reviews on the use of phytogenic feed additives or plant extracts for improving productivity and health in animals. Key areas of interest focus on the use of phytogenic feed additives or plant extracts to enhance animal productivity, innate immune response, and reduce inflammation response, including 1) the study interplay between feed additives and gut and mammary gland health of ruminant animals in vivo and 2) the use of novel plant extracts to study the molecular mechanism of reducing pro-inflammation response in ruminant rumen and gut epithelium in vitro.

Prof. Dr. Guoqi Zhao
Dr. Miao Lin
Dr. Kang Zhan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • animal health
  • animal productivity
  • antibiotics
  • phytogenic feed additives
  • plant extract
  • immune
  • milk quality
  • meat quality

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (21 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 676 KiB  
Article
Effects of Phlorotannins from Sargassum on In Vitro Rumen Fermentation, Microbiota and Fatty Acid Profile
by Qianqian Huang, Yuhua Chen, Xingxing Wang, Yuanhao Wei, Min Pan and Guoqi Zhao
Animals 2023, 13(18), 2854; https://doi.org/10.3390/ani13182854 - 8 Sep 2023
Cited by 3 | Viewed by 1314
Abstract
The fatty acid profiles of ruminant-derived products are closely associated with human health. Ruminal microbiota play a vital role in modulating rumen biohydrogenation (BH). The aim of this study was to assess the influence of dietary supplementation with phlorotannins (PTs) extracted from Sargassum [...] Read more.
The fatty acid profiles of ruminant-derived products are closely associated with human health. Ruminal microbiota play a vital role in modulating rumen biohydrogenation (BH). The aim of this study was to assess the influence of dietary supplementation with phlorotannins (PTs) extracted from Sargassum on rumen fermentation, fatty acid composition and bacterial communities by an in vitro culture study. The inclusion of PTs in the diet increased dry matter digestibility and gas production, and reduced ammonia-N concentration and pH. PT extract inhibited rumen BH, increasing the content of trans-9 C18:1, cis-9 C18:1, trans-9 and trans-12 C18:2 and reducing C18:0 concentration. 16S rRNA sequencing revealed that PTs caused an obvious change in rumen bacterial communities. The presence of Prevotella decreased while carbohydrate-utilizing bacteria such as Prevotellaceae_UCG-001, Ruminococcus, Selenomonas, Ruminobacter and Fibrobacter increased. Correlation analysis between rumen FA composition and the bacterial microbiome revealed that Prevotellaceae_UCG-001, Anaerovorax, Ruminococcus, Ruminobacter, Fibrobacter, Lachnospiraceae_AC2044_group and Clostridia_UCG-014 might have been involved in the BH process. In conclusion, the results suggest that the inclusion of PTs in the diet improved rumen fermentation and FA composition through modulating the rumen bacterial community. Full article
Show Figures

Figure 1

10 pages, 622 KiB  
Article
Effect of Slow-Release Urea Partial Replacement of Soybean Meal on Lactation Performance, Heat Shock Signal Molecules, and Rumen Fermentation in Heat-Stressed Mid-Lactation Dairy Cows
by Maocheng Jiang, Xuelei Zhang, Kexin Wang, Osmond Datsomor, Xue Li, Miao Lin, Chunyan Feng, Guoqi Zhao and Kang Zhan
Animals 2023, 13(17), 2771; https://doi.org/10.3390/ani13172771 - 31 Aug 2023
Cited by 2 | Viewed by 1747
Abstract
This study aimed to assess the effects of partially substituting soybean meal in the diet with slow-release urea (SRU) on the lactation performance, heat shock signal molecules, and environmental sustainability of heat-stressed lactating cows in the middle stage of lactation. In this study, [...] Read more.
This study aimed to assess the effects of partially substituting soybean meal in the diet with slow-release urea (SRU) on the lactation performance, heat shock signal molecules, and environmental sustainability of heat-stressed lactating cows in the middle stage of lactation. In this study, 30 healthy Holstein lactating dairy cattle with a similar milk yield of 22.8 ± 3.3 kg, days in milk of 191.14 ± 27.24 days, and 2.2 ± 1.5 parity were selected and randomly allocated into two groups. The constituents of the two treatments were (1) basic diet plus 500 g soybean meal (SM) for the SM group and (2) basic diet plus 100 g slow-release urea and 400 g corn silage for the SRU group. The average temperature humidity index (THI) during the experiment was 84.47, with an average THI of >78 from day 1 to day 28, indicating the cow experienced moderate heat stress conditions. Compared with the SM group, the SRU group showed decreasing body temperature and respiratory rate trends at 20:00 (p < 0.1). The substitution of SM with SRU resulted in an increasing trend in milk yield, with a significant increase of 7.36% compared to the SM group (p < 0.1). Compared to the SM group, AST, ALT, and γ-GT content levels were significantly increased (p < 0.05). Notably, the levels of HSP-70 and HSP-90α were significantly reduced (p < 0.05). The SRU group showed significantly increased acetate and isovalerate concentrations compared with the SM group (p < 0.05). The prediction results indicate that the SRU group exhibits a significant decrease in methane (CH4) emissions when producing 1 L of milk compared to the SM group (p < 0.05). In summary, dietary supplementation with SRU tended to increase the milk yield and rumen fermentation and reduce plasma heat shock molecules in mid-lactation, heat-stressed dairy cows. In the hot summer, using SRU instead of some soybean meal in the diet alleviates the heat stress of dairy cows and reduces the production of CH4. Full article
Show Figures

