Role of Reactive Oxygen Species (ROS) in Tumor Microenvironment Modulation

A special issue of Antioxidants (ISSN 2076-3921).

Deadline for manuscript submissions: 30 April 2025 | Viewed by 689

Special Issue Editors


E-Mail Website
Guest Editor
Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
Interests: lncRNA-mediated transcriptional regulation; RNA–chromatin interactions; chromatin architecture; transcriptional and epigenetic regulation in cancer
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Accumulating evidence indicates that the activation or suppression of specific genes leads to an alteration of reactive oxygen species (ROS) levels; this can act as a double-edged sword, mediating tumor suppressive or pro-oncogenic functions, depending on the specific biological context. Thus, a better understanding of the mechanisms that control such genes functions and the most appropriate context of their activation or suppression is a prerequisite for the development of effective therapeutic strategies.

This Special Issue focuses on how ROS levels influence the tumor microenvironment and cancer progression. In this respect, we welcome functional genomics studies that utilize spatial transcriptomics, single-cell sequencing and/or bulk deep sequencing to analyze gene expression changes in tumor-associated stromal cells in response to varying levels of ROS, identifying key signaling pathways, antitumor mechanisms, diagnostic/prognostic biomarkers and potential therapeutic targets for modulating oxidative stress in the tumor microenvironment.

Dr. Antonis Giakountis
Prof. Dr. Dimitrios Kouretas
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • reactive oxygen species
  • tumor microenvironment
  • stroma cells
  • functional genomics
  • spatial transcriptomics
  • single-cell sequencing
  • RNA-seq
  • cancer
  • diagnosis and prognosis
  • biomarkers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4946 KiB  
Article
Oxidative Stress by H2O2 as a Potential Inductor in the Switch from Commensal to Pathogen in Oncogenic Bacterium Fusobacterium nucleatum
by Alessandra Scano, Sara Fais, Giuliana Ciappina, Martina Genovese, Barbara Granata, Monica Montopoli, Pierluigi Consolo, Patrizia Carroccio, Paola Muscolino, Alessandro Ottaiano, Alessia Bignucolo, Antonio Picone, Enrica Toscano, Germano Orrù and Massimiliano Berretta
Antioxidants 2025, 14(3), 323; https://doi.org/10.3390/antiox14030323 - 7 Mar 2025
Viewed by 407
Abstract
Background: Fusobacterium nucleatum is a pathobiont that plays a dual role as both a commensal and a pathogen. The oral cavity typically harbors this anaerobic, Gram-negative bacterium. At the same time, it is closely linked to colorectal cancer due to its potential involvement [...] Read more.
Background: Fusobacterium nucleatum is a pathobiont that plays a dual role as both a commensal and a pathogen. The oral cavity typically harbors this anaerobic, Gram-negative bacterium. At the same time, it is closely linked to colorectal cancer due to its potential involvement in tumor progression and resistance to chemotherapy. The mechanism by which it transforms from a commensal to a pathogen remains unknown. For this reason, we investigated the role of oxidative status as an initiatory factor in changing the bacterium’s pathogenicity profile. Methods: A clinical strain of F. nucleatum subsp. animalis biofilm was exposed to different oxidative stress levels through varying subinhibitory amounts of H2O2. Subsequently, we investigated the bacterium’s behavior in vitro by infecting the HT-29 cell line. We evaluated bacterial colonization, volatile sulfur compounds production, and the infected cell’s oxidative status by analyzing HMOX1, pri-miRNA 155, and 146a gene expression. Results: The bacterial colonization rate, dimethyl sulfide production, and pri-miRNA 155 levels all increased when stressed bacteria were used, suggesting a predominant pathogenic function of these strains. Conclusions: The response of F. nucleatum to different oxidative conditions could potentially explain the increase in its pathogenic traits and the existence of environmental factors that may trigger the bacterium’s pathogenicity and virulence. Full article
Show Figures

Figure 1

Back to TopTop