Biodiversity and Spatial Distribution of Fishes

A special issue of Fishes (ISSN 2410-3888). This special issue belongs to the section "Biology and Ecology".

Deadline for manuscript submissions: 20 October 2024 | Viewed by 8985

Special Issue Editors

East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
Interests: spatial–temporal dynamics; marine ecology; fish community; environmental impact

E-Mail Website
Guest Editor
College of Fisheries, Ocean University of China, Qingdao 266003, China
Interests: trophic dynamics; fish biodiverstiy; species distribution model; habitat suitability

E-Mail Website
Guest Editor
School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
Interests: eDNA; fish biodiversity; habitats; freshwater ecology

E-Mail Website
Guest Editor
Center for Limnology, University of Wisconsin-Madison, Madison, WI 53706, USA
Interests: estuarine ecology; fish biodiversity; wetland fishes

Special Issue Information

Dear Colleagues,

Due to the increasing impact of human activities, the diversity and distribution of fish in various water bodies (from freshwater to marine) have undergone significant changes. These changes mainly include a decrease in biodiversity, a simplification of community structure, and significant alterations in species distribution areas. Timely understanding of the distribution patterns and key influencing factors of fish species caused by environmental and human activities is beneficial for us to better protect fish and their population resources. In addition to traditional research methods in fishery ecology, new models such as environmental DNA and deep learning have played a significant role in deepening the study of fish diversity and distribution mechanisms in recent years, and there is still much room for improvement. In addition, this Special Issue mainly covers monitoring, identifying, and updating methods surrounding the biodiversity and distribution of fish in various types of water bodies, with a particular focus on how to effectively evaluate their spatiotemporal distribution caused by changes in habitats, such as species distribution models and deep learning methods.

Original research articles and reviews are welcome. We look forward to receiving your contributions.

Dr. Heng Zhang
Prof. Dr. Ying Xue
Prof. Dr. Yunzhi Yan
Dr. Luoliang Xu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fishes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fish biodiversity
  • spatial–temporal dynamics
  • fish community
  • environmental impact
  • climate change
  • species distribution
  • eDNA
  • ecological modelling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 6464 KiB  
Article
A Study on the Impact of Environmental Factors on Chub Mackerel Scomber japonicus Fishing Grounds Based on a Linear Mixed Model
by Jiasheng Li, Fenghua Tang, Yumei Wu, Shengmao Zhang, Weifeng Zhou and Xuesen Cui
Fishes 2024, 9(8), 323; https://doi.org/10.3390/fishes9080323 - 14 Aug 2024
Viewed by 164
Abstract
Chub mackerel (Scomber japonicus) is a commercially important fish species which are widely distributed in the North Pacific. Based on the fishery data from China’s high-sea light-purse seine fishing from 2014 to 2020 and the marine environment factors, a mixed linear [...] Read more.
Chub mackerel (Scomber japonicus) is a commercially important fish species which are widely distributed in the North Pacific. Based on the fishery data from China’s high-sea light-purse seine fishing from 2014 to 2020 and the marine environment factors, a mixed linear model considering the actual spatiotemporal stratification of the catch per unit effort (CPUE) was established to analyze the fixed and random effects of marine environmental factors on the CPUE of chub mackerel and to investigate the relationship between the abundance of chub mackerel resources in the Northwest Pacific and two marine environmental factors: sea surface temperature (SST) and chlorophyll-a concentration (CHL). The results showed that SST had a significant fixed effect on the CPUE. In contrast, the natural logarithm of chlorophyll (logCHL) had no fixed effect on the CPUE. Based on the monthly analysis, random fluctuations were observed in the impact of logCHL on the CPUE. LogCHL and CPUE show a positive correlation during spawning and wintering periods and a negative correlation during the feeding period. The study showed that when fishery sampling data exhibit spatiotemporal stratification, linear mixed models can effectively incorporate both the fixed and random effects of environmental factors on the CPUE of chub mackerel. Linear mixed models can play an important role in analyzing the fluctuations in resource abundance and the mechanisms governing the formation of fishing grounds for chub mackerel in the Northwest Pacific. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes)
Show Figures

