Regenerative Medicine for Bone and Cartilage and Pathophysiology of Degenerative Diseases

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Molecular and Translational Medicine".

Deadline for manuscript submissions: closed (15 December 2022) | Viewed by 20998

Special Issue Editors


E-Mail Website
Guest Editor
Department of Physiology, College of Medicine, Orthopedic Research Center, Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
Interests: regenerative medicine of bone and cartilage; degenerative diseases of bone and cartilage; physiology and pathophysiology of bone and articular cartilage; stem cell biology; pharmacology

E-Mail Website
Co-Guest Editor
Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
Interests: regenerative medicine; tissue engineering; stem cells; articular cartilage defect; osteoarthritis

Special Issue Information

Dear Colleagues,

The Special Issue favors the regenerative medicine for bone and cartilage, including the repair and/or tissue engineering of the damaged tissues of bone and cartilage, as well as the studies which focus on the prevention or treatment of bone and cartilage degenerative diseases. The mechanism of the pathophysiology of the degenerative diseases of bone and cartilage are also emphasized in this issue.

Prof. Dr. Mei-Ling Ho
Dr. Shun-Cheng Wu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bone
  • cartilage
  • regeneration
  • degeneration
  • pathophysiology
  • osteoporosis
  • osteoarthritis
  • tissue engineering
  • bone defect
  • cartilage defect

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 2517 KiB  
Article
Characterization of microRNA Levels in Synovial Fluid from Knee Osteoarthritis and Anterior Cruciate Ligament Tears
by Laura Rizzi, Marco Turati, Elena Bresciani, Filippo Maria Anghilieri, Ramona Meanti, Laura Molteni, Massimiliano Piatti, Nicolò Zanchi, Silvia Coco, Francesco Buonanotte, Luca Rigamonti, Giovanni Zatti, Vittorio Locatelli, Robert J. Omeljaniuk, Marco Bigoni and Antonio Torsello
Biomedicines 2022, 10(11), 2909; https://doi.org/10.3390/biomedicines10112909 - 12 Nov 2022
Cited by 1 | Viewed by 1347
Abstract
This study investigated modifications of microRNA expression profiles in knee synovial fluid of patients with osteoarthritis (OA) and rupture of the anterior cruciate ligament (ACL). Twelve microRNAs (26a-5p, 27a-3p, let7a-5p, 140-5p, 146-5p, 155-5p, 16-5p,186-5p, 199a-3p, 210-3p, 205-5p, and 30b-5p) were measured by real-time [...] Read more.
This study investigated modifications of microRNA expression profiles in knee synovial fluid of patients with osteoarthritis (OA) and rupture of the anterior cruciate ligament (ACL). Twelve microRNAs (26a-5p, 27a-3p, let7a-5p, 140-5p, 146-5p, 155-5p, 16-5p,186-5p, 199a-3p, 210-3p, 205-5p, and 30b-5p) were measured by real-time quantitative polymerase chain reaction (RT-qPCR) in synovial fluids obtained from 30 patients with ACL tear and 18 patients with knee OA. These 12 miRNAs were chosen on the basis of their involvement in pathological processes of bone and cartilage. Our results show that miR-26a-5p, miR-186-5p, and miR-30b-5p were expressed in the majority of OA and ACL tear samples, whereas miR-199a-3p, miR-210-3p, and miR-205-5p were detectable only in a few samples. Interestingly, miR-140-5p was expressed in only one sample of thirty in the ACL tear group. miR-140-5p has been proposed to modulate two genes (BGN and COL5A1100) that are involved in ligamentous homeostasis; their altered expression could be linked with ACL rupture susceptibility. The expression of miR-30b-5p was higher in OA and chronic ACL groups compared to acute ACL samples. We provide evidence that specific miRNAs could be detected not only in synovial fluid of patients with OA, but also in post-traumatic ACL tears. Full article
Show Figures

