Advances in CO2 Capture and Absorption

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Air Pollution Control".

Deadline for manuscript submissions: closed (28 August 2024) | Viewed by 4624

Special Issue Editor


E-Mail Website
Guest Editor
School of Science, China University of Geosciences, Beijing 100083, China
Interests: ionic liquids; deep eutectic solvents; carbon capture; energy storage
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The unexpected amount of CO2 emissions caused by anthropogenic activities is the main reason behind global warming. The growing severity of climate change signifies that more efforts are needed in order to reduce CO2 release into atmosphere. The anthropogenic CO2 emissions mainly come from the combustion of fossil fuels for power generation. Carbon capture, utilization and storage (CCUS) is considered an effective technology to curb CO2 emissions in industry. Carbon capture is a crucial sector of CCUS technology and developing an efficient carbon capture method is the primary challenge faced by CCUS. The most used CO2 absorption method in the industry is the alkanolamine-based scrubbing process. However, the alkanolamine-based scrubbing process suffers from several inherent drawbacks, such as the high energy cost of regeneration and solvent degradations. Therefore, it is highly desirable to develop and create new methods for efficient CO2 capture and absorption.

The aim of this Special Issue, entitled “Advances in CO2 Capture and Absorption”, is to showcase the recent research results related to efficient carbon capture technology. In this Special Issue, experimental and theoretical investigations that explore economically and ecologically methods related to carbon capture are welcome. Submissions to this Special Issue might include, but are not limited to, the following topics: the capture of carbon dioxide using liquid solvents; the capture of carbon dioxide using solid materials; the separation of carbon dioxide via membrane; carbon storage; and carbon utilization.

Dr. Dezhong Yang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • CO2 capture
  • carbon storage
  • CCUS
  • solvents
  • absorbents
  • CO2 absorption
  • gas separation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 8429 KiB  
Article
Optimization of High-Temperature CO2 Capture by Lithium Orthosilicate-Based Sorbents Using Response Surface Methodology
by Eleonora Stefanelli, Flavio Francalanci, Sandra Vitolo and Monica Puccini
Atmosphere 2024, 15(8), 908; https://doi.org/10.3390/atmos15080908 - 30 Jul 2024
Viewed by 417
Abstract
The major challenge in the current context of the rising world energy demand is to limit the global temperature increase for mitigating climate change. This goal requires a large reduction of CO2 emissions, mainly produced by power generation and industrial processes using [...] Read more.
The major challenge in the current context of the rising world energy demand is to limit the global temperature increase for mitigating climate change. This goal requires a large reduction of CO2 emissions, mainly produced by power generation and industrial processes using fossil fuels. In this study, a novel methodology for K2CO3-doped Li4SiO4 sorbents production for CO2 capture at high temperatures was adopted based on the Design of Experiments (DoE). This innovative approach systematically tested different synthesis (temperature and K2CO3 content) and adsorption conditions (sorption temperature and CO2 concentration), allowing for the assessment of individual and interactive effects of process parameters. The Response Surface Methodology (RSM) was employed to obtain non-linear predictive models of CO2 uptake and Li4SiO4 conversion. The results of RSM analysis evidenced a maximum adsorption capacity of 196.4 mg/g for a sorbent produced at 600 °C and with 36.9 wt% of K2CO3, tested at 500 °C and 4 vol% of CO2. Whereas at 50 vol% of CO2, the best uptake of 295.6 mg/g was obtained with a sorbent synthesized at 600 °C, containing less K2CO3 (17.1 wt%) and tested at a higher temperature (662 °C). These findings demonstrate that K2CO3-doped Li4SiO4 sorbents can be tailored to maximize CO2 capture under various operating conditions, making them suitable for use in industrial processes. Full article
(This article belongs to the Special Issue Advances in CO2 Capture and Absorption)
Show Figures