Figure 1

18 pages, 985 KiB  
Article
Community Structure Characteristics and Changes in Fish Species at Poyang Lake after the Yangtze River Fishing Ban
by Yanping Zhang, Haixin Zhang, Zijun Wu, Mingguang Zhao and Guangpeng Feng
Fishes 2024, 9(7), 281; https://doi.org/10.3390/fishes9070281 - 15 Jul 2024
Viewed by 470
Abstract
To understand the fish community structure characteristics and changes in Poyang Lake after the Yangtze River fishing ban in 2021, seven sampling stations were established, namely in Hukou, Lushan, Duchang, Yongxiu, Nanjishan, Ruihong, and Poyang, for fishery resource surveys between 2020 and 2021. [...] Read more.
To understand the fish community structure characteristics and changes in Poyang Lake after the Yangtze River fishing ban in 2021, seven sampling stations were established, namely in Hukou, Lushan, Duchang, Yongxiu, Nanjishan, Ruihong, and Poyang, for fishery resource surveys between 2020 and 2021. The results showed that 93 fish species were identified, belonging to 11 orders, 20 families, and 61 genera, which was an increase of 4.5% from before the fishing ban. Of these, 52 Cyprinidae species were identified, comprising the highest proportion (55.91%). Four invasive alien species (hybrid sturgeon, Cirrhina mrigala, Piaractus brachypomus, and Mugil cephalus) were identified, and the number of alien species in Poyang Lake was higher than before the fishing ban. Carnivorous and mid-lower-level fish showed a significant increase, accounting for 47.31% and 38.71% of the total species, respectively. Compared with the Yangtze River before the fishing ban, the body length and body weight of the main economic fish in Poyang Lake increased by 6.10–61.26% and by 15.14–291.57%, respectively. In terms of age structure, the proportion of major economically important fish aged 1 or 2 years decreased significantly, while the proportion of older fish increased substantially. There was little difference in the diversity of fish communities at different stations in Poyang Lake. In terms of biodiversity, the Shannon–Wiener index ranged from 2.158 to 2.909, with Poyang having the highest value and Nanjishan the lowest. Margalef’s index ranged from 4.265 to 6.459, with Lushan having the highest value and Nanjishan the lowest. Pielou’s index ranged from 0.617 to 0.822, with Duchang having the highest value and Nanjishan the lowest. Hence, the Yangtze river fishing ban has played an important and positive role in the restoration of fishery resources in Poyang Lake. However, long-term tracking and monitoring are needed to provide information to comprehensively evaluate the ecological impact of the Poyang Lake fishing ban. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes)
Show Figures

Figure 1

21 pages, 3583 KiB  
Article
Functional Alpha and Beta Diversity of Fish Communities and Their Relationship with Environmental Factors in the Huanghe River (Yellow River) Estuary and Adjacent Seas, China
by Shaowen Li, Yufang Huang, Fan Li, Yanfen Liu, Hongliang Ma, Xiaomin Zhang, Xiuxia Wang, Wei Chen, Guangxin Cui and Tiantian Wang
Fishes 2024, 9(6), 222; https://doi.org/10.3390/fishes9060222 - 12 Jun 2024
Viewed by 532
Abstract
Fisheries and bottom seawater data were collected in July in 2022 and 2023 from 15 sampling stations in the Huanghe River estuary and adjacent seas in China. The patterns of functional alpha and beta diversity of fish communities in this area and their [...] Read more.
Fisheries and bottom seawater data were collected in July in 2022 and 2023 from 15 sampling stations in the Huanghe River estuary and adjacent seas in China. The patterns of functional alpha and beta diversity of fish communities in this area and their relationships with environmental factors were studied using trait-based analysis. Five functional classifications, which included 16 functional traits, four functional alpha diversity indices (functional richness, functional evenness, functional divergence, and community-weighted mean), three functional beta diversity indices (functional beta diversity and its turnover and nestedness components), and 14 bottom environmental factors were considered. The dominant traits of fish communities were the following: benthivorous feeding habits, small and front-facing mouths, high trophic level, demersal, anguilliform, low growth coefficient, medium resilience, low vulnerability, and adapted to warm temperate conditions. The dominant migration traits and types of fish eggs varied by year, and fish abundance was the main factor affecting the dominant traits of the communities. The results of multiple regression on distance matrices and variance partitioning analysis indicated that ammonia nitrogen content, total phosphorus content, and pH were the main environmental factors that affected fish functional diversity. The N/P ratio had a bottom-up control effect on fish functional diversity. Our findings also revealed that high pH gradients and distant geographical distances can inhibit trait turnover in fish communities. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes)
Show Figures

