Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 25283 KiB  
Review
Pd-Catalyzed Intermolecular Dehydrogenative Heck Reactions of Five-Membered Heteroarenes
by Jean Le Bras and Jacques Muzart
Catalysts 2020, 10(5), 571; https://doi.org/10.3390/catal10050571 - 19 May 2020
Cited by 22 | Viewed by 4434
Abstract
The Pd-mediated cross-coupling of (hetero)arenes with alkenes may be an effective method for the formation of a C–C bond from two C–H bonds. Discovered by Fujiwara and co-workers in 1967, this reaction led to a number of reports that we firstly highlighted in [...] Read more.
The Pd-mediated cross-coupling of (hetero)arenes with alkenes may be an effective method for the formation of a C–C bond from two C–H bonds. Discovered by Fujiwara and co-workers in 1967, this reaction led to a number of reports that we firstly highlighted in 2011 (review with references till June 2010) and for which, we retained the name “dehydrogenative Heck reaction”. The topic, especially the reactions of five-membered heteroarenes, has been the subject of intensive research over the last ten years. The present review is limited to these dehydrogenative Heck reactions published since 2010, underlining the progress of the procedures. Full article
Show Figures

Graphical abstract

17 pages, 2677 KiB  
Article
Simulation and Optimization of the CWPO Process by Combination of Aspen Plus and 6-Factor Doehlert Matrix: Towards Autothermal Operation
by Jose L. Diaz de Tuesta, Asunción Quintanilla, Daniel Moreno, Víctor R. Ferro and Jose A. Casas
Catalysts 2020, 10(5), 548; https://doi.org/10.3390/catal10050548 - 15 May 2020
Cited by 12 | Viewed by 4183
Abstract
This work aims to present an industrial perspective on Catalytic Wet Peroxide Oxidation (CWPO) technology. Herein, process simulation and experimental design have been coupled to study the optimal process conditions to ensure high-performance oxidation, minimum H2O2 consumption and maximum energetic [...] Read more.
This work aims to present an industrial perspective on Catalytic Wet Peroxide Oxidation (CWPO) technology. Herein, process simulation and experimental design have been coupled to study the optimal process conditions to ensure high-performance oxidation, minimum H2O2 consumption and maximum energetic efficiency in an industrial scale CWPO unit. The CWPO of phenol in the presence of carbon black catalysts was studied as a model process in the Aspen Plus® v11 simulator. The kinetic model implemented, based on 30 kinetic equations with 11 organic compounds and H2O2 involvement, was valid to describe the complex reaction network and to reproduce the experimental results. The computer experiments were designed on a six-factor Doehlert Matrix in order to describe the influence of the operating conditions (i.e., the different process temperatures, inlet chemical oxygen demands, doses of H2O2 and space time) on each selected output response (conversion, efficiency of H2O2 consumption and energetic efficiency) by a quadratic model. The optimization of the WPO performance by a multi-criteria function highlighted the inlet chemical oxygen demand as the most influential operating condition. It needed to have values between 9.5 and 24 g L−1 for autothermal operation to be sustained under mild operating conditions (reaction temperature: 93–130 °C and pressure: 1–4 atm) and with a stoichiometric dose of H2O2. Full article
(This article belongs to the Special Issue Advances in Catalytic Wet Peroxide Oxidation)
Show Figures

Graphical abstract

36 pages, 10549 KiB  
Review
New Trends in Enantioselective Cross-Dehydrogenative Coupling
by Ana Maria Faisca Phillips, Maria de Fátima C. Guedes da Silva and Armando J. L. Pombeiro
Catalysts 2020, 10(5), 529; https://doi.org/10.3390/catal10050529 - 11 May 2020
Cited by 27 | Viewed by 4597
Abstract
The development of cross-dehydrogenative coupling in recent years has simplified the synthesis of many materials, as a result of facile C–H activation, which, together with its greater atom economy and environmental friendliness, has made an impact on modern organic chemistry. Indeed, many C–C [...] Read more.
The development of cross-dehydrogenative coupling in recent years has simplified the synthesis of many materials, as a result of facile C–H activation, which, together with its greater atom economy and environmental friendliness, has made an impact on modern organic chemistry. Indeed, many C–C and C–X (X = N, O, P, S, B, or Si) coupling reactions can now be performed directly between two C–H bonds or a C–H and an X–H bond, simply by adding catalytic amounts of a metal salt to a mixture of the two and an oxidant to accept the two hydrogen atoms released. Chiral organocatalysts or chiral ligands have been joined to promote enantioselective processes, resulting in the development of efficient reaction cascades that provide products in high yields and high levels of asymmetric induction through cooperative catalysis. In recent years, photochemical oxidation and electrochemistry have widened even more the scope of cross-dehydrogenative coupling (CDC). In this review, we summarized the recent literature in this subject, hoping that it will inspire many new synthetic strategies. Full article
(This article belongs to the Special Issue Organocatalysis: Advances, Opportunity, and Challenges)
Show Figures

Graphical abstract

17 pages, 3468 KiB  
Article
Enhanced Photoelectrochemical Water Splitting at Hematite Photoanodes by Effect of a NiFe-Oxide co-Catalyst
by Carmelo Lo Vecchio, Stefano Trocino, Sabrina Campagna Zignani, Vincenzo Baglio, Alessandra Carbone, María Isabel Díez García, Maxime Contreras, Roberto Gómez and Antonino Salvatore Aricò
Catalysts 2020, 10(5), 525; https://doi.org/10.3390/catal10050525 - 9 May 2020
Cited by 14 | Viewed by 3651
Abstract
Tandem photoelectrochemical cells (PECs), made up of a solid electrolyte membrane between two low-cost photoelectrodes, were investigated to produce “green” hydrogen by exploiting renewable solar energy. The assembly of the PEC consisted of an anionic solid polymer electrolyte membrane (gas separator) clamped between [...] Read more.
Tandem photoelectrochemical cells (PECs), made up of a solid electrolyte membrane between two low-cost photoelectrodes, were investigated to produce “green” hydrogen by exploiting renewable solar energy. The assembly of the PEC consisted of an anionic solid polymer electrolyte membrane (gas separator) clamped between an n-type Fe2O3 photoanode and a p-type CuO photocathode. The semiconductors were deposited on fluorine-doped tin oxide (FTO) transparent substrates and the cell was investigated with the hematite surface directly exposed to a solar simulator. Ionomer dispersions obtained from the dissolution of commercial polymers in the appropriate solvents were employed as an ionic interface with the photoelectrodes. Thus, the overall photoelectrochemical water splitting occurred in two membrane-separated compartments, i.e., the oxygen evolution reaction (OER) at the anode and the hydrogen evolution reaction (HER) at the cathode. A cost-effective NiFeOx co-catalyst was deposited on the hematite photoanode surface and investigated as a surface catalytic enhancer in order to improve the OER kinetics, this reaction being the rate-determining step of the entire process. The co-catalyst was compared with other well-known OER electrocatalysts such as La0.6Sr0.4Fe0.8CoO3 (LSFCO) perovskite and IrRuOx. The Ni-Fe oxide was the most promising co-catalyst for the oxygen evolution in the anionic environment in terms of an enhanced PEC photocurrent and efficiency. The materials were physico-chemically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Full article
(This article belongs to the Special Issue Electro-Catalysts for Energy Conversion and Storage Devices)
Show Figures

Figure 1

36 pages, 2079 KiB  
Review
Removal of Hydrogen Sulfide From Various Industrial Gases: A Review of The Most Promising Adsorbing Materials
by Amvrosios G. Georgiadis, Nikolaos D. Charisiou and Maria A. Goula
Catalysts 2020, 10(5), 521; https://doi.org/10.3390/catal10050521 - 8 May 2020
Cited by 145 | Viewed by 14765
Abstract
The separation of hydrogen sulfide (H2S) from gas streams has significant economic and environmental repercussions for the oil and gas industries. The present work reviews H2S separation via nonreactive and reactive adsorption from various industrial gases, focusing on the [...] Read more.
The separation of hydrogen sulfide (H2S) from gas streams has significant economic and environmental repercussions for the oil and gas industries. The present work reviews H2S separation via nonreactive and reactive adsorption from various industrial gases, focusing on the most commonly used materials i.e., natural or synthetic zeolites, activated carbons, and metal oxides. In respect to cation-exchanged zeolites, attention should also be paid to parameters such as structural and performance regenerability, low adsorption temperatures, and thermal conductivities, in order to create more efficient materials in terms of H2S adsorption. Although in the literature it is reported that activated carbons can generally achieve higher adsorption capacities than zeolites and metal oxides, they exhibit poor regeneration potential. Future work should mainly focus on finding the optimum temperature, solvent concentration, and regeneration time in order to increase regeneration efficiency. Metal oxides have also been extensively used as adsorbents for hydrogen sulfide capture. Among these materials, ZnO and Cu–Zn–O have been studied the most, as they seem to offer improved H2S adsorption capacities. However, there is a clear lack of understanding in relation to the basic sulfidation mechanisms. The elucidation of these reaction mechanisms will be a toilsome but necessary undertaking in order to design materials with high regenerative capacity and structural reversibility. Full article
Show Figures

Figure 1

14 pages, 2865 KiB  
Article
Nano-Ru Supported on Ni Nanowires for Low-Temperature Carbon Dioxide Methanation
by Tomasz Siudyga, Maciej Kapkowski, Dawid Janas, Tomasz Wasiak, Rafał Sitko, Maciej Zubko, Jacek Szade, Katarzyna Balin, Joanna Klimontko, Daniel Lach, Judyta Popiel, Adam Smoliński and Jaroslaw Polanski
Catalysts 2020, 10(5), 513; https://doi.org/10.3390/catal10050513 - 7 May 2020
Cited by 17 | Viewed by 3857
Abstract
In this study, we investigated the catalytic performance of Ru nanoparticles (NPs) supported on Ni-nanowires for the first time. This appears to be a highly efficient catalyst for low-temperature methanation, e.g., ca. 100% conversion and 100% of CH4 selectivity can be achieved [...] Read more.
In this study, we investigated the catalytic performance of Ru nanoparticles (NPs) supported on Ni-nanowires for the first time. This appears to be a highly efficient catalyst for low-temperature methanation, e.g., ca. 100% conversion and 100% of CH4 selectivity can be achieved at ca. 179 °C, while the turnover frequency (TOF) value was 2479.2 h−1. At the same time, the onset of a reaction was observed at a temperature as low as 130 °C. The comparison of nano-Pd and nano-Ru supported on Ni-nanowires enabled us to prove that oxidized surface metals are highly important for the high activity of the investigated nano-Ru@nanowired-Ni. Moreover, similar to the microscopic Sabatier rule, which indicates that some optimal reactivity level of a catalyst exists, we showed that Ni-nanowires (a higher specific surface area than a standard metal surface, e.g., in the form of a metal foam, but lower than nano-sized materials) significantly enhances the performance of the Ru-Ni catalytic system. Full article
Show Figures