Figure 1

13 pages, 285 KiB  
Article
The Effects of Sodium Acetate on the Immune Functions of Peripheral Mononuclear Cells and Polymorphonuclear Granulocytes in Postpartum Dairy Cows
by Cong Yuan, Dejin Tan, Zitong Meng, Maocheng Jiang, Miao Lin, Guoqi Zhao and Kang Zhan
Animals 2023, 13(17), 2721; https://doi.org/10.3390/ani13172721 - 26 Aug 2023
Viewed by 1199
Abstract
Excessive lipid mobilization will snatch cell membrane lipids in postpartum dairy cows, which may impair the function of immune cells, including peripheral mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs). Acetate, as a precursor and the energy source of milk fat synthesis, plays a [...] Read more.
Excessive lipid mobilization will snatch cell membrane lipids in postpartum dairy cows, which may impair the function of immune cells, including peripheral mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs). Acetate, as a precursor and the energy source of milk fat synthesis, plays a key role in lipid synthesis and the energy supply of dairy cows. However, there is little information about the effect of sodium acetate (NaAc) on the immune function of PBMC and PMN in postpartum dairy cows. Therefore, this study aimed to evaluate the effects of NaAc on the immune functions of PBMCs and PMNs in postpartum dairy cows. In this experiment, twenty-four postpartum multiparous Holstein cows were randomly selected and divided into a NaAc treatment group and a control group. Our results demonstrated that the dietary addition of NaAc increased (p < 0.05) the number of monocytes and the monocyte ratio, suggesting that these postpartum cows fed with NaAc may have better immunity. These expressions of genes (LAP, XBP1, and TAP) involved in the antimicrobial activity in PBMCs were elevated (p < 0.05), suggesting that postpartum dairy cows supplemented with NaAc had the ability of antimicrobial activity. In addition, the mRNA expression of the monocarboxylate transporters MCT1 and MCT4 in PBMCs was increased (p < 0.05) in diets supplemented with NaAc in comparison to the control. Notably, the expression of the XBP1 gene related to antimicrobial activity in PMN was upregulated with the addition of NaAc. The mRNA expression of genes (TLN1, ITGB2, and SELL) involved in adhesion was profoundly increased (p < 0.05) in the NaAc groups. In conclusion, our study provided a novel resolution strategy in which the use of NaAc can contribute to immunity in postpartum dairy cows by enhancing the ability of antimicrobial and adhesion in PBMCs and PMNs. Full article
17 pages, 809 KiB  
Article
Productive Performance, Physiological Variables, and Carcass Quality of Finishing Pigs Supplemented with Ferulic Acid and Grape Pomace under Heat Stress Conditions
by María A. Ospina-Romero, Leslie S. Medrano-Vázquez, Araceli Pinelli-Saavedra, Esther Sánchez-Villalba, Martín Valenzuela-Melendres, Miguel Ángel Martínez-Téllez, Miguel Ángel Barrera-Silva and Humberto González-Ríos
Animals 2023, 13(14), 2396; https://doi.org/10.3390/ani13142396 - 24 Jul 2023
Cited by 2 | Viewed by 1858
Abstract
The effect of individual and combined supplementation of FA and GPM on physiological variables, productive performance, and carcass characteristics of finishing pigs under heat stress conditions were investigated. Forty Yorkshire × Duroc pigs (80.23 kg) were individually housed and randomly distributed into 4 [...] Read more.
The effect of individual and combined supplementation of FA and GPM on physiological variables, productive performance, and carcass characteristics of finishing pigs under heat stress conditions were investigated. Forty Yorkshire × Duroc pigs (80.23 kg) were individually housed and randomly distributed into 4 groups under a 2 × 2 factorial arrangement (n = 10): Control (basal diet, BD); FA, BD + 25 mg FA; GPM, BD with 2.5% GPM; and MIX, BD with 25 mg FA and 2.5% GPM. Additives were supplemented for 31 days. The inclusion of FA or GPM did not modify rectal temperature and respiratory rate. There was an effect of the interaction on FI, which increased when only GPM was supplemented, with respect to Control and MIX (p < 0.05). Average daily gain (ADG) and feed conversion (FC) were not affected by treatments (p > 0.05). The inclusion of FA improved hot and cold carcass weight, while the addition of GPM decreased the marbling (p < 0.05) and tended to increase loin area (p < 0.10). GPM increased liver weight (p < 0.05). The addition of GPM and FA can improve some carcass characteristics under heat stress conditions. It is necessary to continue investigating different levels of inclusion of GPM and FA in finishing pigs’ diets. Full article
Show Figures

Figure 1

11 pages, 1042 KiB  
Article
Effects of Dietary Bioactive Lipid Compounds of Acacia nilotica Bark on Productive Performance, Antioxidant Status, and Antimicrobial Activities of Growing Rabbits under Hot Climatic Conditions
by Ahmed A. A. Abdel-Wareth, Hazem G. M. El-Sayed, Hamdy A. Hassan, Ghadir A. El-Chaghaby, Abdel-Wahab A. Abdel-Warith, Elsayed M. Younis, Shimaa A. Amer, Sayed Rashad and Jayant Lohakare
Animals 2023, 13(12), 1933; https://doi.org/10.3390/ani13121933 - 9 Jun 2023
Cited by 1 | Viewed by 1251
Abstract
This study aimed to evaluate the efficacy of dietary Acacia nilotica bark bioactive lipid compounds (ANBBLCs) as novel feed additives on the growth performance, carcass criteria, antioxidants, and antimicrobial activities of growing male rabbits. A total of 100 California male weanling rabbits aged [...] Read more.
This study aimed to evaluate the efficacy of dietary Acacia nilotica bark bioactive lipid compounds (ANBBLCs) as novel feed additives on the growth performance, carcass criteria, antioxidants, and antimicrobial activities of growing male rabbits. A total of 100 California male weanling rabbits aged 35 days were divided into four nutritional treatments, each of which contained ANBBLCs at concentrations of 0 (control group), 50, 100, and 150 mg/kg diet (n = 25 per treatment, each replication consisting of one animal). The average body weight of the animals was 613 ± 14 g. The experiments lasted for 56 days. Dietary ANBBLC levels linearly improved (p < 0.05) the body weight, body weight gain, and feed conversion ratio (FCR) of rabbits. Furthermore, with increasing concentrations of ANBBLCs, the total antioxidant capacity of blood and liver tissue was linearly (p < 0.05) enhanced. Lactobacillus increased and Staphylococcus decreased (p < 0.05) in comparison to the control group when ANBBLC levels were added to the diets of rabbits. Rabbit diets supplemented with ANBBLCs increased dressing percentages and decreased abdominal fat. This study shows that ANBBLCs can be used as a feed additive to enhance the growth performance, carcass criteria, antioxidant, and antibacterial properties of growing rabbits. Full article
Show Figures