Figure 1

22 pages, 7553 KiB  
Article
Inhibition of Neddylation Suppresses Osteoclast Differentiation and Function In Vitro and Alleviates Osteoporosis In Vivo
by Meng-Huang Wu, Wei-Bin Hsu, Mei-Hsin Chen and Chung-Sheng Shi
Biomedicines 2022, 10(10), 2355; https://doi.org/10.3390/biomedicines10102355 - 21 Sep 2022
Cited by 5 | Viewed by 1895
Abstract
Neddylation, or the covalent addition of NEDD8 to specific lysine residue of proteins, is a reversible posttranslational modification, which regulates numerous biological functions; however, its involvement and therapeutic significance in osteoporosis remains unknown. Our results revealed that during the soluble receptor activator of [...] Read more.
Neddylation, or the covalent addition of NEDD8 to specific lysine residue of proteins, is a reversible posttranslational modification, which regulates numerous biological functions; however, its involvement and therapeutic significance in osteoporosis remains unknown. Our results revealed that during the soluble receptor activator of nuclear factor-κB ligand (sRANKL)-stimulated osteoclast differentiation, the neddylation and expression of UBA3, the NEDD8-activating enzyme (NAE) catalytic subunit, were dose- and time-dependently upregulated in RAW 264.7 macrophages. UBA3 knockdown for diminishing NAE activity or administering low doses of the NAE inhibitor MLN4924 significantly suppressed sRANKL-stimulated osteoclast differentiation and bone-resorbing activity in the macrophages by inhibiting sRANKL-stimulated neddylation and tumor necrosis factor receptor-associated factor 6 (TRAF6)-activated transforming growth factor-β-activated kinase 1 (TAK1) downstream signaling for diminishing nuclear factor-activated T cells c1 (NFATc1) expression. sRANKL enhanced the interaction of TRAF6 with the neddylated proteins and the polyubiquitination of TRAF6’s lysine 63, which activated TAK1 downstream signaling; however, this process was inhibited by MLN4924. MLN4924 significantly reduced osteoporosis in an ovariectomy- and sRANKL-induced osteoporosis mouse model in vivo. Our novel finding was that NAE-mediated neddylation participates in RANKL-activated TRAF6–TAK1–NFATc1 signaling during osteoclast differentiation and osteoporosis, suggesting that neddylation may be a new target for treating osteoporosis. Full article
Show Figures

Figure 1

10 pages, 2497 KiB  
Article
Associations of Texture Features of Proton Density Fat Fraction Maps between Lumbar Vertebral Bone Marrow and Paraspinal Musculature
by Yannik Leonhardt, Michael Dieckmeyer, Florian Zoffl, Georg C. Feuerriegel, Nico Sollmann, Daniela Junker, Tobias Greve, Christina Holzapfel, Hans Hauner, Karupppasamy Subburaj, Jan S. Kirschke, Dimitrios C. Karampinos, Claus Zimmer, Marcus R. Makowski, Thomas Baum and Egon Burian
Biomedicines 2022, 10(9), 2075; https://doi.org/10.3390/biomedicines10092075 - 25 Aug 2022
Cited by 1 | Viewed by 1497
Abstract
Chemical shift encoding-based water–fat MRI (CSE-MRI)-derived proton density fat fraction (PDFF) has been used for non-invasive assessment of regional body fat distributions. More recently, texture analysis (TA) has been proposed to reveal even more detailed information about the vertebral or muscular composition beyond [...] Read more.
Chemical shift encoding-based water–fat MRI (CSE-MRI)-derived proton density fat fraction (PDFF) has been used for non-invasive assessment of regional body fat distributions. More recently, texture analysis (TA) has been proposed to reveal even more detailed information about the vertebral or muscular composition beyond PDFF. The aim of this study was to investigate associations between vertebral bone marrow and paraspinal muscle texture features derived from CSE-MRI-based PDFF maps in a cohort of healthy subjects. In this study, 44 healthy subjects (13 males, 55 ± 30 years; 31 females, 39 ± 17 years) underwent 3T MRI including a six-echo three-dimensional (3D) spoiled gradient echo sequence used for CSE-MRI at the lumbar spine and the paraspinal musculature. The erector spinae muscles (ES), the psoas muscles (PS), and the vertebral bodies L1-4 (LS) were manually segmented. Mean PDFF values and texture features were extracted for each compartment. Features were compared between males and females using logistic regression analysis adjusted for age and body mass index (BMI). All texture features of ES except for Sum Average were significantly (p < 0.05) different between men and women. The three global texture features (Variance, Skewness, Kurtosis) for PS as well as LS showed a significant difference between male and female subjects (p < 0.05). Mean PDFF measured in PS and ES was significantly higher in females, but no difference was found for the vertebral bone marrow’s PDFF. Partial correlation analysis between the texture features of the spine and the paraspinal muscles revealed a highly significant correlation for Variance(global) (r = 0.61 for ES, r = 0.62 for PS; p < 0.001 respectively). Texture analysis using PDFF maps based on CSE-MRI revealed differences between healthy male and female subjects. Global texture features in the lumbar vertebral bone marrow allowed for differentiation between men and women, when the overall PDFF was not significantly different, indicating that PDFF maps may contain detailed and subtle textural information beyond fat fraction. The observed significant correlation of Variance(global) suggests a metabolic interrelationship between vertebral bone marrow and the paraspinal muscles. Full article
Show Figures