Figure 1

16 pages, 4365 KiB  
Article
Design of Experiment for the Optimization of Pesticide Removal from Wastewater by Photo-Electrochemical Oxidation with TiO2 Nanotubes
by Annalisa Vacca, Laura Mais, Michele Mascia, Elisabetta Maria Usai and Simonetta Palmas
Catalysts 2020, 10(5), 512; https://doi.org/10.3390/catal10050512 - 7 May 2020
Cited by 12 | Viewed by 2739
Abstract
The Design of Experiment (DoE) technique has been used to investigate the photo-electrochemical removal of diuron (DRN) from wastewater. The process is carried out in a photo-electrochemical flow reactor, in which titania nanotubular electrode is irradiated with a simulated solar light. Different operative [...] Read more.
The Design of Experiment (DoE) technique has been used to investigate the photo-electrochemical removal of diuron (DRN) from wastewater. The process is carried out in a photo-electrochemical flow reactor, in which titania nanotubular electrode is irradiated with a simulated solar light. Different operative conditions have been investigated, in a planned 23 full factorial design in which imposed current density, flow rate and initial concentration have been varied at two levels. The removal process of DRN was investigated in terms of specific removal rate (K) and cell voltage (E), which were assumed as objective functions: the results show that the applied current has a paramount effect on both of the objective functions. From the analyses of the intermediates, it appears that the investigated parameters may exert different effects on the distribution of the reaction products: the initial concentration of diuron and the electrode potential seem to play a more important role, in this case. Full article
Show Figures

Figure 1

36 pages, 7255 KiB  
Review
Current State of the Art of the Solid Rh-Based Catalyzed Hydroformylation of Short-Chain Olefins
by Schirin Hanf, Luis Alvarado Rupflin, Roger Gläser and Stephan Andreas Schunk
Catalysts 2020, 10(5), 510; https://doi.org/10.3390/catal10050510 - 6 May 2020
Cited by 49 | Viewed by 10117
Abstract
The hydroformylation of olefins is one of the most important homogeneously catalyzed processes in industry to produce bulk chemicals. Despite the high catalytic activities and selectivity’s using rhodium-based homogeneous hydroformylation catalysts, catalyst recovery and recycling from the reaction mixture remain a challenging topic [...] Read more.
The hydroformylation of olefins is one of the most important homogeneously catalyzed processes in industry to produce bulk chemicals. Despite the high catalytic activities and selectivity’s using rhodium-based homogeneous hydroformylation catalysts, catalyst recovery and recycling from the reaction mixture remain a challenging topic on a process level. Therefore, technical solutions involving alternate approaches with heterogeneous catalysts for the conversion of olefins into aldehydes have been considered and research activities have addressed the synthesis and development of heterogeneous rhodium-based hydroformylation catalysts. Different strategies were pursued by different groups of authors, such as the deposition of molecular rhodium complexes, metallic rhodium nanoparticles and single-atom catalysts on a solid support as well as rhodium complexes present in supported liquids. An overview of the recent developments made in the area of the heterogenization of homogeneous rhodium catalysts and their application in the hydroformylation of short-chain olefins is given. A special focus is laid on the mechanistic understanding of the heterogeneously catalyzed reactions at a molecular level in order to provide a guide for the future design of rhodium-based heterogeneous hydroformylation catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

22 pages, 2494 KiB  
Article
One-Pot Alcoholysis of the Lignocellulosic Eucalyptus nitens Biomass to n-Butyl Levulinate, a Valuable Additive for Diesel Motor Fuel
by Claudia Antonetti, Samuele Gori, Domenico Licursi, Gianluca Pasini, Stefano Frigo, Mar López, Juan Carlos Parajó and Anna Maria Raspolli Galletti
Catalysts 2020, 10(5), 509; https://doi.org/10.3390/catal10050509 - 6 May 2020
Cited by 35 | Viewed by 5266
Abstract
The present investigation represents a concrete example of complete valorization of Eucalyptus nitens biomass, in the framework of the circular economy. Autohydrolyzed-delignified Eucalyptus nitens was employed as a cheap cellulose-rich feedstock in the direct alcoholysis to n-butyl levulinate, adopting n-butanol as [...] Read more.
The present investigation represents a concrete example of complete valorization of Eucalyptus nitens biomass, in the framework of the circular economy. Autohydrolyzed-delignified Eucalyptus nitens was employed as a cheap cellulose-rich feedstock in the direct alcoholysis to n-butyl levulinate, adopting n-butanol as green reagent/reaction medium, very dilute sulfuric acid as a homogeneous catalyst, and different heating systems. The effect of the main reaction parameters to give n-butyl levulinate was investigated to check the feasibility of this reaction and identify the coarse ranges of the main operating variables of greater relevance. High n-butyl levulinate molar yields (35–40 mol%) were achieved under microwave and traditional heating, even using a very high biomass loading (20 wt%), an eligible aspect from the perspective of the high gravity approach. The possibility of reprocessing the reaction mixture deriving from the optimized experiment by the addition of fresh biomass was evaluated, achieving the maximum n-butyl levulinate concentration of about 85 g/L after only one microwave reprocessing of the mother liquor, the highest value hitherto reported starting from real biomass. The alcoholysis reaction was further optimized by Response Surface Methodology, setting a Face-Centered Central Composite Design, which was experimentally validated at the optimal operating conditions for the n-butyl levulinate production. Finally, a preliminary study of diesel engine performances and emissions for a model mixture with analogous composition to that produced from the butanolysis reaction was performed, confirming its potential application as an additive for diesel fuel, without separation of each component. Full article
Show Figures

Graphical abstract

14 pages, 4066 KiB  
Review
New Trends in the Conversion of CO2 to Cyclic Carbonates
by Erivaldo J.C. Lopes, Ana P.C. Ribeiro and Luísa M.D.R.S. Martins
Catalysts 2020, 10(5), 479; https://doi.org/10.3390/catal10050479 - 27 Apr 2020
Cited by 74 | Viewed by 8346
Abstract
This work concerns recent advances (mainly in the last five years) in the challenging conversion of carbon dioxide (CO2) into fine chemicals, in particular to cyclic carbonates, as a meaningful measure to reduce CO2 emissions in the atmosphere and subsequent [...] Read more.
This work concerns recent advances (mainly in the last five years) in the challenging conversion of carbon dioxide (CO2) into fine chemicals, in particular to cyclic carbonates, as a meaningful measure to reduce CO2 emissions in the atmosphere and subsequent global warming effects. Thus, efficient catalysts and catalytic processes developed to convert CO2 into different chemicals towards a more sustainable chemical industry are addressed. Cyclic carbonates can be produced by different routes that directly, or indirectly, use carbon dioxide. Thus, recent findings on CO2 cycloaddition to epoxides as well as on its reaction with diols are reviewed. In addition, indirect sources of carbon dioxide, such as urea, considered a sustainable process with high atom economy, are also discussed. Reaction mechanisms for the transformations involved are also presented. Full article
Show Figures

Graphical abstract

34 pages, 6388 KiB  
Review
Electrochemical Reactors for CO2 Conversion
by Roger Lin, Jiaxun Guo, Xiaojia Li, Poojan Patel and Ali Seifitokaldani
Catalysts 2020, 10(5), 473; https://doi.org/10.3390/catal10050473 - 26 Apr 2020
Cited by 72 | Viewed by 15568
Abstract
Increasing risks from global warming impose an urgent need to develop technologically and economically feasible means to reduce CO2 content in the atmosphere. Carbon capture and utilization technologies and carbon markets have been established for this purpose. Electrocatalytic CO2 reduction reaction [...] Read more.
Increasing risks from global warming impose an urgent need to develop technologically and economically feasible means to reduce CO2 content in the atmosphere. Carbon capture and utilization technologies and carbon markets have been established for this purpose. Electrocatalytic CO2 reduction reaction (CO2RR) presents a promising solution, fulfilling carbon-neutral goals and sustainable materials production. This review aims to elaborate on various components in CO2RR reactors and relevant industrial processing. First, major performance metrics are discussed, with requirements obtained from a techno-economic analysis. Detailed discussions then emphasize on (i) technical benefits and challenges regarding different reactor types, (ii) critical features in flow cell systems that enhance CO2 diffusion compared to conventional H-cells, (iii) electrolyte and its effect on liquid phase electrolyzers, (iv) catalysts for feasible products (carbon monoxide, formic acid and multi-carbons) and (v) strategies on flow channel and anode design as next steps. Finally, specific perspectives on CO2 feeds for the reactor and downstream purification techniques are annotated as part of the CO2RR industrial processing. Overall, we focus on the component and system aspects for the design of a CO2RR reactor, while pointing out challenges and opportunities to realize the ultimate goal of viable carbon capture and utilization technology. Full article
(This article belongs to the Special Issue Catalytic Reactors Design for Industrial Applications)
Show Figures

Figure 1

22 pages, 4599 KiB  
Article
Free Radical Photopolymerization and 3D Printing Using Newly Developed Dyes: Indane-1,3-Dione and 1H-Cyclopentanaphthalene-1,3-Dione Derivatives as Photoinitiators in Three-Component Systems
by Ke Sun, Corentin Pigot, Hong Chen, Malek Nechab, Didier Gigmes, Fabrice Morlet-Savary, Bernadette Graff, Shaohui Liu, Pu Xiao, Frédéric Dumur and Jacques Lalevée
Catalysts 2020, 10(4), 463; https://doi.org/10.3390/catal10040463 - 24 Apr 2020
Cited by 39 | Viewed by 4128
Abstract
The design of photoinitiating systems with excellent photochemical reactivities at 405nm LED is one of the obstacles to efficiently promote free radical polymerization in mild conditions (e.g., low light intensity, under air). Here, our actual search for new multicomponent photoinitiating systems at 405nm [...] Read more.
The design of photoinitiating systems with excellent photochemical reactivities at 405nm LED is one of the obstacles to efficiently promote free radical polymerization in mild conditions (e.g., low light intensity, under air). Here, our actual search for new multicomponent photoinitiating systems at 405nm LED prompts us to develop new dyes based on push–pull structures. In the present paper, we chose two series of new dyes which possess indane-1,3-dione and 1H-cyclopenta naphthalene-1,3-dione groups as the electron-withdrawing groups, since they have the great potential to behave as sensitive and remarkable photoinitiators in vat photopolymerization/3D printing. When incorporated with a tertiary amine (ethyl dimethylaminobenzoate EDB, used as electron/hydrogen donor) and an iodonium salt (used as electron acceptor) as the three-component photoinitiating systems (PISs), and among a series of 21 dyes, 10 of them could efficiently promote the free radical photopolymerization of acrylates. Interestingly, steady state photolysis experiments revealed different behaviors of the dyes. Fluorescence experiments and free energy change calculations for redox processes were also carried out to investigate the relevant chemical mechanisms. Additionally, the formation of radicals from the investigated PISs was clearly observed by electron spin resonance (ESR) spin-trapping experiments. Finally, stereoscopic 3D patterns were successfully fabricated by the laser writing technique. In this work, the use of push–pull dyes based on the naphthalene scaffold as photoinitiators of polymerization is reported for the first time in a systematic study aiming at investigating the structure–performance relationship for irradiation carried out at 405 nm. By carefully selecting the electron donors used in the two series of push–pull dyes, novel and high-performance photoinitiating systems operating at 405 nm are thus proposed. Full article
(This article belongs to the Special Issue Commemorative Issue in Honor of Professor Hugo de Lasa)
Show Figures