Figure 1

16 pages, 1091 KiB  
Article
Effects of Equol Supplementation on Growth Performance, Redox Status, Intestinal Health and Skeletal Muscle Development of Weanling Piglets with Intrauterine Growth Retardation
by Yong Zhang, Jingchang Ren, Li Chen, Honglin Yan, Tiande Zou, Hongfu Zhang and Jingbo Liu
Animals 2023, 13(9), 1469; https://doi.org/10.3390/ani13091469 - 26 Apr 2023
Viewed by 1806
Abstract
Animals with intrauterine growth retardation (IUGR) usually undergo injured postnatal growth and development during the early period after birth. Equol (Eq), an isoflavan produced by gut bacteria in response to daidzein intake, has various health benefits. Therefore, the objective of this study was [...] Read more.
Animals with intrauterine growth retardation (IUGR) usually undergo injured postnatal growth and development during the early period after birth. Equol (Eq), an isoflavan produced by gut bacteria in response to daidzein intake, has various health benefits. Therefore, the objective of this study was to evaluate whether Eq supplementation can influence the growth performance, redox status, intestinal health and skeletal muscle development of weanling piglets with IUGR. A total of 10 normal-birth-weight (NBW) newborn female piglets and 20 newborn female piglets with IUGR were selected. After weaning at the age of 21 d, 10 NBW piglets and 10 IUGR piglets were allocated to the NBW group and IUGR group, respectively, and offered a basal diet. The other 10 IUGR piglets were allocated to the IUGR + Eq group and offered a basal diet with 50 mg of Eq per kg of diet. The whole trial lasted for 21 d. At the end of the feeding trial, all piglets were sacrificed for the collection of serum, intestinal tissues and skeletal muscles. Supplementation with Eq increased the average daily gain (ADG), average daily feed intake (ADFI), duodenal villus height to crypt depth ratio (V/C), jejunal villus height and V/C, but reduced the duodenal crypt depth in neonatal piglets with IUGR. Meanwhile, Eq supplementation elevated the activities of superoxide dismutase (SOD) and catalase (CAT) in the serum and duodenum and the activity of SOD in the jejunum, but lowered malondialdehyde (MDA) content in the serum, jejunum and ileum of piglets with IUGR. In addition, supplementation with Eq reduced diamine oxidase (DAO) activity and the levels of D-lactate and endotoxin in serum, and the tumor necrosis factor-α (TNF-α) level in jejunum and ileum, whereas the concentration of serum immunoglobulin G (IgG) and the mRNA levels of intestinal barrier-related markers in jejunum and ileum of IUGR piglets were increased. Furthermore, supplementation with Eq elevated the percentage of fast-fibers and was accompanied with higher mRNA expression of myosin heavy chain IIb (MyHC IIb) and lower mRNA levels in MyHC I in the longissimus thoracis (LT) muscle of IUGR piglets. In summary, Eq supplementation can promote antioxidant capacity, maintain intestinal health and facilitate skeletal muscle development, thus resulting in the higher growth performance of IUGR piglets. Full article
Show Figures

Figure 1

9 pages, 427 KiB  
Article
Effects of Tea Tree Oil on Production Performance, Serum Parameter Indices, and Immunity in Postpartum Dairy Cows
by Cong Yuan, Xiaoyu Ma, Maocheng Jiang, Tianyu Yang, Miao Lin, Guoqi Zhao and Kang Zhan
Animals 2023, 13(4), 682; https://doi.org/10.3390/ani13040682 - 15 Feb 2023
Cited by 4 | Viewed by 1810
Abstract
Tea tree oil (TTO) plays an important role in regulating lipid metabolism and has anti-inflammatory properties. In postpartum dairy cows, dry matter intake (DMI) is dramatically decreased, resulting in lipid metabolism disorder and the systemic pro-inflammatory response. However, the effects of TTO on [...] Read more.
Tea tree oil (TTO) plays an important role in regulating lipid metabolism and has anti-inflammatory properties. In postpartum dairy cows, dry matter intake (DMI) is dramatically decreased, resulting in lipid metabolism disorder and the systemic pro-inflammatory response. However, the effects of TTO on glucolipid metabolism and immunity in postpartum dairy cows remain uninvestigated. Therefore, this study aimed to evaluate the effects of TTO on production performance, serum biochemical indicators, and immunity in postpartum dairy cows. Our results demonstrate that DMI tended to increase (p = 0.07) in the total mixed ration (TMR) diets supplemented with 0.01% TTO/dry matter (DM) basis relative to that in the control group. The 4% fat-corrected milk (FCM) content in the 0.01% and 0.02% TTO groups showed an increase (p = 0.09) compared with that in the control. Remarkably, the levels of globulin (GLO) and immunoglobulin G (IgG) were elevated (p < 0.05) in the TMR diet supplemented with 0.02% TTO compared to those in the control group. The TTO caused no profound changes in cholesterol (CHO), triglyceride (TG), high-density lipoprotein (HDL), or low-density lipoprotein (LDL). Notably, 0.02% TTO increased (p < 0.05) the serum glucose concentration relative to that in the control group. In conclusion, our results demonstrate that TTO could improve glucolipid metabolism and enhance immunity in postpartum dairy cows. It may be a novel resolution strategy for body condition recovery and the improvement of milk performance. Full article
Show Figures