Figure 1

22 pages, 4311 KiB  
Article
Enhancement of Osteoblast Function through Extracellular Vesicles Derived from Adipose-Derived Stem Cells
by Mei-Ling Ho, Chin-Jung Hsu, Che-Wei Wu, Ling-Hua Chang, Jhen-Wei Chen, Chung-Hwan Chen, Kui-Chou Huang, Je-Ken Chang, Shun-Cheng Wu and Pei-Lin Shao
Biomedicines 2022, 10(7), 1752; https://doi.org/10.3390/biomedicines10071752 - 21 Jul 2022
Cited by 6 | Viewed by 2926
Abstract
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cell that is investigated in bone tissue engineering (BTE). Osteoblasts are the main cells responsible for bone formation in vivo and directing ADSCs to form osteoblasts through osteogenesis is a research topic in [...] Read more.
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cell that is investigated in bone tissue engineering (BTE). Osteoblasts are the main cells responsible for bone formation in vivo and directing ADSCs to form osteoblasts through osteogenesis is a research topic in BTE. In addition to the osteogenesis of ADSCs into osteoblasts, the crosstalk of ADSCs with osteoblasts through the secretion of extracellular vesicles (EVs) may also contribute to bone formation in ADSC-based BTE. We investigated the effect of ADSC-secreted EVs (ADSC-EVs) on osteoblast function. ADSC-EVs (size ≤ 1000 nm) were isolated from the culture supernatant of ADSCs through ultracentrifugation. The ADSC-EVs were observed to be spherical under a transmission electron microscope. The ADSC-EVs were positive for CD9, CD81, and Alix, but β-actin was not detected. ADSC-EV treatment did not change survival but did increase osteoblast proliferation and activity. The 48 most abundant known microRNAs (miRNAs) identified within the ADSC-EVs were selected and then subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The GO analysis revealed that these miRNAs are highly relevant to skeletal system morphogenesis and bone development. The KEGG analysis indicated that these miRNAs may regulate osteoblast function through autophagy or the mitogen-activated protein kinase or Ras-related protein 1 signaling pathway. These results suggest that ADSC-EVs enhance osteoblast function and can contribute to bone regeneration in ADSC-based BTE. Full article
Show Figures