Graphical abstract

49 pages, 1664 KiB  
Review
Semiconductor Electrode Materials Applied in Photoelectrocatalytic Wastewater Treatment—an Overview
by Elzbieta Kusmierek
Catalysts 2020, 10(4), 439; https://doi.org/10.3390/catal10040439 - 18 Apr 2020
Cited by 67 | Viewed by 7874
Abstract
Industrial sources of environmental pollution generate huge amounts of industrial wastewater containing various recalcitrant organic and inorganic pollutants that are hazardous to the environment. On the other hand, industrial wastewater can be regarded as a prospective source of fresh water, energy, and valuable [...] Read more.
Industrial sources of environmental pollution generate huge amounts of industrial wastewater containing various recalcitrant organic and inorganic pollutants that are hazardous to the environment. On the other hand, industrial wastewater can be regarded as a prospective source of fresh water, energy, and valuable raw materials. Conventional sewage treatment systems are often not efficient enough for the complete degradation of pollutants and they are characterized by high energy consumption. Moreover, the chemical energy that is stored in the wastewater is wasted. A solution to these problems is an application of photoelectrocatalytic treatment methods, especially when they are coupled with energy generation. The paper presents a general overview of the semiconductor materials applied as photoelectrodes in the treatment of various pollutants. The fundamentals of photoelectrocatalytic reactions and the mechanism of pollutants treatment as well as parameters affecting the treatment process are presented. Examples of different semiconductor photoelectrodes that are applied in treatment processes are described in order to present the strengths and weaknesses of the photoelectrocatalytic treatment of industrial wastewater. This overview is an addition to the existing knowledge with a particular focus on the main experimental conditions employed in the photoelectrocatalytic degradation of various pollutants with the application of semiconductor photoelectrodes. Full article
Show Figures

Figure 1

12 pages, 2558 KiB  
Article
Biolubricants from Rapeseed and Castor Oil Transesterification by Using Titanium Isopropoxide as a Catalyst: Production and Characterization
by José María Encinar, Sergio Nogales-Delgado, Nuria Sánchez and Juan Félix González
Catalysts 2020, 10(4), 366; https://doi.org/10.3390/catal10040366 - 29 Mar 2020
Cited by 49 | Viewed by 4991
Abstract
The transesterification of rapeseed and castor oil methyl esters with different alcohols (2-ethyl-1-hexanol, 1-heptanol and 4-methyl-2-pentanol) and titanium isopropoxide as a catalyst, to produce biolubricants, was carried out. Parameters such as temperature, alcohol/methyl ester molar ratio, and catalyst concentration were studied to optimize [...] Read more.
The transesterification of rapeseed and castor oil methyl esters with different alcohols (2-ethyl-1-hexanol, 1-heptanol and 4-methyl-2-pentanol) and titanium isopropoxide as a catalyst, to produce biolubricants, was carried out. Parameters such as temperature, alcohol/methyl ester molar ratio, and catalyst concentration were studied to optimize the process. The reaction evolution was monitored with the decrease in FAME concentration by gas chromatography. In general, the reaction was almost complete in two hours, obtaining over 93% conversions. All the variables studied influenced on the reaction yields. Once the optimum conditions for the maximum conversion and minimum costs were selected, a characterization of the biolubricants obtained, along with the study of the influence of the kind of alcohol used, was carried out. The biolubricants had some properties that were better than mineral lubricants (flash points between 222 and 271 °C), needing the use of additives when they do not comply with the standards (low viscosity for rapeseed biolubricant, for instance). There was a clear influence of fatty acids of raw materials (oleic and ricinoleic acids as majority fatty acids in rapeseed and castor oil, respectively) and the structure of the alcohol used on the final features of the biolubricants. Full article
(This article belongs to the Special Issue Biomass Derived Heterogeneous and Homogeneous Catalysts)
Show Figures

Figure 1

38 pages, 2090 KiB  
Review
A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming
by Eugenio Meloni, Marco Martino and Vincenzo Palma
Catalysts 2020, 10(3), 352; https://doi.org/10.3390/catal10030352 - 22 Mar 2020
Cited by 167 | Viewed by 17667
Abstract
Hydrogen is an important raw material in chemical industries, and the steam reforming of light hydrocarbons (such as methane) is the most used process for its production. In this process, the use of a catalyst is mandatory and, if compared to precious metal-based [...] Read more.
Hydrogen is an important raw material in chemical industries, and the steam reforming of light hydrocarbons (such as methane) is the most used process for its production. In this process, the use of a catalyst is mandatory and, if compared to precious metal-based catalysts, Ni-based catalysts assure an acceptable high activity and a lower cost. The aim of a distributed hydrogen production, for example, through an on-site type hydrogen station, is only reachable if a novel reforming system is developed, with some unique properties that are not present in the large-scale reforming system. These properties include, among the others, (i) daily startup and shutdown (DSS) operation ability, (ii) rapid response to load fluctuation, (iii) compactness of device, and (iv) excellent thermal exchange. In this sense, the catalyst has an important role. There is vast amount of information in the literature regarding the performance of catalysts in methane steam reforming. In this short review, an overview on the most recent advances in Ni based catalysts for methane steam reforming is given, also regarding the use of innovative structured catalysts. Full article
Show Figures

Figure 1

17 pages, 2775 KiB  
Review
Photocatalytic Reforming for Hydrogen Evolution: A Review
by Yuan Yao, Xinyu Gao, Zizhen Li and Xiangchao Meng
Catalysts 2020, 10(3), 335; https://doi.org/10.3390/catal10030335 - 17 Mar 2020
Cited by 46 | Viewed by 7112
Abstract
Hydrogen is considered to be an ideal energy carrier to achieve low-carbon economy and sustainable energy supply. Production of hydrogen by catalytic reforming of organic compounds is one of the most important commercial processes. With the rapid development of photocatalysis in recent years, [...] Read more.
Hydrogen is considered to be an ideal energy carrier to achieve low-carbon economy and sustainable energy supply. Production of hydrogen by catalytic reforming of organic compounds is one of the most important commercial processes. With the rapid development of photocatalysis in recent years, the applications of photocatalysis have been extended to the area of reforming hydrogen evolution. This research area has attracted extensive attention and exhibited potential for wide application in practice. Photocatalytic reforming for hydrogen evolution is a sustainable process to convert the solar energy stored in hydrogen into chemical energy. This review comprehensively summarized the reported works in relevant areas, categorized by the reforming precursor (organic compound) such as methanol, ethanol and biomass. Mechanisms and characteristics for each category were deeply discussed. In addition, recommendations for future work were suggested. Full article
(This article belongs to the Special Issue Progression in Photocatalytic Materials for Efficient Performance)
Show Figures

Graphical abstract

25 pages, 3907 KiB  
Review
Recent Advances in Metal-Catalyzed Alkyl–Boron (C(sp3)–C(sp2)) Suzuki-Miyaura Cross-Couplings
by Janwa El-Maiss, Tharwat Mohy El Dine, Chung-Shin Lu, Iyad Karamé, Ali Kanj, Kyriaki Polychronopoulou and Janah Shaya
Catalysts 2020, 10(3), 296; https://doi.org/10.3390/catal10030296 - 5 Mar 2020
Cited by 40 | Viewed by 14928
Abstract
Boron chemistry has evolved to become one of the most diverse and applied fields in organic synthesis and catalysis. Various valuable reactions such as hydroborylations and Suzuki–Miyaura cross-couplings (SMCs) are now considered as indispensable methods in the synthetic toolbox of researchers in academia [...] Read more.
Boron chemistry has evolved to become one of the most diverse and applied fields in organic synthesis and catalysis. Various valuable reactions such as hydroborylations and Suzuki–Miyaura cross-couplings (SMCs) are now considered as indispensable methods in the synthetic toolbox of researchers in academia and industry. The development of novel sterically- and electronically-demanding C(sp3)–Boron reagents and their subsequent metal-catalyzed cross-couplings attracts strong attention and serves in turn to expedite the wheel of innovative applications of otherwise challenging organic adducts in different fields. This review describes the significant progress in the utilization of classical and novel C(sp3)–B reagents (9-BBN and 9-MeO-9-BBN, trifluoroboronates, alkylboranes, alkylboronic acids, MIDA, etc.) as coupling partners in challenging metal-catalyzed C(sp3)–C(sp2) cross-coupling reactions, such as B-alkyl SMCs after 2001. Full article
(This article belongs to the Special Issue Transition Metal Catalyzed Cross-Coupling Reactions)
Show Figures

Scheme 1

16 pages, 3595 KiB  
Article
Enhanced Visible-Light Photocatalysis of Nanocomposites of Copper Oxide and Single-Walled Carbon Nanotubes for the Degradation of Methylene Blue
by Kamal Prasad Sapkota, Insup Lee, Md. Abu Hanif, Md. Akherul Islam, Jeasmin Akter and Jae Ryang Hahn
Catalysts 2020, 10(3), 297; https://doi.org/10.3390/catal10030297 - 5 Mar 2020
Cited by 40 | Viewed by 5083
Abstract
We report enhanced catalytic action of a series of copper(II)-oxide-single-walled carbon nanotube (CuO-SWCNT) composite photocatalysts (abbreviated as CuO-SWCNT-0.5, CuO-SWCNT-2, and CuO-SWCNT-5, where 0.5, 2, and 5 represent the calcination time in hours) synthesized via recrystallization followed by calcination. The photocatalytic performance of the [...] Read more.
We report enhanced catalytic action of a series of copper(II)-oxide-single-walled carbon nanotube (CuO-SWCNT) composite photocatalysts (abbreviated as CuO-SWCNT-0.5, CuO-SWCNT-2, and CuO-SWCNT-5, where 0.5, 2, and 5 represent the calcination time in hours) synthesized via recrystallization followed by calcination. The photocatalytic performance of the fabricated nanocomposites was examined by evaluating the degradation of methylene blue (MB) under irradiation with visible light. All of the as-fabricated nanocomposites were effective photocatalysts for the photodegradation of a MB solution; however, the CuO-SWCNT-5 displayed the best photocatalytic ability among the investigated catalysts, achieving 97.33% degradation of MB in 2 h under visible-light irradiation. The photocatalytic action of the nanocomposites was remarkably higher than that of pristine CuO nanocrystals fabricated using the same route. The recyclability of the photocatalyst was also investigated; the CuO-SWCNT-5 catalyst could be reused for three cycles without substantial degradation of its catalytic performance or morphology. Full article
(This article belongs to the Special Issue Photocatalytic Nanocomposite Materials)
Show Figures

Graphical abstract

38 pages, 4901 KiB  
Review
Hydrogen Evolution Reaction-From Single Crystal to Single Atom Catalysts
by Sanjin J. Gutić, Ana S. Dobrota, Edvin Fako, Natalia V. Skorodumova, Núria López and Igor A. Pašti
Catalysts 2020, 10(3), 290; https://doi.org/10.3390/catal10030290 - 4 Mar 2020
Cited by 49 | Viewed by 15932
Abstract
Hydrogen evolution reaction (HER) is one of the most important reactions in electrochemistry. This is not only because it is the simplest way to produce high purity hydrogen and the fact that it is the side reaction in many other technologies. HER actually [...] Read more.
Hydrogen evolution reaction (HER) is one of the most important reactions in electrochemistry. This is not only because it is the simplest way to produce high purity hydrogen and the fact that it is the side reaction in many other technologies. HER actually shaped current electrochemistry because it was in focus of active research for so many years (and it still is). The number of catalysts investigated for HER is immense, and it is not possible to overview them all. In fact, it seems that the complexity of the field overcomes the complexity of HER. The aim of this review is to point out some of the latest developments in HER catalysis, current directions and some of the missing links between a single crystal, nanosized supported catalysts and recently emerging, single-atom catalysts for HER. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