Figure 1

12 pages, 446 KiB  
Article
Impact of Dietary Supplementation of Spice Extracts on Growth Performance, Nutrient Digestibility and Antioxidant Response in Broiler Chickens
by Javier Herrero-Encinas, Almudena Huerta, Marta Blanch, José Javier Pastor, Sofia Morais and David Menoyo
Animals 2023, 13(2), 250; https://doi.org/10.3390/ani13020250 - 10 Jan 2023
Cited by 9 | Viewed by 3591
Abstract
This study aimed to investigate the effects of supplementing broiler chicken diets with an encapsulated product based on capsicum and other spice (black pepper and ginger) extracts on growth performance, nutrient digestibility, digestive enzyme activity and antioxidant response. To this end, 480 1-day-old [...] Read more.
This study aimed to investigate the effects of supplementing broiler chicken diets with an encapsulated product based on capsicum and other spice (black pepper and ginger) extracts on growth performance, nutrient digestibility, digestive enzyme activity and antioxidant response. To this end, 480 1-day-old male chicks were randomly assigned to two experimental treatments (12 pens/treatment; 20 birds/pen). Dietary treatments included a basal diet with no additives (CONTROL) and a basal diet supplemented with 250 ppm of the spice additive (SPICY; Lucta S.A., Spain). Supplementation of SPICY increased body weight (p < 0.05) compared with CONTROL at 7 d of age and improved (p < 0.01) ADG from 0 to 7 d of age. The apparent ileal digestibility of dry matter, gross energy and crude protein was higher (p < 0.05) in birds fed the SPICY diet compared with the CONTROL diet. Birds fed SPICY showed lower (p < 0.05) plasma catalase (CAT) activity, and the hepatic gene expression of CAT and Nrf2 was down-regulated (p < 0.05) compared with the CONTROL. In conclusion, the inclusion of 250 ppm of SPICY in broiler diets improved growth performance at 7 d of age and positively affected nutrient digestibility and antioxidant response. Full article
Show Figures

Figure 1

12 pages, 27798 KiB  
Article
Luteolin Attenuates APEC-Induced Oxidative Stress and Inflammation via Inhibiting the HMGB1/TLR4/NF-κB Signal Axis in the Ileum of Chicks
by Zhanyou Cao, Chenghong Xing, Xinyi Cheng, Junrong Luo, Ruiming Hu, Huabin Cao, Xiaoquan Guo, Fan Yang, Yu Zhuang and Guoliang Hu
Animals 2023, 13(1), 83; https://doi.org/10.3390/ani13010083 - 26 Dec 2022
Cited by 6 | Viewed by 2060
Abstract
Avian pathogenic E. coli (APEC) is typically the cause of avian colibacillosis, which can result in oxidative stress, inflammation, and intestinal damage (APEC). Luteolin, in the form of glycosylation flavone, has potent anti-inflammatory and anti-oxidative properties. However, its effects on APEC-induced intestinal [...] Read more.
Avian pathogenic E. coli (APEC) is typically the cause of avian colibacillosis, which can result in oxidative stress, inflammation, and intestinal damage (APEC). Luteolin, in the form of glycosylation flavone, has potent anti-inflammatory and anti-oxidative properties. However, its effects on APEC-induced intestinal oxidative stress and NF-κB-mediated inflammation in chicks remains poorly understood. After hatching, one-day-old chicks were stochastically assigned to four groups: a control group (basic diet), an E. coli group (basic diet) and L10 and L20 groups (with a dry matter of luteolin diet 10 mg/kg and 20 mg/kg, respectively), with fifteen chicks in each group and one repeat per group. They were pretreated for thirteen days. The body weight, mortality, histopathological changes in the ileum, antioxidant status, and the mRNA and protein-expression levels of factors associated with the HMGB1/TLR4/NF-κB signal axis of the chicks were measured. The results showed that luteolin treatment decreased the mRNA and protein-expression level of the related factors of HMGB1/TLR4/NF-κB signal axis in the ileum, reduced inflammation, increased antioxidant enzyme activity, and reduced intestinal injury. Collectively, luteolin alleviated APEC-induced intestinal damage by means of hindering the HMGB1/TLR4/NF-κB signal axis, which suggests that luteolin could be a good method for the prevention and treatment of avian colibacillosis. Full article
Show Figures