Figure 1

18 pages, 3579 KiB  
Article
Thermodynamic and Economic Analyses of a Novel Cooling, Heating and Power Tri-Generation System with Carbon Capture
by Linbo Yan, Ziyue Jia, Yang Liu, Cong Geng and Boshu He
Atmosphere 2024, 15(7), 836; https://doi.org/10.3390/atmos15070836 - 15 Jul 2024
Viewed by 486
Abstract
The combined cooling, heating, and power (CCHP) system has attracted increasing attention due to its potential outstanding performance in thermodynamics, economics, and the environment. However, the conventional CCHP systems are carbon-intensive. To solve this issue, a low-carbon-emission CCHP system (LC-CCHP) is firstly proposed [...] Read more.
The combined cooling, heating, and power (CCHP) system has attracted increasing attention due to its potential outstanding performance in thermodynamics, economics, and the environment. However, the conventional CCHP systems are carbon-intensive. To solve this issue, a low-carbon-emission CCHP system (LC-CCHP) is firstly proposed in this work by integrating a sorption-enhanced steam methane reforming (SE-SMR) process. In the LC-CCHP system, CO2 is continuously captured by the calcium loop so that low-carbon energy can be generated. Then, the LC-CCHP system thermodynamic model, mainly consisting of a dual fluidized bed reactor which includes the SE-SMR reactor and a CaCO3 calcination reactor, a hydrogen gas turbine, a CO2 reheater, and a lithium bromide absorption chiller, is built. To prove that the LC-CCHP model is reliable, the system major sub-unit model predictions are compared against data from the literature in terms of thermodynamics and economics. Finally, the effects of reforming temperature (Tref), the steam-to-carbon mole ratio (S/C), the calcium-to-carbon mole ratio (RCC), the equivalent ratio for gas turbine (RAE), and the hydrogen separation ratio (Sfg) on total energy efficiency (ηten), total exergy efficiency (ηtex), and carbon capture capability (Rcm) are detected. It is found that the minimum exergy efficiency of 64.5% exists at the calciner unit, while the maximum exergy efficiency of 78.7% appears at the gas turbine unit. The maximum energy efficiency and coefficient of performance of the absorption chiller are 0.52 and 1.33, respectively. When Tref=600 °C, S/C=4.0, RCC=7.62, RAE=1.20, and Sfg=0.27, the ηten, ηtex, and Rcm of the system can be ~61%, ~68%, and ~96%, and the average specific cost of the system is 0.024 USD/kWh, which is advanced compared with the parallel CCHP systems. Full article
(This article belongs to the Special Issue Advances in CO2 Capture and Absorption)
Show Figures

Figure 1

16 pages, 7354 KiB  
Article
XCO2 Super-Resolution Reconstruction Based on Spatial Extreme Random Trees
by Xuwen Li, Sheng Jiang, Xiangyuan Wang, Tiantian Wang, Su Zhang, Jinjin Guo and Donglai Jiao
Atmosphere 2024, 15(4), 440; https://doi.org/10.3390/atmos15040440 - 2 Apr 2024
Viewed by 1042
Abstract
Carbon dioxide (CO2) is currently the most harmful greenhouse gas in the atmosphere. Obtaining long-term, high-resolution atmospheric column CO2 concentration (XCO2) datasets is of great practical significance for mitigating the greenhouse effect, identifying and controlling carbon emission sources, [...] Read more.
Carbon dioxide (CO2) is currently the most harmful greenhouse gas in the atmosphere. Obtaining long-term, high-resolution atmospheric column CO2 concentration (XCO2) datasets is of great practical significance for mitigating the greenhouse effect, identifying and controlling carbon emission sources, and achieving carbon cycle management. However, mainstream satellite observations provide XCO2 datasets with coarse spatial resolution, which is insufficient to support the needs of higher-precision research. To address this gap, in this study, we integrate spatial information with the extreme random trees model and develop a new machine learning model called spatial extreme random trees (SExtraTrees) to reconstruct a 1 km spatial resolution XCO2 dataset for China from 2016 to 2020. The results indicate that the predictive ability of spatial extreme random trees is more stable and has higher fitting accuracy compared to other methods. Overall, XCO2 in China shows an increasing trend year by year, with the spatial distribution revealing significantly higher XCO2 levels in eastern coastal regions compared to western inland areas. The contributions of this study are primarily in the following areas: (1) Considering the spatial heterogeneity of XCO2 and combining spatial features with the advantages of machine learning, we construct the spatial extreme random trees model, which is verified to have high predictive accuracy. (2) Using the spatial extreme random trees model, we reconstruct high-resolution XCO2 datasets for China from 2016 to 2020, providing data support for carbon emission reduction and related decision making. (3) Based on the generated dataset, we analyze the spatiotemporal distribution patterns of XCO2 in China, thereby improving emission reduction policies and sustainable development measures. Full article
(This article belongs to the Special Issue Advances in CO2 Capture and Absorption)
Show Figures