58 pages, 2775 KiB  
Review
Microwaves and Heterogeneous Catalysis: A Review on Selected Catalytic Processes
by Vincenzo Palma, Daniela Barba, Marta Cortese, Marco Martino, Simona Renda and Eugenio Meloni
Catalysts 2020, 10(2), 246; https://doi.org/10.3390/catal10020246 - 18 Feb 2020
Cited by 122 | Viewed by 15178
Abstract
Since the late 1980s, the scientific community has been attracted to microwave energy as an alternative method of heating, due to the advantages that this technology offers over conventional heating technologies. In fact, differently from these, the microwave heating mechanism is a volumetric [...] Read more.
Since the late 1980s, the scientific community has been attracted to microwave energy as an alternative method of heating, due to the advantages that this technology offers over conventional heating technologies. In fact, differently from these, the microwave heating mechanism is a volumetric process in which heat is generated within the material itself, and, consequently, it can be very rapid and selective. In this way, the microwave-susceptible material can absorb the energy embodied in the microwaves. Application of the microwave heating technique to a chemical process can lead to both a reduction in processing time as well as an increase in the production rate, which is obtained by enhancing the chemical reactions and results in energy saving. The synthesis and sintering of materials by means of microwave radiation has been used for more than 20 years, while, future challenges will be, among others, the development of processes that achieve lower greenhouse gas (e.g., CO2) emissions and discover novel energy-saving catalyzed reactions. A natural choice in such efforts would be the combination of catalysis and microwave radiation. The main aim of this review is to give an overview of microwave applications in the heterogeneous catalysis, including the preparation of catalysts, as well as explore some selected microwave assisted catalytic reactions. The review is divided into three principal topics: (i) introduction to microwave chemistry and microwave materials processing; (ii) description of the loss mechanisms and microwave-specific effects in heterogeneous catalysis; and (iii) applications of microwaves in some selected chemical processes, including the preparation of heterogeneous catalysts. Full article
Show Figures

Figure 1

20 pages, 1889 KiB  
Review
Biodiesel Production Using Solid Acid Catalysts Based on Metal Oxides
by Katja Vasić, Gordana Hojnik Podrepšek, Željko Knez and Maja Leitgeb
Catalysts 2020, 10(2), 237; https://doi.org/10.3390/catal10020237 - 17 Feb 2020
Cited by 79 | Viewed by 20908
Abstract
The development of solid acid catalysts, especially based on metal oxides and different magnetic nanoparticles, gained much awareness recently as a result of the development of different nano-based materials. Solid acid catalysts based on metal oxides are promising for the (trans)esterification reactions of [...] Read more.
The development of solid acid catalysts, especially based on metal oxides and different magnetic nanoparticles, gained much awareness recently as a result of the development of different nano-based materials. Solid acid catalysts based on metal oxides are promising for the (trans)esterification reactions of different oils and waste materials for biodiesel production. This review gives a brief overview of recent developments in various solid acid catalysts based on different metal oxides, such as zirconia, zinc, titanium, iron, tungsten, and magnetic materials, where the catalysts are optimized for various reaction parameters, such as the amount of catalyst, molar ratio of oil to alcohol, reaction time, and temperature. Furthermore, yields and conversions for biodiesel production are compared. Such metal-oxide-based solid acid catalysts provide more sustainable, green, and easy-separation synthesis routes with high catalytic activity and reusability than traditionally used catalysts. Full article
(This article belongs to the Special Issue Solid Acid Catalysts for Biodiesel Production)
Show Figures

Graphical abstract

20 pages, 4316 KiB  
Review
Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes at Nanostructured Electrodes
by Taiki Adachi, Yuki Kitazumi, Osamu Shirai and Kenji Kano
Catalysts 2020, 10(2), 236; https://doi.org/10.3390/catal10020236 - 15 Feb 2020
Cited by 37 | Viewed by 5023
Abstract
Direct electron transfer (DET)-type bioelectrocatalysis, which couples the electrode reactions and catalytic functions of redox enzymes without any redox mediator, is one of the most intriguing subjects that has been studied over the past few decades in the field of bioelectrochemistry. In order [...] Read more.
Direct electron transfer (DET)-type bioelectrocatalysis, which couples the electrode reactions and catalytic functions of redox enzymes without any redox mediator, is one of the most intriguing subjects that has been studied over the past few decades in the field of bioelectrochemistry. In order to realize the DET-type bioelectrocatalysis and improve the performance, nanostructures of the electrode surface have to be carefully tuned for each enzyme. In addition, enzymes can also be tuned by the protein engineering approach for the DET-type reaction. This review summarizes the recent progresses in this field of the research while considering the importance of nanostructure of electrodes as well as redox enzymes. This review also describes the basic concepts and theoretical aspects of DET-type bioelectrocatalysis, the significance of nanostructures as scaffolds for DET-type reactions, protein engineering approaches for DET-type reactions, and concepts and facts of bidirectional DET-type reactions from a cross-disciplinary viewpoint. Full article
(This article belongs to the Special Issue State of the Art and Future Trends in Nanostructured Biocatalysis)
Show Figures

Figure 1

23 pages, 1152 KiB  
Review
Challenges and Opportunities in Identifying and Characterising Keratinases for Value-Added Peptide Production
by Juan Pinheiro De Oliveira Martinez, Guiqin Cai, Matthias Nachtschatt, Laura Navone, Zhanying Zhang, Karen Robins and Robert Speight
Catalysts 2020, 10(2), 184; https://doi.org/10.3390/catal10020184 - 3 Feb 2020
Cited by 39 | Viewed by 7292
Abstract
Keratins are important structural proteins produced by mammals, birds and reptiles. Keratins usually act as a protective barrier or a mechanical support. Millions of tonnes of keratin wastes and low value co-products are generated every year in the poultry, meat processing, leather and [...] Read more.
Keratins are important structural proteins produced by mammals, birds and reptiles. Keratins usually act as a protective barrier or a mechanical support. Millions of tonnes of keratin wastes and low value co-products are generated every year in the poultry, meat processing, leather and wool industries. Keratinases are proteases able to breakdown keratin providing a unique opportunity of hydrolysing keratin materials like mammalian hair, wool and feathers under mild conditions. These mild conditions ameliorate the problem of unwanted amino acid modification that usually occurs with thermochemical alternatives. Keratinase hydrolysis addresses the waste problem by producing valuable peptide mixes. Identifying keratinases is an inherent problem associated with the search for new enzymes due to the challenge of predicting protease substrate specificity. Here, we present a comprehensive review of twenty sequenced peptidases with keratinolytic activity from the serine protease and metalloprotease families. The review compares their biochemical activities and highlights the difficulties associated with the interpretation of these data. Potential applications of keratinases and keratin hydrolysates generated with these enzymes are also discussed. The review concludes with a critical discussion of the need for standardized assays and increased number of sequenced keratinases, which would allow a meaningful comparison of the biochemical traits, phylogeny and keratinase sequences. This deeper understanding would facilitate the search of the vast peptidase family sequence space for novel keratinases with industrial potential. Full article
(This article belongs to the Special Issue Novel Enzyme and Whole-Cell Biocatalysts)
Show Figures

Figure 1

53 pages, 8971 KiB  
Review
Recent Advances on the Rational Design of Non-Precious Metal Oxide Catalysts Exemplified by CuOx/CeO2 Binary System: Implications of Size, Shape and Electronic Effects on Intrinsic Reactivity and Metal-Support Interactions
by Michalis Konsolakis and Maria Lykaki
Catalysts 2020, 10(2), 160; https://doi.org/10.3390/catal10020160 - 1 Feb 2020
Cited by 65 | Viewed by 7142
Abstract
Catalysis is an indispensable part of our society, massively involved in numerous energy and environmental applications. Although, noble metals (NMs)-based catalysts are routinely employed in catalysis, their limited resources and high cost hinder the widespread practical application. In this regard, the development of [...] Read more.
Catalysis is an indispensable part of our society, massively involved in numerous energy and environmental applications. Although, noble metals (NMs)-based catalysts are routinely employed in catalysis, their limited resources and high cost hinder the widespread practical application. In this regard, the development of NMs-free metal oxides (MOs) with improved catalytic activity, selectivity and durability is currently one of the main research pillars in the area of heterogeneous catalysis. The present review, involving our recent efforts in the field, aims to provide the latest advances—mainly in the last 10 years—on the rational design of MOs, i.e., the general optimization framework followed to fine-tune non-precious metal oxide sites and their surrounding environment by means of appropriate synthetic and promotional/modification routes, exemplified by CuOx/CeO2 binary system. The fine-tuning of size, shape and electronic/chemical state (e.g., through advanced synthetic routes, special pretreatment protocols, alkali promotion, chemical/structural modification by reduced graphene oxide (rGO)) can exert a profound influence not only to the reactivity of metal sites in its own right, but also to metal-support interfacial activity, offering highly active and stable materials for real-life energy and environmental applications. The main implications of size-, shape- and electronic/chemical-adjustment on the catalytic performance of CuOx/CeO2 binary system during some of the most relevant applications in heterogeneous catalysis, such as CO oxidation, N2O decomposition, preferential oxidation of CO (CO-PROX), water gas shift reaction (WGSR), and CO2 hydrogenation to value-added products, are thoroughly discussed. It is clearly revealed that the rational design and tailoring of NMs-free metal oxides can lead to extremely active composites, with comparable or even superior reactivity than that of NMs-based catalysts. The obtained conclusions could provide rationales and design principles towards the development of cost-effective, highly active NMs-free MOs, paving also the way for the decrease of noble metals content in NMs-based catalysts. Full article
Show Figures

Figure 1

22 pages, 6208 KiB  
Review
Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells
by Yun Zheng, Xiaojuan Wan, Xin Cheng, Kun Cheng, Zhengfei Dai and Zhihong Liu
Catalysts 2020, 10(2), 166; https://doi.org/10.3390/catal10020166 - 1 Feb 2020
Cited by 96 | Viewed by 10357
Abstract
Direct ethanol fuel cells (DEFCs) have emerged as promising and advanced power systems that can considerably reduce fossil fuel dependence, and thus have attracted worldwide attention. DEFCs have many apparent merits over the analogous devices fed with hydrogen or methanol. As the key [...] Read more.
Direct ethanol fuel cells (DEFCs) have emerged as promising and advanced power systems that can considerably reduce fossil fuel dependence, and thus have attracted worldwide attention. DEFCs have many apparent merits over the analogous devices fed with hydrogen or methanol. As the key constituents, the catalysts for both cathodes and anodes usually face some problems (such as high cost, low conversion efficiency, and inferior durability) that hinder the commercialization of DEFCs. This review mainly focuses on the most recent advances in nanostructured catalysts for anode materials in DEFCS. First, we summarize the effective strategies used to achieve highly active Pt- and Pd-based catalysts for ethanol electro-oxidation, including composition control, microstructure design, and the optimization of support materials. Second, a few non-precious catalysts based on transition metals (such as Fe, Co, and Ni) are introduced. Finally, we outline the concerns and future development of anode catalysts for DEFCs. This review provides a comprehensive understanding of anode catalysts for ethanol oxidation in DEFCs. Full article
Show Figures