Figure 1

11 pages, 252 KiB  
Article
Comparative Study of the Nutritional Value and Degradation Characteristics of Amaranth Hay in the Rumen of Goats at Different Growth Stages
by Shengjun Zhao, Shilong Zhou, Yuanqi Zhao, Jun Yang, Liangkang Lv, Zibin Zheng, Honghua Lu and Ying Ren
Animals 2023, 13(1), 25; https://doi.org/10.3390/ani13010025 - 21 Dec 2022
Cited by 8 | Viewed by 1970
Abstract
The objective of this study was to investigate the rumen degradation characteristics of grain amaranth hay (Amaranthus hypochondriacus) at four different growth stages. The aim of this study was to evaluate the nutritional value of grain amaranth hay at different growth [...] Read more.
The objective of this study was to investigate the rumen degradation characteristics of grain amaranth hay (Amaranthus hypochondriacus) at four different growth stages. The aim of this study was to evaluate the nutritional value of grain amaranth hay at different growth stages by chemical composition, in vivo digestibility, and in situ degradability. Three Boer goats with permanent ruminal fistulas were selected in this study. Amaranthus hay at four different growth stages (squaring stage (SS), initial bloom stage (IS), full-bloom stage (FS) and mature stage (MS)) was crushed and placed into nylon bags. Each sample was set up with three replicates, and two parallel samples were set up in fistulas at each time point. The rumen degradation rates of dry matter (DM), crude protein (CP), neutral detergent fibre (NDF) and acid detergent fibre (ADF) were determined at 0, 6, 12, 24, 36, 48 and 72 h. The results were as follows: (1) The concentration of CP in SS was the highest and was significantly higher than that in other stages (p < 0.05), whereas the contents of NDF and ADF gradually increased with the extension of the growing period and reached a maximum in MS; (2)The degradation of CP in the rumen at 72 h of SS and IS was more than 80%. Compared with other stages, the effective degradability of CP was highest in SS (p < 0.05) and reached 87.05% at 72 h, and the degradation rate was the lowest in MS; and (3) The effective degradability of NDF in IS was the highest (p < 0.05) and reached 69.326% at 72 h. The effective degradability of ADF in MS was the highest (p < 0.05) and reached 65.728% at 72 h. The effective degradability of DM and CP in SS was the highest. In conclusion, among the four stages, IS was superior in chemical composition and rumen degradability characteristics. Full article
16 pages, 3402 KiB  
Article
Feed Supplemented with Aronia melanocarpa (AM) Relieves the Oxidative Stress Caused by Ovulation in Peak Laying Hens and Increases the Content of Yolk Precursors
by Bo Jing, Huanwei Xiao, Haixu Yin, Yingbo Wei, Haoyuan Wu, Dongliang Zhang, Ivan Stève Nguepi Tsopmejio, Hongmei Shang, Zhouyu Jin and Hui Song
Animals 2022, 12(24), 3574; https://doi.org/10.3390/ani12243574 - 17 Dec 2022
Cited by 6 | Viewed by 2712
Abstract
The continuous ovulation of laying hens during the peak period is likely to cause oxidative stress, resulting in a reduction in the laying cycle over time. The aim of this study was to evaluate the antioxidant effects of Aronia melanocarpa (AM) in the [...] Read more.
The continuous ovulation of laying hens during the peak period is likely to cause oxidative stress, resulting in a reduction in the laying cycle over time. The aim of this study was to evaluate the antioxidant effects of Aronia melanocarpa (AM) in the diet and its effect on the yolk precursor content caused by ovulation in laying hens during the peak period. A total of 300 25-week-old Roman brown laying hens were randomly divided into five groups with six replicates in each group, 10 in each replicate. The control group was fed a basal diet, the positive control group was fed a Vitamin C (VC) plus basal diet, and the experimental group was fed 1%, 4%, and 7% doses of AM plus diet according to the principle of energy and nitrogen requirements, which lasted eight weeks. At the end of the study, the egg quality, biochemical, and antioxidant markers, as well as mRNA and protein expressions, were evaluated to determine the potential signaling pathways involved. Results showed that the addition of AM to the feed increased the weight of laying hens at the peak of egg production and improved egg quality. The biochemical markers, as well as the antioxidant parameters in the serum, liver, and ovarian tissues, were ameliorated. The gene and protein expression of recombinant kelch-like ECH-associated protein 1 (Keap1) in the liver and ovarian tissues was decreased, while nuclear factor erythroid-2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression was increased. The feed supplemented with AM also increased the estrogen contents and lipid parameters, as well as the gene and protein expressions related to the yolk precursor. Feed supplemented with AM could improve the egg quality and the oxidative stress caused by the ovulation process of laying hens during the peak egg production period by activating the Keap1/Nrf2 signaling pathway. These results suggest that the feed supplemented with 1% AM and 4% AM can improve egg production in peak laying hens. Full article
Show Figures

Figure 1

15 pages, 1355 KiB  
Article
Dietary Supplementation of Fruit from Nitraria tangutorum Improved Immunity and Abundance of Beneficial Ruminal Bacteria in Hu Sheep
by Xia Du, Xindong Cheng, Qiaoxia Dong, Jianwei Zhou, Abraham Allan Degen, Dan Jiao, Kaixi Ji, Yanping Liang, Xiukun Wu and Guo Yang
Animals 2022, 12(22), 3211; https://doi.org/10.3390/ani12223211 - 19 Nov 2022
Cited by 5 | Viewed by 2246
Abstract
The fruit of Nitraria tangutorum (FNT) is reputed to possess medicinal properties; however, its effect on sheep (Ovis aries) is unknown. The aim of this study was to fill this gap. In a 3 × 3 Latin square design, six 12-month-old [...] Read more.
The fruit of Nitraria tangutorum (FNT) is reputed to possess medicinal properties; however, its effect on sheep (Ovis aries) is unknown. The aim of this study was to fill this gap. In a 3 × 3 Latin square design, six 12-month-old rumen-fistulated Hu rams (56.2 ± 8.26 kg; mean ± SD) were penned individually and offered one of three levels of FNT, namely, 0 g/d (control; CON), 16 g/d (N16), and 48 g/d (N48). The concentration of serum immunoglobulin G increased linearly (p = 0.03) with an increasing intake of FNT. The serum concentration of β-hydroxybutyrate in the N48 group was lower than in the CON group (p = 0.01) and decreased linearly with increasing FNT (p = 0.001). The concentration of serum lactate dehydrogenase tended to decrease (p = 0.07) linearly with an increase in FNT intake, while the concentration of glucose did not differ among groups (p = 0.14) but displayed a quadratic curve with an increase in FNT (p = 0.05). The rumen concentration of lipase decreased linearly with increasing FNT (p = 0.04). The rumen fermentation variables were not affected by FNT. The FNT intake increased the abundance of beneficial ruminal bacteria, such as Lachnoclostridium, Rhodocyclaceae, and Candidatus Arthromitus. Prevotella, Rikenellaceae_RC9_gut_group, Ruminococcus, Olsenella, Lachnospiraceae_NK3A20_group, and Quinella were the dominant bacterial genera in all treatments. We conclude that FNT can improve immunity and increase the relative abundance of beneficial ruminal bacteria in sheep. Full article
Show Figures