Figure 1

16 pages, 5518 KiB  
Article
Patient-Specific Finite Element Modeling of the Whole Lumbar Spine Using Clinical Routine Multi-Detector Computed Tomography (MDCT) Data—A Pilot Study
by Nithin Manohar Rayudu, Karupppasamy Subburaj, Rajesh Elara Mohan, Nico Sollmann, Michael Dieckmeyer, Jan S. Kirschke and Thomas Baum
Biomedicines 2022, 10(7), 1567; https://doi.org/10.3390/biomedicines10071567 - 30 Jun 2022
Cited by 5 | Viewed by 2235
Abstract
(1) Background: To study the feasibility of developing finite element (FE) models of the whole lumbar spine using clinical routine multi-detector computed tomography (MDCT) scans to predict failure load (FL) and range of motion (ROM) parameters. (2) Methods: MDCT scans of 12 subjects [...] Read more.
(1) Background: To study the feasibility of developing finite element (FE) models of the whole lumbar spine using clinical routine multi-detector computed tomography (MDCT) scans to predict failure load (FL) and range of motion (ROM) parameters. (2) Methods: MDCT scans of 12 subjects (6 healthy controls (HC), mean age ± standard deviation (SD): 62.16 ± 10.24 years, and 6 osteoporotic patients (OP), mean age ± SD: 65.83 ± 11.19 years) were included in the current study. Comprehensive FE models of the lumbar spine (5 vertebrae + 4 intervertebral discs (IVDs) + ligaments) were generated (L1–L5) and simulated. The coefficients of correlation (ρ) were calculated to investigate the relationship between FE-based FL and ROM parameters and bone mineral density (BMD) values of L1–L3 derived from MDCT (BMDQCT-L1-3). Finally, Mann–Whitney U tests were performed to analyze differences in FL and ROM parameters between HC and OP cohorts. (3) Results: Mean FE-based FL value of the HC cohort was significantly higher than that of the OP cohort (1471.50 ± 275.69 N (HC) vs. 763.33 ± 166.70 N (OP), p < 0.01). A strong correlation of 0.8 (p < 0.01) was observed between FE-based FL and BMDQCT-L1-L3 values. However, no significant differences were observed between ROM parameters of HC and OP cohorts (p = 0.69 for flexion; p = 0.69 for extension; p = 0.47 for lateral bending; p = 0.13 for twisting). In addition, no statistically significant correlations were observed between ROM parameters and BMDQCT- L1-3. (4) Conclusions: Clinical routine MDCT data can be used for patient-specific FE modeling of the whole lumbar spine. ROM parameters do not seem to be significantly altered between HC and OP. In contrast, FE-derived FL may help identify patients with increased osteoporotic fracture risk in the future. Full article
Show Figures

Figure 1

13 pages, 11353 KiB  
Article
Three-Dimensional Bioprinted Controlled Release Scaffold Containing Mesenchymal Stem/Stromal Lyosecretome for Bone Regeneration: Sterile Manufacturing and In Vitro Biological Efficacy
by Elia Bari, Franca Scocozza, Sara Perteghella, Lorena Segale, Marzio Sorlini, Ferdinando Auricchio, Michele Conti and Maria Luisa Torre
Biomedicines 2022, 10(5), 1063; https://doi.org/10.3390/biomedicines10051063 - 3 May 2022
Cited by 8 | Viewed by 1939
Abstract
Recently, 3D-printed scaffolds for the controlled release of mesenchymal stem cell (MSC) freeze-dried secretome (Lyosecretome) have been proposed to enhance scaffold osteoinduction and osteoconduction; coprinting of poly(ε-caprolactone) (PCL) with alginate hydrogels allows adequate mechanical strength to be combined with the modulable kinetics of [...] Read more.
Recently, 3D-printed scaffolds for the controlled release of mesenchymal stem cell (MSC) freeze-dried secretome (Lyosecretome) have been proposed to enhance scaffold osteoinduction and osteoconduction; coprinting of poly(ε-caprolactone) (PCL) with alginate hydrogels allows adequate mechanical strength to be combined with the modulable kinetics of the active principle release. This study represents the feasibility study for the sterile production of coprinted scaffolds and the proof of concept for their in vitro biological efficacy. Sterile scaffolds were obtained, and Lyosecretome enhanced their colonization by MSCs, sustaining differentiation towards the bone line in an osteogenic medium. Indeed, after 14 days, the amount of mineralized matrix detected by alizarin red was significantly higher for the Lyosecretome scaffolds. The amount of osteocalcin, a specific bone matrix protein, was significantly higher at all the times considered (14 and 28 days) for the Lyosecretome scaffolds. Confocal microscopy further confirmed such results, demonstrating improved osteogenesis with the Lyosecretome scaffolds after 14 and 28 days. Overall, these results prove the role of MSC secretome, coprinted in PCL/alginate scaffolds, in inducing bone regeneration; sterile scaffolds containing MSC secretome are now available for in vivo pre-clinical tests of bone regeneration. Full article
Show Figures