Figure 1

20 pages, 8248 KiB  
Article
Degradation of Carbamazepine by Photo(electro)catalysis on Nanostructured TiO2 Meshes: Transformation Products and Reaction Pathways
by Silvia Franz, Ermelinda Falletta, Hamed Arab, Sapia Murgolo, Massimiliano Bestetti and Giuseppe Mascolo
Catalysts 2020, 10(2), 169; https://doi.org/10.3390/catal10020169 - 1 Feb 2020
Cited by 42 | Viewed by 4713
Abstract
Carbamazepine (CBZ) is a pharmaceutical compound recalcitrant to conventional wastewater treatment plants and widely detected in wastewater bodies. In the present study, advanced oxidation processes for carbamazepine removal are investigated, with particular regard to the degradation pathways of carbamazepine by photoelectrocatalysis and conventional [...] Read more.
Carbamazepine (CBZ) is a pharmaceutical compound recalcitrant to conventional wastewater treatment plants and widely detected in wastewater bodies. In the present study, advanced oxidation processes for carbamazepine removal are investigated, with particular regard to the degradation pathways of carbamazepine by photoelectrocatalysis and conventional photocatalysis. Photoelectrocatalysis was carried out onto TiO2 meshes obtained by Plasma Electrolytic Oxidation, a well-known technique in the field of industrial surface treatments, in view of an easy scale-up of the process. By photoelectrocatalysis, 99% of carbamazepine was removed in 55 min while only 65% removal was achieved by photolysis. The investigation of the transformation products (TPs) was carried out by means of UPLC-QTOF/MS/MS. Several new TPs were identified and accordingly reaction pathways were proposed. Above 80 min the transformation products disappear, probably forming organic acids of low-molecular weight as final degradation products. The results demonstrated that photoelectrocatalysis onto TiO2 meshes obtained by plasma electrolytic oxidation is a useful alternative to common advanced oxidation processes as wastewater tertiary treatment aimed at removing compounds of emerging concern. Full article
(This article belongs to the Special Issue Nanomaterials in Photo(Electro)catalysis)
Show Figures

Figure 1

56 pages, 8116 KiB  
Review
Photosensitive Hybrid Nanostructured Materials: The Big Challenges for Sunlight Capture
by Giuseppina Luciani, Claudio Imparato and Giuseppe Vitiello
Catalysts 2020, 10(1), 103; https://doi.org/10.3390/catal10010103 - 10 Jan 2020
Cited by 44 | Viewed by 6591
Abstract
Solar radiation is becoming increasingly appreciated because of its influence on living matter and the feasibility of its application for a variety of purposes. It is an available and everlasting natural source of energy, rapidly gaining ground as a supplement and alternative to [...] Read more.
Solar radiation is becoming increasingly appreciated because of its influence on living matter and the feasibility of its application for a variety of purposes. It is an available and everlasting natural source of energy, rapidly gaining ground as a supplement and alternative to the nonrenewable energy feedstock. Actually, an increasing interest is involved in the development of efficient materials as the core of photocatalytic and photothermal processes, allowing solar energy harvesting and conversion for many technological applications, including hydrogen production, CO2 reduction, pollutants degradation, as well as organic syntheses. Particularly, photosensitive nanostructured hybrid materials synthesized coupling inorganic semiconductors with organic compounds, and polymers or carbon-based materials are attracting ever-growing research attention since their peculiar properties overcome several limitations of photocatalytic semiconductors through different approaches, including dye or charge transfer complex sensitization and heterostructures formation. The aim of this review was to describe the most promising recent advances in the field of hybrid nanostructured materials for sunlight capture and solar energy exploitation by photocatalytic processes. Beside diverse materials based on metal oxide semiconductors, emerging photoactive systems, such as metal-organic frameworks (MOFs) and hybrid perovskites, were discussed. Finally, future research opportunities and challenges associated with the design and development of highly efficient and cost-effective photosensitive nanomaterials for technological claims were outlined. Full article
(This article belongs to the Section Nanostructured Catalysts)
Show Figures

Figure 1

21 pages, 3898 KiB  
Review
Electrochemical CO2 Reduction to CO Catalyzed by 2D Nanostructures
by Chaitanya B. Hiragond, Hwapyong Kim, Junho Lee, Saurav Sorcar, Can Erkey and Su-Il In
Catalysts 2020, 10(1), 98; https://doi.org/10.3390/catal10010098 - 9 Jan 2020
Cited by 45 | Viewed by 9891
Abstract
Electrochemical CO2 reduction towards value-added chemical feedstocks has been extensively studied in recent years to resolve the energy and environmental problems. The practical application of electrochemical CO2 reduction technology requires a cost-effective, highly efficient, and robust catalyst. To date, vigorous research [...] Read more.
Electrochemical CO2 reduction towards value-added chemical feedstocks has been extensively studied in recent years to resolve the energy and environmental problems. The practical application of electrochemical CO2 reduction technology requires a cost-effective, highly efficient, and robust catalyst. To date, vigorous research have been carried out to increase the proficiency of electrocatalysts. In recent years, two-dimensional (2D) graphene and transition metal chalcogenides (TMCs) have displayed excellent activity towards CO2 reduction. This review focuses on the recent progress of 2D graphene and TMCs for selective electrochemical CO2 reduction into CO. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

23 pages, 4877 KiB  
Article
Multi-Step Exploitation of Raw Arundo donax L. for the Selective Synthesis of Second-Generation Sugars by Chemical and Biological Route
by Nicola Di Fidio, Anna Maria Raspolli Galletti, Sara Fulignati, Domenico Licursi, Federico Liuzzi, Isabella De Bari and Claudia Antonetti
Catalysts 2020, 10(1), 79; https://doi.org/10.3390/catal10010079 - 5 Jan 2020
Cited by 25 | Viewed by 3900
Abstract
Lignocellulosic biomass represents one of the most important feedstocks for future biorefineries, being a precursor of valuable bio-products, obtainable through both chemical and biological conversion routes. Lignocellulosic biomass has a complex matrix, which requires the careful development of multi-step approaches for its complete [...] Read more.
Lignocellulosic biomass represents one of the most important feedstocks for future biorefineries, being a precursor of valuable bio-products, obtainable through both chemical and biological conversion routes. Lignocellulosic biomass has a complex matrix, which requires the careful development of multi-step approaches for its complete exploitation to value-added compounds. Based on this perspective, the present work focuses on the valorization of hemicellulose and cellulose fractionsof giant reed (Arundo donax L.) to give second-generation sugars, minimizing the formation of reaction by-products. The conversion of hemicellulose to xylose was undertaken in the presence of the heterogeneous acid catalyst Amberlyst-70 under microwave irradiation. The effect of the main reaction parameters, such as temperature, reaction time, catalyst, and biomass loadings on sugars yield was studied, developing a high gravity approach. Under the optimised reaction conditions (17 wt% Arundo donax L. loading, 160 °C, Amberlyst-70/Arundo donax L. weight ratio 0.2 wt/wt), the xylose yield was 96.3 mol%. In the second step, the cellulose-rich solid residue was exploited through the chemical or enzymatic route, obtaining glucose yields of 32.5 and 56.2 mol%, respectively. This work proves the efficiency of this innovative combination of chemical and biological catalytic approaches, for the selective conversion of hemicellulose and cellulose fractions of Arundo donax L. to versatile platform products. Full article
Show Figures

Graphical abstract

17 pages, 2853 KiB  
Review
Graphene-Based Heterogeneous Catalysis: Role of Graphene
by Kah Meng Yam, Na Guo, Zhuoling Jiang, Shulong Li and Chun Zhang
Catalysts 2020, 10(1), 53; https://doi.org/10.3390/catal10010053 - 1 Jan 2020
Cited by 85 | Viewed by 13922
Abstract
Graphene, the reincarnation of a surface, offers new opportunities in catalytic applications, not only because of its peculiar electronic structure, but also because of the ease of modulating it. A vast number of proposals have been made to support this point, but there [...] Read more.
Graphene, the reincarnation of a surface, offers new opportunities in catalytic applications, not only because of its peculiar electronic structure, but also because of the ease of modulating it. A vast number of proposals have been made to support this point, but there has been a lack of a systematic understanding of the different roles of graphene, as many other reviews published have focused on the synthesis and characterization of the various graphene-based catalysts. In this review, we surveyed the vast literature related to various theoretical proposals and experimental realizations of graphene-based catalysts to first classify and then elucidate the different roles played by graphene in solid-state heterogeneous catalysis. Owing to its one-atom thickness and zero bandgap with low density of states around Fermi level, graphene has great potential in catalysis applications. In general, graphene can function as a support for catalysts, a cover to protect catalysts, or the catalytic center itself. Understanding these functions is important in the design of catalysts in terms of how to optimize the electronic structure of the active sites for particular applications, a few case studies of which will be presented for each role. Full article
(This article belongs to the Special Issue Graphene-based Catalysis)
Show Figures

Graphical abstract

27 pages, 8048 KiB  
Review
Recent Developments on 1,3-Dipolar Cycloaddition Reactions by Catalysis in Green Solvents
by Loredana Maiuolo, Vincenzo Algieri, Fabrizio Olivito and Antonio De Nino
Catalysts 2020, 10(1), 65; https://doi.org/10.3390/catal10010065 - 1 Jan 2020
Cited by 51 | Viewed by 8036
Abstract
The use of eco-compatible synthetic procedures in organic reactions and, in particular, in 1,3-dipolar cycloaddition reactions, has recently received a great deal of attention and considerable progress has been achieved in this area in the last years. This review summarizes the approaches currently [...] Read more.
The use of eco-compatible synthetic procedures in organic reactions and, in particular, in 1,3-dipolar cycloaddition reactions, has recently received a great deal of attention and considerable progress has been achieved in this area in the last years. This review summarizes the approaches currently employed to synthesize heterocyclic compounds by catalyzed 1,3-dipolar cycloadditions in green solvents in the last six years. Our choice to do a selection of the literature from 2014 to 2019 was made considering the absence of a recent review about this period, to our knowledge. Several examples to construct heterocycles by 1,3-dipolar cycloadditions will be discussed in this work subdivided in function of the most important class of non-conventional and green solvents, i.e., ionic liquids (ILs), deep eutectic solvents (DES), and water. Full article
Show Figures

Figure 1

36 pages, 24538 KiB  
Review
Acyl Sonogashira Cross-Coupling: State of the Art and Application to the Synthesis of Heterocyclic Compounds
by Gianluigi Albano and Laura Antonella Aronica
Catalysts 2020, 10(1), 25; https://doi.org/10.3390/catal10010025 - 25 Dec 2019
Cited by 33 | Viewed by 7975
Abstract
The acyl Sonogashira reaction represents an extension of Sonogashira cross-coupling to acid chlorides which replace aryl or vinyl halides, while terminal acetylenes are used as coupling partners in both reactions. The introduction of a carbonyl functional group on the alkyne backbone determines a [...] Read more.
The acyl Sonogashira reaction represents an extension of Sonogashira cross-coupling to acid chlorides which replace aryl or vinyl halides, while terminal acetylenes are used as coupling partners in both reactions. The introduction of a carbonyl functional group on the alkyne backbone determines a radical change in the reactivity of the products. Indeed, α,β-alkynyl ketones can be easily converted into different heterocyclic compounds depending on the experimental conditions employed. Due to its potential, the acyl Sonogashira reaction has been deeply studied with particular attention to the nature of the catalysts and to the structures of both coupling compounds. Considering these two aspects, in this review, a detailed analysis of the literature data regarding the acyl Sonogashira reaction and its role in the synthesis of several heterocyclic derivatives is reported. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