Figure 1

17 pages, 932 KiB  
Article
Nigella sativa Extract Potentially Inhibited Methicillin Resistant Staphylococcus aureus Induced Infection in Rabbits: Potential Immunomodulatory and Growth Promoting Properties
by Gamal Abd Elmoneim Elmowalid, Adel Attia M. Ahmad, Marwa I. Abd El-Hamid, Doaa Ibrahim, Ali Wahdan, Amal S. A. El Oksh, Ahlam E. Yonis, Mohamed Abdelrazek Elkady, Tamer Ahmed Ismail, Adel Qlayel Alkhedaide and Shimaa S. Elnahriry
Animals 2022, 12(19), 2635; https://doi.org/10.3390/ani12192635 - 30 Sep 2022
Cited by 18 | Viewed by 2409
Abstract
Weaning is the most crucial period associated with increased stress and susceptibility to diseases in rabbits. Methicillin-resistant Staphylococcus aureus (MRSA), a historic emergent pathogen related to post weaning stressors, adversely affects rabbit’s growth rate and productive cycle. Since MRSA is rapidly evolving antibiotics [...] Read more.
Weaning is the most crucial period associated with increased stress and susceptibility to diseases in rabbits. Methicillin-resistant Staphylococcus aureus (MRSA), a historic emergent pathogen related to post weaning stressors, adversely affects rabbit’s growth rate and productive cycle. Since MRSA is rapidly evolving antibiotics resistance, natural products are desperately required to tackle the public health threats posed by antimicrobial resistance. Thus, this study aimed to screen the iin vitro antibacterial activity of Nigella sativa extract (NSE) and its interactions with antibiotics against MRSA isolates. Moreover, 200 weaned rabbits were divided into 4 groups to investigate the iin vivo superiority of NSE graded levels towards growth performance, tight junction integrity, immune responsiveness and resistance against MRSA. Herein, NSE showed promising antimicrobial activities against MRSA isolates from animal (77.8%) and human (64.3%) origins. Additionally, MRSA isolates exposed to NSE became sensitive to all antimicrobials to which they were previously resistant. Our results described that the growth-promoting functions of NSE, especially at higher levels, were supported by elevated activities of digestive linked enzymes. Post-NSE feeding, rabbits’ sera mediated bactericidal activities against MRSA. Notably, upregulated expression of occludin, CLDN-1, MUC-2 and JAM-2 genes was noted post NSE supplementation with maximum transcriptional levels in 500 mg/kg NSE fed group. Our data described that NSE constitutively motivated rabbits’ immune responses and protected them against MRSA-induced experimental infection. Our results suggest the antimicrobial, growth stimulating and immunomodulation activities of NSE to maximize the capability of rabbits for disease response. Full article
Show Figures

Figure 1

13 pages, 596 KiB  
Article
Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens
by Karolina A. Chodkowska, Paulina A. Abramowicz-Pindor, Anna Tuśnio, Kamil Gawin, Marcin Taciak and Marcin Barszcz
Animals 2022, 12(19), 2625; https://doi.org/10.3390/ani12192625 - 30 Sep 2022
Cited by 12 | Viewed by 2687
Abstract
The aim of this study was to evaluate the effect of dietary level of a phytobiotic composition (PBC) on production parameters, oxidative stress markers and cytokine levels in the blood and breast muscle of broiler chickens. The experiment was performed on 48 one-day-old [...] Read more.
The aim of this study was to evaluate the effect of dietary level of a phytobiotic composition (PBC) on production parameters, oxidative stress markers and cytokine levels in the blood and breast muscle of broiler chickens. The experiment was performed on 48 one-day-old female Ross 308 broiler chickens divided into three groups (n = 16) fed the control diet (without PBC), and a diet supplemented with 60 or 100 mg/kg of PBC. After 35 days of feeding, blood and breast muscle samples were collected for analyses. There was no effect on final body weight and feed intake but PBC addition (100 mg/kg) improved feed efficiency as compared to the control. Also, this dietary level of PBC contributed to an increase in interlukin-6 content in blood and a reduction in tumor necrosis factor-α concentrations in pectoral muscle in comparison with the control group. In conclusion, the addition of 100 mg/kg PBC improved the production parameters of broiler chickens and beneficially influenced the regeneration and protection of pectoral muscle against pathophysiological processes that may occur during intensive rearing. Full article
Show Figures

Figure 1

10 pages, 1283 KiB  
Article
Acetate-Induced Milk Fat Synthesis Is Associated with Activation of the mTOR Signaling Pathway in Bovine Mammary Epithelial Cells
by Miao Lin, Maocheng Jiang, Tianyu Yang, Dejin Tan, Guanghui Hu, Guoqi Zhao and Kang Zhan
Animals 2022, 12(19), 2616; https://doi.org/10.3390/ani12192616 - 29 Sep 2022
Cited by 11 | Viewed by 2044
Abstract
Acetate is a precursor substance for fatty acid synthesis in bovine mammary epithelial cells (BMECs), and the mTOR signaling pathway plays an important role in milk fat synthesis. However, the mechanism of the regulatory effects of acetate on lipogenic genes via the mTOR [...] Read more.
Acetate is a precursor substance for fatty acid synthesis in bovine mammary epithelial cells (BMECs), and the mTOR signaling pathway plays an important role in milk fat synthesis. However, the mechanism of the regulatory effects of acetate on lipogenic genes via the mTOR signaling pathway in BMEC remains unknown. We hypothesized that acetate can enhance the expression of lipogenic genes and triglyceride (TG) production by activating the mTOR signaling pathway in BMECs. Therefore, the aim of this study was to investigate the network of acetate-regulated lipid metabolism by the mTOR signaling pathway in BMECs. These results showed that TG synthesis was elevated (p < 0.01) in BMECs with acetate treatment. The lipid droplets were increased in the acetate-treated groups compared with those in the control group through the Bodipy staining of the lipids. In addition, the fatty acid profile in BMECs treated with acetate was affected, with an elevation in the proportions of C14:0, C16:0, and C18:0. The mRNA levels of the sterol-response-element-binding protein 1 (SREBP1), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS) genes involved in the lipogenesis and transcriptional factors were upregulated (p < 0.05) in BMECs with acetate treatment. Remarkably, the expression of acetyl-CoA carboxylase α (ACCα) and FAS rate-limiting enzymes involved in lipogenesis was upregulated in BMECs with acetate treatment. Moreover, the addition of acetate enhanced the key protein expression of S6K1, which is related to the mTOR signaling pathway. Taken together, our data suggest that TG accumulation and expression of lipogenic genes induced by acetate are associated with the activation of the mTOR signaling pathway, which provides new insights into the understanding of the molecular mechanism in the expression of mTOR-signaling-pathway-regulated lipogenic genes. Full article
Show Figures