Figure 1

31 pages, 4417 KiB  
Article
Single Application of Low-Dose, Hydroxyapatite-Bound BMP-2 or GDF-5 Induces Long-Term Bone Formation and Biomechanical Stabilization of a Bone Defect in a Senile Sheep Lumbar Osteopenia Model
by Ines Hasenbein, André Sachse, Peter Hortschansky, Klaus D. Schmuck, Victoria Horbert, Christoph Anders, Thomas Lehmann, René Huber, Alexander Maslaris, Frank Layher, Christina Braun, Andreas Roth, Frank Plöger and Raimund W. Kinne
Biomedicines 2022, 10(2), 513; https://doi.org/10.3390/biomedicines10020513 - 21 Feb 2022
Cited by 7 | Viewed by 2735
Abstract
Effects of hydroxyapatite (HA) particles with bone morphogenetic BMP-2 or GDF-5 were compared in sheep lumbar osteopenia; in vitro release in phosphate-buffered saline (PBS) or sheep serum was assessed by ELISA. Lumbar (L) vertebral bone defects (Ø 3.5 mm) were generated in aged, [...] Read more.
Effects of hydroxyapatite (HA) particles with bone morphogenetic BMP-2 or GDF-5 were compared in sheep lumbar osteopenia; in vitro release in phosphate-buffered saline (PBS) or sheep serum was assessed by ELISA. Lumbar (L) vertebral bone defects (Ø 3.5 mm) were generated in aged, osteopenic female sheep (n = 72; 9.00 ± 0.11 years; mean ± SEM). Treatment was: (a) HA particles (2.5 mg; L5); or (b) particles coated with BMP-2 (1 µg; 10 µg) or GDF-5 (5 µg; 50 µg; L4; all groups n = 6). Untouched vertebrae (L3) served as controls. Three and nine months post-therapy, bone formation was assessed by osteodensitometry, histomorphometry, and biomechanical testing. Cumulative 14-day BMP release was high in serum (76–100%), but max. 1.4% in PBS. In vivo induction of bone formation by HA particles with either growth factor was shown by: (i) significantly increased bone volume, trabecular and cortical thickness (overall increase HA + BMP vs. control close to the injection channel 71%, 110%, and 37%, respectively); (ii) partial significant effects for bone mineral density, bone formation, and compressive strength (increase 17%; 9 months; GDF-5). Treatment effects were not dose-dependent. Combined HA and BMPs (single low-dose) highly augment long-term bone formation and biomechanical stabilization in sheep lumbar osteopenia. Thus, carrier-bound BMP doses 20,000-fold to 1000-fold lower than previously applied appear suitable for spinal fusion/bone regeneration and improved treatment safety. Full article
Show Figures