42 pages, 6939 KiB  
Review
Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019)
by Pablo Domínguez de María, Gonzalo de Gonzalo and Andrés R. Alcántara
Catalysts 2019, 9(10), 802; https://doi.org/10.3390/catal9100802 - 25 Sep 2019
Cited by 67 | Viewed by 11114
Abstract
The broad interdisciplinary nature of biocatalysis fosters innovation, as different technical fields are interconnected and synergized. A way to depict that innovation is by conducting a survey on patent activities. This paper analyses the intellectual property activities of the last five years (2014–2019) [...] Read more.
The broad interdisciplinary nature of biocatalysis fosters innovation, as different technical fields are interconnected and synergized. A way to depict that innovation is by conducting a survey on patent activities. This paper analyses the intellectual property activities of the last five years (2014–2019) with a specific focus on biocatalysis applied to asymmetric synthesis. Furthermore, to reflect the inventive and innovative steps, only patents that were granted during that period are considered. Patent searches using several keywords (e.g., enzyme names) have been conducted by using several patent engine servers (e.g., Espacenet, SciFinder, Google Patents), with focus on granted patents during the period 2014–2019. Around 200 granted patents have been identified, covering all enzyme types. The inventive pattern focuses on the protection of novel protein sequences, as well as on new substrates. In some other cases, combined processes, multi-step enzymatic reactions, as well as process conditions are the innovative basis. Both industries and academic groups are active in patenting. As a conclusion of this survey, we can assert that biocatalysis is increasingly recognized as a useful tool for asymmetric synthesis and being considered as an innovative option to build IP and protect synthetic routes. Full article
(This article belongs to the Special Issue Biocatalysis: Chemical Biosynthesis)
Show Figures

Graphical abstract

20 pages, 9159 KiB  
Article
NaBH4-Reduction Induced Evolution of Bi Nanoparticles from BiOCl Nanoplates and Construction of Promising Bi@BiOCl Hybrid Photocatalysts
by Yuxiang Yan, Hua Yang, Zao Yi and Tao Xian
Catalysts 2019, 9(10), 795; https://doi.org/10.3390/catal9100795 - 24 Sep 2019
Cited by 78 | Viewed by 5813
Abstract
In this work, we have synthesized BiOCl nanoplates (diameter 140–220 nm, thickness 60–70 nm) via a co-precipitation method, and then created Bi nanoparticles (diameter 35–50 nm) on the surface of BiOCl nanoplates via a NaBH4 reduction method. By varying the NaBH4 [...] Read more.
In this work, we have synthesized BiOCl nanoplates (diameter 140–220 nm, thickness 60–70 nm) via a co-precipitation method, and then created Bi nanoparticles (diameter 35–50 nm) on the surface of BiOCl nanoplates via a NaBH4 reduction method. By varying the NaBH4 concentration and reaction time, the evolution of Bi nanoparticles was systematically investigated. It is demonstrated that with increasing the NaBH4 concentration (at a fixing reaction time of 30 min), BiOCl crystals are gradually reduced into Bi nanoparticles, and pure Bi nanoparticles are formed at 120 mM NaBH4 solution treatment. At low-concentration NaBH4 solutions (e.g., 10 and 30 mM), with increasing the reaction time, BiOCl crystals are partially reduced into Bi nanoparticles, and then the Bi nanoparticles return to form BiOCl crystals. At high-concentration NaBH4 solutions (e.g., 120 mM), BiOCl crystals are reduced to Bi nanoparticles completely with a short reaction time, and further prolong the treatment time leads to the transformation of the Bi nanoparticles into a two-phase mixture of BiOCl and Bi2O3 nanowires. The photodegradation performances of the samples were investigated by choosing rhodamine B (RhB) as the model pollutant and using simulated sunlight as the light source. It is demonstrated that an enhanced photodegradation performance can be achieved for the created Bi@BiOCl hybrid composites with appropriate NaBH4 treatment. The underlying photocatalytic mechanism was systematically investigated and discussed. Full article
(This article belongs to the Special Issue Photocatalysis and Environment)
Show Figures

Figure 1

33 pages, 4282 KiB  
Review
Recent Advances in Catalytic Hydrogenation of Furfural
by Yantao Wang, Deyang Zhao, Daily Rodríguez-Padrón and Christophe Len
Catalysts 2019, 9(10), 796; https://doi.org/10.3390/catal9100796 - 24 Sep 2019
Cited by 157 | Viewed by 14978
Abstract
Furfural has been considered as one of the most promising platform molecules directly derived from biomass. The hydrogenation of furfural is one of the most versatile reactions to upgrade furanic components to biofuels. For instance, it can lead to plenty of downstream products, [...] Read more.
Furfural has been considered as one of the most promising platform molecules directly derived from biomass. The hydrogenation of furfural is one of the most versatile reactions to upgrade furanic components to biofuels. For instance, it can lead to plenty of downstream products, such as (tetrahydro)furfuryl alcohol, 2-methyl(tetrahydro)furan, lactones, levulinates, cyclopentanone(l), or diols, etc. The aim of this review is to discuss recent advances in the catalytic hydrogenation of furfural towards (tetrahydro)furfuryl alcohol and 2-methyl(tetrahydro)furan in terms of different non-noble metal and noble metal catalytic systems. Reaction mechanisms that are related to the different catalytic materials and reaction conditions are properly discussed. Selective hydrogenation of furfural could be modified not only by varying the types of catalyst (nature of metal, support, and preparation method) and reaction conditions, but also by altering the reaction regime, namely from batch to continuous flow. In any case, furfural catalytic hydrogenation is an open research line, which represents an attractive option for biomass valorization towards valuable chemicals and fuels. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Figure 1

22 pages, 12929 KiB  
Article
The Relationship between Reaction Temperature and Carbon Deposition on Nickel Catalysts Based on Al2O3, ZrO2 or SiO2 Supports during the Biogas Dry Reforming Reaction
by Nikolaos D. Charisiou, Savvas L. Douvartzides, Georgios I. Siakavelas, Lazaros Tzounis, Victor Sebastian, Vlad Stolojan, Steven J. Hinder, Mark A. Baker, Kyriaki Polychronopoulou and Maria A. Goula
Catalysts 2019, 9(8), 676; https://doi.org/10.3390/catal9080676 - 9 Aug 2019
Cited by 72 | Viewed by 6529
Abstract
The tackling of carbon deposition during the dry reforming of biogas (BDR) necessitates research of the surface of spent catalysts in an effort to obtain a better understanding of the effect that different carbon allotropes have on the deactivation mechanism and correlation of [...] Read more.
The tackling of carbon deposition during the dry reforming of biogas (BDR) necessitates research of the surface of spent catalysts in an effort to obtain a better understanding of the effect that different carbon allotropes have on the deactivation mechanism and correlation of their formation with catalytic properties. The work presented herein provides a comparative assessment of catalytic stability in relation to carbon deposition and metal particle sintering on un-promoted Ni/Al2O3, Ni/ZrO2 and Ni/SiO2 catalysts for different reaction temperatures. The spent catalysts were examined using thermogravimetric analysis (TGA), Raman spectroscopy, high angle annular dark field scanning transmission electron microscopy (STEM-HAADF) and X-ray photoelectron spectroscopy (XPS). The results show that the formation and nature of carbonaceous deposits on catalytic surfaces (and thus catalytic stability) depend on the interplay of a number of crucial parameters such as metal support interaction, acidity/basicity characteristics, O2– lability and active phase particle size. When a catalytic system possesses only some of these beneficial characteristics, then competition with adverse effects may overshadow any potential benefits. Full article
(This article belongs to the Special Issue Catalyst Deactivation in Hydrocarbon Processing)
Show Figures

Figure 1

16 pages, 2615 KiB  
Article
Combi-CLEAs of Glucose Oxidase and Catalase for Conversion of Glucose to Gluconic Acid Eliminating the Hydrogen Peroxide to Maintain Enzyme Activity in a Bubble Column Reactor
by Agnes Cristina Oliveira Mafra, Letícia Gazzotto Ulrich, Jakub F. Kornecki, Roberto Fernandez-Lafuente, Paulo Waldir Tardioli and Marcelo Perencin de Arruda Ribeiro
Catalysts 2019, 9(8), 657; https://doi.org/10.3390/catal9080657 - 31 Jul 2019
Cited by 31 | Viewed by 6521
Abstract
In this study combined cross-linked aggregates of catalase from bovine liver and glucose-oxidase from Aspergillus niger were prepared, and the effects of the precipitant and crosslinking agents, as well as the use of bovine serum albumin (BSA) as a feeder protein, on enzyme [...] Read more.
In this study combined cross-linked aggregates of catalase from bovine liver and glucose-oxidase from Aspergillus niger were prepared, and the effects of the precipitant and crosslinking agents, as well as the use of bovine serum albumin (BSA) as a feeder protein, on enzyme immobilization yield and thermal stability of both enzymes, were evaluated. Combi- crosslinking of enzyme aggregates (CLEAs) prepared using dimethoxyethane as precipitant, 25 mM glutaraldehyde and BSA/enzymes mass ratio of 5.45 (w/w), exhibited the highest enzyme activities and stabilities at 40 °C, pH 6.0, and 250 rpm for 5 h. The stability of both immobilized enzymes was fairly similar, eliminating one of the problems of enzyme coimmobilization. Combi-CLEAs were used in gluconic acid (GA) production in a bubble column reactor operated at 40 °C, pH 6.0 and 10 vvm of aeration, using 26 g L−1 glucose as the substrate. Results showed conversion of around 96% and a reaction course very similar to the same process using free enzymes. The operational half-life was 34 h, determined from kinetic profiles and the first order inactivation model. Combi-CLEAs of glucose-oxidase and catalase were shown to be a robust biocatalyst for applications in the production of gluconic acid from glucose. Full article
Show Figures

Graphical abstract

32 pages, 18256 KiB  
Review
PdI2-Based Catalysis for Carbonylation Reactions: A Personal Account
by Raffaella Mancuso, Nicola Della Ca’, Lucia Veltri, Ida Ziccarelli and Bartolo Gabriele
Catalysts 2019, 9(7), 610; https://doi.org/10.3390/catal9070610 - 18 Jul 2019
Cited by 71 | Viewed by 6918
Abstract
In this account, we review our efforts in the field of carbonylation reactions promoted by palladium iodide-based catalysts, which have proven to be particularly efficient in diverse kinds of carbonylation processes (oxidative carbonylations as well as additive and substitutive carbonylations). Particularly in the [...] Read more.
In this account, we review our efforts in the field of carbonylation reactions promoted by palladium iodide-based catalysts, which have proven to be particularly efficient in diverse kinds of carbonylation processes (oxidative carbonylations as well as additive and substitutive carbonylations). Particularly in the case of oxidative carbonylations, more emphasis has been given to the most recent results and applications. Full article
(This article belongs to the Special Issue Catalytic Carbonylation Reactions)
Show Figures