Figure 1

14 pages, 291 KiB  
Article
The Effect of Quinoa Seed (Chenopodium quinoa Willd.) Extract on the Performance, Carcass Characteristics, and Meat Quality in Japanese Quails (Coturnix coturnix japonica)
by Shaistah Naımatı, Sibel Canoğulları Doğan, Muhammad Umair Asghar, Martyna Wilk and Mariusz Korczyński
Animals 2022, 12(14), 1851; https://doi.org/10.3390/ani12141851 - 21 Jul 2022
Cited by 8 | Viewed by 2542
Abstract
This research was conducted to determine the effect of quinoa seed (Chenopodium quinoa Willd.) extract on the performance, carcass parameters, and meat quality in Japanese quails. In this study, 400 quail chicks were divided into a control group (without quinoa seed extract [...] Read more.
This research was conducted to determine the effect of quinoa seed (Chenopodium quinoa Willd.) extract on the performance, carcass parameters, and meat quality in Japanese quails. In this study, 400 quail chicks were divided into a control group (without quinoa seed extract addition) and 3 experiment groups (4 replicates containing 25 quails in each). Commercial feed and the addition of different concentrations of quinoa seed extract (QSE) 0.1 g/kg, 0.2 g/kg, and 0.4 g/kg were used in the study. During the second week of the experiment, the highest feed intake was obtained from the supplemented groups (p < 0.01). After 5 weeks of experimentation, the highest feed consumption was noticed in the group with 0.4 g of QSE additive. The QSE additive affected the live weight gain values of all experimental groups during 1 week of the experiment. The highest values of hot carcass weight were noticed in groups with 0.2 and 0.4 g of QSE additive (p < 0.01). While the highest value of cold carcass weight was noticed in a group with 0.2 g of QSE additive (p < 0.05). Thigh, breast, back and neck ratio, and internal organs (except gizzard) were not affected by the supplementation of QSE. As a result of storage of breast meat at 4 °C for 0, 1 days, 3 days, 5 days, and 7 days, it was determined that the number of pH, thiobarbituric acid, peroxide, and total psychrophilic bacteria were lower in the groups with QSE as compared to the control group (p < 0.05). In conclusion, the best results of quail performance were obtained with 0.2 g/kg and 0.4 g QSE/kg of the quail’s fodder. While the addition of 0.4 g QSE/kg of the quail’s fodder had a significant effect on meat shelf life and could be used in poultry mixed feed to prevent or delay lipid oxidation of meat. Full article
11 pages, 1221 KiB  
Article
The Effect of Supplementation of Rumen-Protected Choline on Reproductive and Productive Performances of Dairy Cows
by Indrė Mečionytė, Giedrius Palubinskas, Lina Anskienė, Renata Japertienė, Renalda Juodžentytė and Vytuolis Žilaitis
Animals 2022, 12(14), 1807; https://doi.org/10.3390/ani12141807 - 14 Jul 2022
Cited by 3 | Viewed by 2781
Abstract
We aimed to evaluate the effects of organic herbal preparations containing rumen-protected choline (RPC) in dairy cow milk’s BHB and progesterone (P4) concentration changes, reproduction, and production performances. Cows were divided into the following two groups: The CHOL (n = 60) cow [...] Read more.
We aimed to evaluate the effects of organic herbal preparations containing rumen-protected choline (RPC) in dairy cow milk’s BHB and progesterone (P4) concentration changes, reproduction, and production performances. Cows were divided into the following two groups: The CHOL (n = 60) cow diet was supplemented with 10 g/day RPC from 20 days pre-calving to 20 days post-calving, and CONT (n = 60) were fed a conventional diet. BHB and P4 concentrations were measured at 5–64 DIM and 21–64 DIM, respectively, with DelPro 4.2. BHB was lower in the CHOL group at 5–64 DIM than CONT p > 0.05. The first post-calving P4 peak, p < 0.001, was determined earlier in the CHOL group, and the P4 profile during 21–64 DIM was similar, p > 0.05. The insemination rate was lower, and the interval between calvings was shorter. The first insemination time was earlier in the CHOL group, p < 0.05. Milk yield was higher in the CHOL group at 21–64 DIM, p > 0.05. The CHOL group had more fat in their milk at 31–60 DIM, p < 0.05. There were no significant differences in protein and SCC between the groups, p > 0.05. Based on our results, we concluded that the supplementation of RPC pre- and post-calving had statistically significant effects on the first peak of P4, and benefited the reproduction performances, milk yield, and milk fat during the early postpartum period. Full article
Show Figures