Figure 1

20 pages, 7354 KiB  
Article
The Characterization of Biodiversity and Soil Emission Activity of the “Ladoga” Carbon-Monitoring Site
by Evgeny Abakumov, Timur Nizamutdinov, Darya Zhemchueva, Azamat Suleymanov, Evgeny Shevchenko, Elena Koptseva, Anastasiia Kimeklis, Vyacheslav Polyakov, Evgenia Novikova, Grigory Gladkov and Evgeny Andronov
Atmosphere 2024, 15(4), 420; https://doi.org/10.3390/atmos15040420 - 28 Mar 2024
Viewed by 879
Abstract
The global climate crisis forces mankind to develop carbon storage technologies. “Ladoga” carbon monitoring site is part of the Russian climate project “Carbon Supersites”, which aims to develop methods and technologies to control the balance of greenhouse gases in various ecosystems. This article [...] Read more.
The global climate crisis forces mankind to develop carbon storage technologies. “Ladoga” carbon monitoring site is part of the Russian climate project “Carbon Supersites”, which aims to develop methods and technologies to control the balance of greenhouse gases in various ecosystems. This article shows the condition of soil and vegetation cover of the carbon polygon “Ladoga” using the example of a typical southern taiga ecosystem in the Leningrad region (Russia). It is revealed that soils here are significantly disturbed as a result of agrogenic impact, and the vegetation cover changes under the influence of anthropogenic activity. It has been found that a considerable amount of carbon is deposited in the soils of the carbon polygon; its significant part is accumulated in peat soils (60.0 ± 19.8 kg × m−2 for 0–100 cm layer). In agrogenically disturbed and pristine soils, carbon stocks are equal to 12.8 ± 2.9 kg × m−2 and 8.3 ± 1.3 kg × m−2 in the 0–100 cm layer, respectively. Stocks of potentially mineralizable organic matter (0–10 cm) in peat soils are 0.48 ± 0.01 kg × m−2; in pristine soils, it is 0.58 ± 0.06 kg × m−2. Peat soils are characterized by a higher intensity of carbon mineralization 9.2 ± 0.1 mg × 100 g−1 × day−1 with greater stability. Carbon in pristine soils is mineralized with a lower rate—2.5 ± 0.2 mg × 100 g−1 × day−1. The study of microbial diversity of soils revealed that the dominant phyla of microorganisms are Actinobacteria, Bacteroidetes, and Proteobacteria; however, methane-producing Archaea—Euryarchaeota—were found in peat soils, indicating their potentially greater emission activity. The results of this work will be useful for decision makers and can be used as a reference for estimating the carbon balance of the Leningrad region and southern taiga boreal ecosystems of the Karelian Isthmus. Full article
(This article belongs to the Special Issue Advances in CO2 Capture and Absorption)
Show Figures

Figure 1

12 pages, 2923 KiB  
Communication
CO2 Absorption by Solvents Consisting of TMG Protic Ionic Liquids and Ethylene Glycol: The Influence of Hydrogen Bonds
by Bohao Lu, Yixing Zeng, Mingzhe Chen, Shaoze Zhang and Dezhong Yang
Atmosphere 2024, 15(2), 229; https://doi.org/10.3390/atmos15020229 - 14 Feb 2024
Cited by 1 | Viewed by 1228
Abstract
Herein, the absorption of CO2 by the TMG-based (TMG: 1,1,3,3-tetramethylguanidine) ionic liquids (ILs) and the absorbents formed by TMG ILs and ethylene glycol (EG) is studied. The TMG-based ILs used are formed by TMG and 4-fluorophenol (4-F-PhOH) or carvacrol (Car), and their [...] Read more.
Herein, the absorption of CO2 by the TMG-based (TMG: 1,1,3,3-tetramethylguanidine) ionic liquids (ILs) and the absorbents formed by TMG ILs and ethylene glycol (EG) is studied. The TMG-based ILs used are formed by TMG and 4-fluorophenol (4-F-PhOH) or carvacrol (Car), and their viscosities are low at 25 °C. The CO2 uptake capacities of [TMGH][4-F-PhO] and [TMGH][Car] are low (~0.09 mol CO2/mol IL) at 25 °C and 1.0 atm. However, the mixtures [TMGH][4-F-PhO]-EG and [TMGH][Car]-EG show much higher capacities (~1.0 mol CO2/mol IL) than those of parent ILs, which is unexpected because of the low CO2 capacity of EG (0.01 mol CO2/mol EG) in the same conditions. NMR spectra and theoretical calculations are used to determine the reason for these unexpected absorption behaviors. The spectra and theoretical results show that the strong hydrogen bonds between the [TMGH]+ cation and the phenolate anions make the used TMG-based ILs unreactive to CO2, resulting in the low CO2 capacity. In the Ils-EG mixtures, the hydrogen bonds formed between EG and phenolate anions can weaken the [TMGH]+–anion hydrogen bond strength, so ILs-EG mixtures can react with CO2 and present high CO2 capacities. Full article
(This article belongs to the Special Issue Advances in CO2 Capture and Absorption)
Show Figures

Figure 1

Back to TopTop