Graphical abstract

30 pages, 3434 KiB  
Review
European Regulatory Framework and Particulate Matter Emissions of Gasoline Light-Duty Vehicles: A Review
by Barouch Giechaskiel, Ameya Joshi, Leonidas Ntziachristos and Panagiota Dilara
Catalysts 2019, 9(7), 586; https://doi.org/10.3390/catal9070586 - 4 Jul 2019
Cited by 94 | Viewed by 7561
Abstract
The particulate matter (PM) emissions of gasoline vehicles were much lower than those of diesel vehicles until the introduction of diesel particulate filters (DPFs) in the early 2000s. At the same time, gasoline direct injection (GDI) engines started to become popular in the [...] Read more.
The particulate matter (PM) emissions of gasoline vehicles were much lower than those of diesel vehicles until the introduction of diesel particulate filters (DPFs) in the early 2000s. At the same time, gasoline direct injection (GDI) engines started to become popular in the market due to their improved efficiency over port fuel injection (PFI) ones. However, the PM mass and number emissions of GDI vehicles were higher than their PFI counterparts and diesel ones equipped with DPFs. Stringent PM mass levels and the introduction of particle number limits for GDI vehicles in the European Union (EU) resulted in significant PM reductions. The EU requirement to fulfill the proposed limits on the road resulted to the introduction of gasoline particulate filters (GPFs) in EU GDI models. This review summarizes the evolution of PM mass emissions from gasoline vehicles placed in the market from early 1990s until 2019 in different parts of the world. The analysis then extends to total and nonvolatile particle number emissions. Care is given to reveal the impact of ambient temperature on emission levels. The discussion tries to provide scientific input to the following policy-relevant questions. Whether particle number limits should be extended to gasoline PFI vehicles, whether the lower limit of 23 nm for particle number measurements should be decreased to 10 nm, and whether low ambient temperature tests for PM should be included. Full article
(This article belongs to the Special Issue Catalytic Diesel and Gasoline Particulate Filters)
Show Figures

Figure 1

26 pages, 70743 KiB  
Review
Base Metal Catalysts for Deoxygenative Reduction of Amides to Amines
by Andrey Y. Khalimon, Kristina A. Gudun and Davit Hayrapetyan
Catalysts 2019, 9(6), 490; https://doi.org/10.3390/catal9060490 - 28 May 2019
Cited by 33 | Viewed by 9572
Abstract
The development of efficient methodologies for production of amines attracts significant attention from synthetic chemists, because amines serve as essential building blocks in the synthesis of many pharmaceuticals, natural products, and agrochemicals. In this regard, deoxygenative reduction of amides to amines by means [...] Read more.
The development of efficient methodologies for production of amines attracts significant attention from synthetic chemists, because amines serve as essential building blocks in the synthesis of many pharmaceuticals, natural products, and agrochemicals. In this regard, deoxygenative reduction of amides to amines by means of transition-metal-catalyzed hydrogenation, hydrosilylation, and hydroboration reactions represents an attractive alternative to conventional wasteful techniques based on stoichiometric reductions of the corresponding amides and imines, and reductive amination of aldehydes with metal hydride reagents. The relatively low electrophilicity of the amide carbonyl group makes this transformation more challenging compared to reduction of other carbonyl compounds, and the majority of the reported catalytic systems employ precious metals such as platinum, rhodium, iridium, and ruthenium. Despite the application of more abundant and environmentally benign base metal (Mn, Fe, Co, and Ni) complexes for deoxygenative reduction of amides have been developed to a lesser extent, such catalytic systems are of great importance. This review is focused on the current achievements in the base-metal-catalyzed deoxygenative hydrogenation, hydrosilylation, and hydroboration of amides to amines. Special attention is paid to the design of base metal catalysts and the mechanisms of such catalytic transformations. Full article
(This article belongs to the Special Issue Coordination Chemistry and Catalysis)
Show Figures

Graphical abstract

14 pages, 2454 KiB  
Article
Reuse of Lipase from Pseudomonas fluorescens via Its Step-by-Step Coimmobilization on Glyoxyl-Octyl Agarose Beads with Least Stable Lipases
by Nathalia S. Rios, Sara Arana-Peña, Carmen Mendez-Sanchez, Claudia Ortiz, Luciana R. B. Gonçalves and Roberto Fernandez-Lafuente
Catalysts 2019, 9(5), 487; https://doi.org/10.3390/catal9050487 - 27 May 2019
Cited by 36 | Viewed by 4441
Abstract
Coimmobilization of lipases may be interesting in many uses, but this means that the stability of the least stable enzyme determines the stability of the full combilipase. Here, we propose a strategy that permits the reuse the most stable enzyme. Lecitase Ultra (LU) [...] Read more.
Coimmobilization of lipases may be interesting in many uses, but this means that the stability of the least stable enzyme determines the stability of the full combilipase. Here, we propose a strategy that permits the reuse the most stable enzyme. Lecitase Ultra (LU) (a phospholipase) and the lipases from Rhizomucor miehei (RML) and from Pseudomonas fluorescens (PFL) were immobilized on octyl agarose, and their stabilities were studied under a broad range of conditions. Immobilized PFL was found to be the most stable enzyme under all condition ranges studied. Furthermore, in many cases it maintained full activity, while the other enzymes lost more than 50% of their initial activity. To coimmobilize these enzymes without discarding fully active PFL when LU or RML had been inactivated, PFL was covalently immobilized on glyoxyl-agarose beads. After biocatalysts reduction, the other enzyme was coimmobilized just by interfacial activation. After checking that glyoxyl-octyl-PFL was stable in 4% Triton X-100, the biocatalysts of PFL coimmobilized with LU or RML were submitted to inactivation under different conditions. Then, the inactivated least stable coimmobilized enzyme was desorbed (using 4% detergent) and a new enzyme reloading (using in some instances RML and in some others employing LU) was performed. The initial activity of immobilized PFL was maintained intact for several of these cycles. This shows the great potential of this lipase coimmobilization strategy. Full article
Show Figures

Graphical abstract

32 pages, 13294 KiB  
Review
Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts
by Yi-Hsuan Chiu, Tso-Fu Mark Chang, Chun-Yi Chen, Masato Sone and Yung-Jung Hsu
Catalysts 2019, 9(5), 430; https://doi.org/10.3390/catal9050430 - 9 May 2019
Cited by 553 | Viewed by 19233
Abstract
Due to its low cost, environmentally friendly process, and lack of secondary contamination, the photodegradation of dyes is regarded as a promising technology for industrial wastewater treatment. This technology demonstrates the light-enhanced generation of charge carriers and reactive radicals that non-selectively degrade various [...] Read more.
Due to its low cost, environmentally friendly process, and lack of secondary contamination, the photodegradation of dyes is regarded as a promising technology for industrial wastewater treatment. This technology demonstrates the light-enhanced generation of charge carriers and reactive radicals that non-selectively degrade various organic dyes into water, CO2, and other organic compounds via direct photodegradation or a sensitization-mediated degradation process. The overall efficiency of the photocatalysis system is closely dependent upon operational parameters that govern the adsorption and photodegradation of dye molecules, including the initial dye concentration, pH of the solution, temperature of the reaction medium, and light intensity. Additionally, the charge-carrier properties of the photocatalyst strongly affect the generation of reactive species in the heterogeneous photodegradation and thereby dictate the photodegradation efficiency. Herein, this comprehensive review discusses the pseudo kinetics and mechanisms of the photodegradation reactions. The operational factors affecting the photodegradation of either cationic or anionic dye molecules, as well as the charge-carrier properties of the photocatalyst, are also fully explored. By further analyzing past works to clarify key active species for photodegradation reactions and optimal conditions, this review provides helpful guidelines that can be applied to foster the development of efficient photodegradation systems. Full article
(This article belongs to the Special Issue Sustainable Applications in Surface Chemistry and Catalysis)
Show Figures

Figure 1

14 pages, 3490 KiB  
Article
Activation of Persulfate by Biochars from Valorized Olive Stones for the Degradation of Sulfamethoxazole
by Elena Magioglou, Zacharias Frontistis, John Vakros, Ioannis D. Manariotis and Dionissios Mantzavinos
Catalysts 2019, 9(5), 419; https://doi.org/10.3390/catal9050419 - 3 May 2019
Cited by 54 | Viewed by 5614
Abstract
Biochars from spent olive stones were tested for the degradation of sulfamethoxazole (SMX) in water matrices. Batch degradation experiments were performed using sodium persulfate (SPS) as the source of radicals in the range 250–1500 mg/L, with biochar as the SPS activator in the [...] Read more.
Biochars from spent olive stones were tested for the degradation of sulfamethoxazole (SMX) in water matrices. Batch degradation experiments were performed using sodium persulfate (SPS) as the source of radicals in the range 250–1500 mg/L, with biochar as the SPS activator in the range 100–300 mg/L and SMX as the model micro-pollutant in the range 250–2000 μg/L. Ultrapure water (UPW), bottled water (BW), and secondary treated wastewater (WW) were employed as the water matrix. Removal of SMX by adsorption only was moderate and favored at acidic conditions, while SPS alone did not practically oxidize SMX. At these conditions, biochar was capable of activating SPS and, consequently, of degrading SMX, with the pseudo-first order rate increasing with increasing biochar and oxidant concentration and decreasing SMX concentration. Experiments in BW or UPW spiked with various anions showed little or no effect on degradation. Similar experiments in WW resulted in a rate reduction of about 30%, and this was attributed to the competitive consumption of reactive radicals by non-target water constituents. Experiments with methanol and t-butanol at excessive concentrations resulted in partial but generally not complete inhibition of degradation; this indicates that, besides the liquid bulk, reactions may also occur close to or on the biochar surface. Full article
(This article belongs to the Special Issue Trends in Catalytic Wet Peroxide Oxidation Processes)
Show Figures

Figure 1

21 pages, 3396 KiB  
Article
Facet-Dependent Reactivity of Fe2O3/CeO2 Nanocomposites: Effect of Ceria Morphology on CO Oxidation
by Maria Lykaki, Sofia Stefa, Sόnia A. C. Carabineiro, Pavlos K. Pandis, Vassilis N. Stathopoulos and Michalis Konsolakis
Catalysts 2019, 9(4), 371; https://doi.org/10.3390/catal9040371 - 19 Apr 2019
Cited by 60 | Viewed by 6307
Abstract
Ceria has been widely studied either as catalyst itself or support of various active phases in many catalytic reactions, due to its unique redox and surface properties in conjunction to its lower cost, compared to noble metal-based catalytic systems. The rational design of [...] Read more.
Ceria has been widely studied either as catalyst itself or support of various active phases in many catalytic reactions, due to its unique redox and surface properties in conjunction to its lower cost, compared to noble metal-based catalytic systems. The rational design of catalytic materials, through appropriate tailoring of the particles’ shape and size, in order to acquire highly efficient nanocatalysts, is of major significance. Iron is considered to be one of the cheapest transition metals while its interaction with ceria support and their shape-dependent catalytic activity has not been fully investigated. In this work, we report on ceria nanostructures morphological effects (cubes, polyhedra, rods) on the textural, structural, surface, redox properties and, consequently, on the CO oxidation performance of the iron-ceria mixed oxides (Fe2O3/CeO2). A full characterization study involving N2 adsorption at –196 °C, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), temperature programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS) was performed. The results clearly revealed the key role of support morphology on the physicochemical properties and the catalytic behavior of the iron-ceria binary system, with the rod-shaped sample exhibiting the highest catalytic performance, both in terms of conversion and specific activity, due to its improved reducibility and oxygen mobility, along with its abundance in Fe2+ species. Full article
Show Figures