Figure 1

17 pages, 3340 KiB  
Article
An Extract of Artemisia argyi Leaves Rich in Organic Acids and Flavonoids Promotes Growth in BALB/c Mice by Regulating Intestinal Flora
by Qianbo Ma, Dejin Tan, Xiaoxiao Gong, Huiming Ji, Kexin Wang, Qian Lei and Guoqi Zhao
Animals 2022, 12(12), 1519; https://doi.org/10.3390/ani12121519 - 10 Jun 2022
Cited by 12 | Viewed by 2394
Abstract
In the context of global restrictions on the use of antibiotics, there has been increased research on natural plant-based ingredients as additives. It has been proved that many natural active ingredients contained in plants have positive effects on animal growth regulation. Artemisia argyi [...] Read more.
In the context of global restrictions on the use of antibiotics, there has been increased research on natural plant-based ingredients as additives. It has been proved that many natural active ingredients contained in plants have positive effects on animal growth regulation. Artemisia argyi (A. argyi) is a traditional Chinese herbal medicine, and its extracts have been reported to have a variety of biological activities. Therefore, in order to explore the potential of the active extract of Artemisia argyi leaves (ALE) as a plant source additive, mice were fed with ALE at different concentrations for 60 days. Finally, the effects of ALE were evaluated by the growth indexes, blood indexes, and intestinal microflora changes of the mice. It was found that a medium concentration of ALE (150 mg/kg) could promote growth, and especially improved the feed efficiency of the mice. However, high concentrations of ALE (300 mg/kg) had some negative effects on the growth of mice, especially liver damage, which significantly increased AST and ALT levels in the blood. Therefore, the 150 mg/kg ALE treatment group was selected for 16S rDNA analysis. It was found that ALE could play a positive role by regulating the proportion of Bacteroidetes and Firmicutes in the intestinal tract. In particular, it can significantly up-regulate the quantities of Akkermansia and Bifidobacterium. These results suggest that ALE at appropriate concentrations can positively regulate animal growth. Full article
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 1065 KiB  
Review
Research Progress on Lycopene in Swine and Poultry Nutrition: An Update
by Jun Chen, Xuehai Cao, Zhouyin Huang, Xingping Chen, Tiande Zou and Jinming You
Animals 2023, 13(5), 883; https://doi.org/10.3390/ani13050883 - 28 Feb 2023
Cited by 7 | Viewed by 2708
Abstract
Oxidative stress and in-feed antibiotics restrictions have accelerated the development of natural, green, safe feed additives for swine and poultry diets. Lycopene has the greatest antioxidant potential among the carotenoids, due to its specific chemical structure. In the past decade, increasing attention has [...] Read more.
Oxidative stress and in-feed antibiotics restrictions have accelerated the development of natural, green, safe feed additives for swine and poultry diets. Lycopene has the greatest antioxidant potential among the carotenoids, due to its specific chemical structure. In the past decade, increasing attention has been paid to lycopene as a functional additive for swine and poultry feed. In this review, we systematically summarized the latest research progress on lycopene in swine and poultry nutrition during the past ten years (2013–2022). We primarily focused on the effects of lycopene on productivity, meat and egg quality, antioxidant function, immune function, lipid metabolism, and intestinal physiological functions. The output of this review highlights the crucial foundation of lycopene as a functional feed supplement for animal nutrition. Full article
Show Figures

Figure 1

12 pages, 849 KiB  
Review
Dietary Phytogenic Extracts Favorably Influence Productivity, Egg Quality, Blood Constituents, Antioxidant and Immunological Parameters of Laying Hens: A Meta-Analysis
by Arif Darmawan, Widya Hermana, Dwi Margi Suci, Rita Mutia, Sumiati, Anuraga Jayanegara and Ergin Ozturk
Animals 2022, 12(17), 2278; https://doi.org/10.3390/ani12172278 - 2 Sep 2022
Cited by 10 | Viewed by 3548
Abstract
The present study aimed to assess the impact of dietary phytogenic extracts on laying hen productivity, egg quality, blood constituents, antioxidant, and immunological parameters through a meta-analytical approach. A total of 28 articles (119 data points) reporting the influence of dietary phytogenic extracts [...] Read more.
The present study aimed to assess the impact of dietary phytogenic extracts on laying hen productivity, egg quality, blood constituents, antioxidant, and immunological parameters through a meta-analytical approach. A total of 28 articles (119 data points) reporting the influence of dietary phytogenic extracts on the productive performance, egg quality, blood constituents, immunological, and antioxidant parameters of laying hens were embedded into a database. Statistical analysis was performed using a mixed model, with different studies treated as random effects and phytogenic extract levels treated as fixed effects. This meta-analysis revealed that dietary phytogenic extracts quadratically (p < 0.05) improved egg production and egg mass as well as decreased (p < 0.05) the feed conversion ratio (FCR) with no adverse effect on egg weight and egg quality. Feed intake and egg yolk percentage tended to increase linearly (p < 0.1). Total serum cholesterol and low-density lipoprotein (LDL) declined quadratically (p < 0.001 and p < 0.05, respectively), high-density lipoprotein (HDL) increased linearly (p < 0.001), and malondialdehyde (MDA) decreased linearly (p < 0.01), with increasing levels of dietary phytogenic extract. In addition, immunoglobulin G (IgG), immunoglobulin A (IgA), glutathione peroxidase (GSH-Px), and total superoxide dismutase (TSOD) increased linearly (p < 0.05) in line with the increase in dietary phytogenic extract level. It was concluded that the inclusion of phytogenic extracts in the diet of laying hens had a positive effect on productive performance, feed efficiency, egg mass, immunity, and antioxidant activity without interfering with egg quality. The optimum level of feed photogenic extract for egg production and feed efficiency was determined to be around 300 mg/kg feed. Full article
Show Figures

Figure 1

15 pages, 887 KiB  
Review
Review of Associated Health Benefits of Algal Supplementation in Cattle with Reference to Bovine Respiratory Disease Complex in Feedlot Systems
by Marnie Willett, Michael Campbell, Ebony Schoenfeld and Esther Callcott
Animals 2022, 12(15), 1943; https://doi.org/10.3390/ani12151943 - 30 Jul 2022
Viewed by 2070
Abstract
Within the Australian beef industry bovine respiratory disease is considered one of the most common disease and costs the industry an average net loss of $1647.53 Australian dollars per animal death to bovine respiratory disease complex (BRD). This is due to the disease [...] Read more.
Within the Australian beef industry bovine respiratory disease is considered one of the most common disease and costs the industry an average net loss of $1647.53 Australian dollars per animal death to bovine respiratory disease complex (BRD). This is due to the disease overwhelming the animal’s immune system during a period where they experience multiple stressors that consequently increase the animal’s susceptivity to disease. Research into the bioactive compounds commonly found in marine algae is rapidly increasing due to its positive health benefits and potential immune modulating properties. Algal supplementation within previous studies has resulted in improved reproduction potential, growth performance, increases antioxidant activity and decreased proinflammatory cytokine concentrations. Additional research is required to further understand the aetiology of BRD and complete analysis of the bioavailability of these bioactive compounds within marine algae to fully explore the potential of marine algae supplementation. Full article
Show Figures

Figure 1

Back to TopTop