Figure 1

15 pages, 3617 KiB  
Article
Cell-Based Double-Screening Method to Identify a Reliable Candidate for Osteogenesis-Targeting Compounds
by Sho Fukuyasu, Hiroki Kayashima, Akihito Moribayashi, Shu Matsuoka, Atsuhiro Nagasaki, Hiroko Okawa, Hirofumi Yatani, Makio Saeki and Hiroshi Egusa
Biomedicines 2022, 10(2), 426; https://doi.org/10.3390/biomedicines10020426 - 11 Feb 2022
Cited by 4 | Viewed by 1845
Abstract
Small-molecule compounds strongly affecting osteogenesis can form the basis of effective therapeutic strategies in bone regenerative medicine. A cell-based high-throughput screening system might be a powerful tool for identifying osteoblast-targeting candidates; however, this approach is generally limited with using only one molecule as [...] Read more.
Small-molecule compounds strongly affecting osteogenesis can form the basis of effective therapeutic strategies in bone regenerative medicine. A cell-based high-throughput screening system might be a powerful tool for identifying osteoblast-targeting candidates; however, this approach is generally limited with using only one molecule as a cell-based sensor that does not always reflect the activation of the osteogenic phenotype. In the present study, we used the MC3T3-E1 cell line stably transfected with the green fluorescent protein (GFP) reporter gene driven by a fragment of type I collagen promoter (Col-1a1GFP-MC3T3-E1) to evaluate a double-screening system to identify osteogenic inducible compounds using a combination of a cell-based reporter assay and detection of alkaline phosphatase (ALP) activity. Col-1a1GFP-MC3T3-E1 cells were cultured in an osteogenic induction medium after library screening of 1280 pharmacologically active compounds (Lopack1280). After 7 days, GFP fluorescence was measured using a microplate reader. After 14 days of osteogenic induction, the cells were stained with ALP. Library screening using the Col-1a1/GFP reporter and ALP staining assay detected three candidates with significant osteogenic induction ability. Furthermore, leflunomide, one of the three detected candidates, significantly promoted new bone formation in vivo. Therefore, this double-screening method could identify candidates for osteogenesis-targeting compounds more reliably than conventional methods. Full article
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 1240 KiB  
Review
Using the Microbiome as a Regenerative Medicine Strategy for Autoimmune Diseases
by Kaitlin L. Williams, Ryan Enslow, Shreyas Suresh, Camille Beaton, Mitchell Hodge and Amanda E. Brooks
Biomedicines 2023, 11(6), 1582; https://doi.org/10.3390/biomedicines11061582 - 30 May 2023
Cited by 3 | Viewed by 3224
Abstract
Autoimmune (AI) diseases, which present in a multitude of systemic manifestations, have been connected to many underlying factors. These factors include the environment, genetics, individual microbiomes, and diet. An individual’s gut microbiota is an integral aspect of human functioning, as it is intimately [...] Read more.
Autoimmune (AI) diseases, which present in a multitude of systemic manifestations, have been connected to many underlying factors. These factors include the environment, genetics, individual microbiomes, and diet. An individual’s gut microbiota is an integral aspect of human functioning, as it is intimately integrated into the metabolic, mechanical, immunological, and neurologic pathways of the body. The microbiota dynamically changes throughout our lifetimes and is individually unique. While the gut microbiome is ever-adaptive, gut dysbiosis can exert a significant influence on physical and mental health. Gut dysbiosis is a common factor in various AI, and diets with elevated fat and sugar content have been linked to gut microbiome alterations, contributing to increased systemic inflammation. Additionally, multiple AI’s have increased levels of certain inflammatory markers such as TNF-a, IL-6, and IL-17 that have been shown to contribute to arthropathy and are also linked to increased levels of gut dysbiosis. While chronic inflammation has been shown to affect many physiologic systems, this review explores the connection between gut microbiota, bone metabolism, and the skeletal and joint destruction associated with various AI, including psoriatic arthritis, systemic lupus erythematosus, irritable bowel disease, and rheumatoid arthritis. This review aims to define the mechanisms of microbiome crosstalk between the cells of bone and cartilage, as well as to investigate the potential bidirectional connections between AI, bony and cartilaginous tissue, and the gut microbiome. By doing this, the review also introduces the concept of altering an individual’s specific gut microbiota as a form of regenerative medicine and potential tailored therapy for joint destruction seen in AI. We hope to show multiple, specific ways to target the microbiome through diet changes, rebalancing microbial diversity, or decreasing specific microbes associated with increased gut permeability, leading to reduced systemic inflammation contributing to joint pathology. Additionally, we plan to show that diet alterations can promote beneficial changes in the gut microbiota, supporting the body’s own endogenous processes to decrease inflammation and increase healing. This concept of microbial alteration falls under the definition of regenerative medicine and should be included accordingly. By implementing microbial alterations in regenerative medicine, this current study could lend increasing support to the current research on the associations of the gut microbiota, bone metabolism, and AI-related musculoskeletal pathology. Full article
Show Figures

Figure 1

Back to TopTop