Figure 1

21 pages, 1843 KiB  
Review
A Review of the Enhancement of Bio-Hydrogen Generation by Chemicals Addition
by Yong Sun, Jun He, Gang Yang, Guangzhi Sun and Valérie Sage
Catalysts 2019, 9(4), 353; https://doi.org/10.3390/catal9040353 - 11 Apr 2019
Cited by 72 | Viewed by 7558
Abstract
Bio-hydrogen production (BHP) produced from renewable bio-resources is an attractive route for green energy production, due to its compelling advantages of relative high efficiency, cost-effectiveness, and lower ecological impact. This study reviewed different BHP pathways, and the most important enzymes involved in these [...] Read more.
Bio-hydrogen production (BHP) produced from renewable bio-resources is an attractive route for green energy production, due to its compelling advantages of relative high efficiency, cost-effectiveness, and lower ecological impact. This study reviewed different BHP pathways, and the most important enzymes involved in these pathways, to identify technological gaps and effective approaches for process intensification in industrial applications. Among the various approaches reviewed in this study, a particular focus was set on the latest methods of chemicals/metal addition for improving hydrogen generation during dark fermentation (DF) processes; the up-to-date findings of different chemicals/metal addition methods have been quantitatively evaluated and thoroughly compared in this paper. A new efficiency evaluation criterion is also proposed, allowing different BHP processes to be compared with greater simplicity and validity. Full article
Show Figures

Figure 1

35 pages, 15961 KiB  
Review
A Review of Low Temperature NH3-SCR for Removal of NOx
by Devaiah Damma, Padmanabha R. Ettireddy, Benjaram M. Reddy and Panagiotis G. Smirniotis
Catalysts 2019, 9(4), 349; https://doi.org/10.3390/catal9040349 - 10 Apr 2019
Cited by 225 | Viewed by 17951
Abstract
The importance of the low-temperature selective catalytic reduction (LT-SCR) of NOx by NH3 is increasing due to the recent severe pollution regulations being imposed around the world. Supported and mixed transition metal oxides have been widely investigated for LT-SCR technology. However, [...] Read more.
The importance of the low-temperature selective catalytic reduction (LT-SCR) of NOx by NH3 is increasing due to the recent severe pollution regulations being imposed around the world. Supported and mixed transition metal oxides have been widely investigated for LT-SCR technology. However, these catalytic materials have some drawbacks, especially in terms of catalyst poisoning by H2O or/and SO2. Hence, the development of catalysts for the LT-SCR process is still under active investigation throughout seeking better performance. Extensive research efforts have been made to develop new advanced materials for this technology. This article critically reviews the recent research progress on supported transition and mixed transition metal oxide catalysts for the LT-SCR reaction. The review covered the description of the influence of operating conditions and promoters on the LT-SCR performance. The reaction mechanism, reaction intermediates, and active sites are also discussed in detail using isotopic labelling and in situ FT-IR studies. Full article
(This article belongs to the Special Issue Emissions Control Catalysis)
Show Figures

Figure 1

30 pages, 11140 KiB  
Review
Hybrid Catalysts for CO2 Conversion into Cyclic Carbonates
by Carla Calabrese, Francesco Giacalone and Carmela Aprile
Catalysts 2019, 9(4), 325; https://doi.org/10.3390/catal9040325 - 2 Apr 2019
Cited by 76 | Viewed by 11706
Abstract
The conversion of carbon dioxide into valuable chemicals such as cyclic carbonates is an appealing topic for the scientific community due to the possibility of valorizing waste into an inexpensive, available, nontoxic, and renewable carbon feedstock. In this regard, last-generation heterogeneous catalysts are [...] Read more.
The conversion of carbon dioxide into valuable chemicals such as cyclic carbonates is an appealing topic for the scientific community due to the possibility of valorizing waste into an inexpensive, available, nontoxic, and renewable carbon feedstock. In this regard, last-generation heterogeneous catalysts are of great interest owing to their high catalytic activity, robustness, and easy recovery and recycling. In the present review, recent advances on CO2 cycloaddition to epoxide mediated by hybrid catalysts through organometallic or organo-catalytic species supported onto silica-, nanocarbon-, and metal–organic framework (MOF)-based heterogeneous materials, are highlighted and discussed. Full article
(This article belongs to the Special Issue Sustainable Applications in Surface Chemistry and Catalysis)
Show Figures

Graphical abstract

27 pages, 2101 KiB  
Review
Transition Metal Phosphides for the Catalytic Hydrodeoxygenation of Waste Oils into Green Diesel
by M. Consuelo Alvarez-Galvan, Jose M. Campos-Martin and Jose L. G. Fierro
Catalysts 2019, 9(3), 293; https://doi.org/10.3390/catal9030293 - 22 Mar 2019
Cited by 72 | Viewed by 8382
Abstract
Recently, catalysts based on transition metal phosphides (TMPs) have attracted increasing interest for their use in hydrodeoxygenation (HDO) processes destined to synthesize biofuels (green or renewable diesel) from waste vegetable oils and fats (known as hydrotreated vegetable oils (HVO)), or from bio-oils. This [...] Read more.
Recently, catalysts based on transition metal phosphides (TMPs) have attracted increasing interest for their use in hydrodeoxygenation (HDO) processes destined to synthesize biofuels (green or renewable diesel) from waste vegetable oils and fats (known as hydrotreated vegetable oils (HVO)), or from bio-oils. This fossil-free diesel product is produced completely from renewable raw materials with exceptional quality. These efficient HDO catalysts present electronic properties similar to noble metals, are cost-efficient, and are more stable and resistant to the presence of water than other classical catalytic formulations used for hydrotreatment reactions based on transition metal sulfides, but they do not require the continuous supply of a sulfide source. TMPs develop a bifunctional character (metallic and acidic) and present tunable catalytic properties related to the metal type, phosphorous-metal ratio, support nature, texture properties, and so on. Here, the recent progress in TMP-based catalysts for HDO of waste oils is reviewed. First, the use of TMPs in catalysis is addressed; then, the general aspects of green diesel (from bio-oils or from waste vegetable oils and fats) production by HDO of nonedible oil compounds are presented; and, finally, we attempt to describe the main advances in the development of catalysts based on TMPs for HDO, with an emphasis on the influence of the nature of active phases and effects of phosphorous, promoters, and preparation methods on reactivity. Full article
(This article belongs to the Special Issue Development of Catalysts for Green Diesel Production)
Show Figures

Graphical abstract

35 pages, 2989 KiB  
Article
Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts
by Vignesh Kumaravel, Muhammad Danyal Imam, Ahmed Badreldin, Rama Krishna Chava, Jeong Yeon Do, Misook Kang and Ahmed Abdel-Wahab
Catalysts 2019, 9(3), 276; https://doi.org/10.3390/catal9030276 - 18 Mar 2019
Cited by 220 | Viewed by 17946
Abstract
Photocatalytic water splitting is a sustainable technology for the production of clean fuel in terms of hydrogen (H2). In the present study, hydrogen (H2) production efficiency of three promising photocatalysts (titania (TiO2-P25), graphitic carbon nitride (g [...] Read more.
Photocatalytic water splitting is a sustainable technology for the production of clean fuel in terms of hydrogen (H2). In the present study, hydrogen (H2) production efficiency of three promising photocatalysts (titania (TiO2-P25), graphitic carbon nitride (g-C3N4), and cadmium sulfide (CdS)) was evaluated in detail using various sacrificial agents. The effect of most commonly used sacrificial agents in the recent years, such as methanol, ethanol, isopropanol, ethylene glycol, glycerol, lactic acid, glucose, sodium sulfide, sodium sulfite, sodium sulfide/sodium sulfite mixture, and triethanolamine, were evaluated on TiO2-P25, g-C3N4, and CdS. H2 production experiments were carried out under simulated solar light irradiation in an immersion type photo-reactor. All the experiments were performed without any noble metal co-catalyst. Moreover, photolysis experiments were executed to study the H2 generation in the absence of a catalyst. The results were discussed specifically in terms of chemical reactions, pH of the reaction medium, hydroxyl groups, alpha hydrogen, and carbon chain length of sacrificial agents. The results revealed that glucose and glycerol are the most suitable sacrificial agents for an oxide photocatalyst. Triethanolamine is the ideal sacrificial agent for carbon and sulfide photocatalyst. A remarkable amount of H2 was produced from the photolysis of sodium sulfide and sodium sulfide/sodium sulfite mixture without any photocatalyst. The findings of this study would be highly beneficial for the selection of sacrificial agents for a particular photocatalyst. Full article
(This article belongs to the Special Issue Photocatalytic Hydrogen Evolution)
Show Figures

Figure 1

57 pages, 19782 KiB  
Article
Fischer–Tropsch: Product Selectivity–The Fingerprint of Synthetic Fuels
by Wilson D. Shafer, Muthu Kumaran Gnanamani, Uschi M. Graham, Jia Yang, Cornelius M. Masuku, Gary Jacobs and Burtron H. Davis
Catalysts 2019, 9(3), 259; https://doi.org/10.3390/catal9030259 - 14 Mar 2019
Cited by 75 | Viewed by 19360
Abstract
The bulk of the products that were synthesized from Fischer–Tropsch synthesis (FTS) is a wide range (C1–C70+) of hydrocarbons, primarily straight-chained paraffins. Additional hydrocarbon products, which can also be a majority, are linear olefins, specifically: 1-olefin, trans-2-olefin, and [...] Read more.
The bulk of the products that were synthesized from Fischer–Tropsch synthesis (FTS) is a wide range (C1–C70+) of hydrocarbons, primarily straight-chained paraffins. Additional hydrocarbon products, which can also be a majority, are linear olefins, specifically: 1-olefin, trans-2-olefin, and cis-2-olefin. Minor hydrocarbon products can include isomerized hydrocarbons, predominantly methyl-branched paraffin, cyclic hydrocarbons mainly derived from high-temperature FTS and internal olefins. Combined, these products provide 80–95% of the total products (excluding CO2) generated from syngas. A vast number of different oxygenated species, such as aldehydes, ketones, acids, and alcohols, are also embedded in this product range. These materials can be used to probe the FTS mechanism or to produce alternative chemicals. The purpose of this article is to compare the product selectivity over several FTS catalysts. Discussions center on typical product selectivity of commonly used catalysts, as well as some uncommon formulations that display selectivity anomalies. Reaction tests were conducted while using an isothermal continuously stirred tank reactor. Carbon mole percentages of CO that are converted to specific materials for Co, Fe, and Ru catalysts vary, but they depend on support type (especially with cobalt and ruthenium) and promoters (especially with iron). All three active metals produced linear alcohols as the major oxygenated product. In addition, only iron produced significant selectivities to acids, aldehydes, and ketones. Iron catalysts consistently produced the most isomerized products of the catalysts that were tested. Not only does product selectivity provide a fingerprint of the catalyst formulation, but it also points to a viable proposed mechanistic route. Full article
(This article belongs to the Special Issue Iron and Cobalt Catalysts)
Show Figures

Figure 1

Back to TopTop