Figure 1

13 pages, 5489 KiB  
Article
Assessing Prospects of Integrating Asian Carp Polyculture in Europe: A Nature-Based Solution under Climate Change?
by Oksana Nekrasova, Mihails Pupins, Volodymyr Tytar, Leonid Fedorenko, Oleksandr Potrokhov, Arturs Škute, Andris Čeirāns, Kathrin Theissinger and Jean-Yves Georges
Fishes 2024, 9(4), 148; https://doi.org/10.3390/fishes9040148 - 22 Apr 2024
Cited by 1 | Viewed by 1070
Abstract
Aquaculture’s role in addressing food security has grown, with a spotlight on Asian carp species. Polyculture, i.e. cultivating multiple fish species in a single system, is being increasingly adopted for its resource efficiency and economic benefits. This practice for Asian fish for food [...] Read more.
Aquaculture’s role in addressing food security has grown, with a spotlight on Asian carp species. Polyculture, i.e. cultivating multiple fish species in a single system, is being increasingly adopted for its resource efficiency and economic benefits. This practice for Asian fish for food and ornamental purposes is gaining traction in Europe despite their invasive potential. Rising temperatures due to climate change offer an opportunity for thermophilic Asian carps (Hypophthalmichthys molitrix and Aristichthys nobilis). Using GIS modeling (Maxent), we identified the possible settlement of Asian carp in Northern Europe amidst climate change. We analyzed carp global distribution centers, assessed the potential carp spread in Europe, and evaluated their potential suitability for polyculture systems. By 2050, H. molitrix may extend its range to 58–62° N latitude, with a potential 1.7-fold habitat increase, while A. nobilis, which are more heat-tolerant, may move north to 52–58° N latitude, with a 1.3-fold potential increase. Despite the slight ecological differences in their native habitats, niche modeling indicates that these carp can occupy similar niches in Europe (proven statistically). The eventuality of using Asian species for polyculture in Europe presents both opportunities and challenges in the face of a changing climate as long as invasion risks are prevented. Envisaging such polyculture, yet very carefully for the protection of ecosystems, can help food security. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes)
Show Figures

Figure 1

15 pages, 7026 KiB  
Article
Distribution Characteristics and Driving Factors of Collichthys lucidus Species in Offshore Waters of Zhejiang Province, China
by Wendan Xuan, Hongliang Zhang, Haobo Zhang, Tian Wu, Yongdong Zhou and Wenbin Zhu
Fishes 2024, 9(3), 83; https://doi.org/10.3390/fishes9030083 - 23 Feb 2024
Viewed by 1385
Abstract
Collichthys lucidus is a small fish found in offshore waters that is economically important for China. It is imperative to understand its distribution characteristics and driving factors. Based on survey data of trawl fishery resources offshore of Zhejiang province, China, in spring (April) [...] Read more.
Collichthys lucidus is a small fish found in offshore waters that is economically important for China. It is imperative to understand its distribution characteristics and driving factors. Based on survey data of trawl fishery resources offshore of Zhejiang province, China, in spring (April) and autumn (November) from 2018 to 2022, the spatial and temporal distributions of C. lucidus in this area were analyzed. The random forest (RF) model was used to determine the important marine factors affecting the distribution of C. lucidus. The relationship between the distributions of the important variables was analyzed. The results showed that C. lucidus was mainly distributed in coastal waters. The tail density of the species exhibited obvious seasonal variation and was significantly greater in autumn than in spring. The most important factor affecting the distribution of this species in spring and autumn was water depth. The bottom temperature, bottom salinity and dissolved oxygen concentration were also important influencing factors. The importance of these factors differed among the different seasons, while the chlorophyll a concentration and pH had no significant effect on the species distribution. This study revealed the distribution pattern of C. lucidus in offshore waters of Zhejiang Province and the influence of important marine factors on its distribution. This study can enrich the survey data on C. lucidus and provide basic data for its scientific management and protection. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes)
Show Figures

Graphical abstract

14 pages, 4172 KiB  
Article
The Factors Driving the Spatial Variation in the Selection of Spawning Grounds for Sepiella japonica in Offshore Zhejiang Province, China
by Tian Wu, Jun Liang, Yongdong Zhou, Wendan Xuan, Guangjie Fang, Yazhou Zhang and Feng Chen
Fishes 2024, 9(1), 20; https://doi.org/10.3390/fishes9010020 - 31 Dec 2023
Cited by 1 | Viewed by 1724
Abstract
Due to overfishing and marine pollution, the status of fishery resources and the ecological environment in the sea areas have considerably changed. The proliferation and release of fishery resources have become the main means of human intervention to maintain and conserve the resource [...] Read more.
Due to overfishing and marine pollution, the status of fishery resources and the ecological environment in the sea areas have considerably changed. The proliferation and release of fishery resources have become the main means of human intervention to maintain and conserve the resource populations. The annual output of Sepiella japonica (S. japonica), once one of the four major seafood species in the East China Sea, has now recovered to a level of 4000 t. However, do the traditional spawning grounds of S. japonica still exist? Have the spawning grounds shifted? These scientific questions are worthy of attention. Based on the survey data of fishery resources and environment at 120 stations in coastal Zhejiang waters from 2015 to 2022, the spatial and temporal distribution and resource center of gravity of S. japonica in springtime were analyzed. Random forest (RF) was used to explain the importance of six environmental variables, including water depth, sea surface temperature, sea surface salinity, chlorophyll a, pH, and dissolved oxygen. The generalized additive model (GAM) nonparametric smoothing function was used to analyze the relationship between environmental factors and the distribution of S. japonica inhabiting the offshore areas of Zhejiang province, and the effects of environmental factors on spawning habitat selection of S. japonica were revealed. This study found that there was a significant interannual variation in S. japonica resources, with an overall increasing trend in the resource. The spawning grounds were mainly distributed in the Jiushan Islands Marine Reserve, the Dachen Islands Marine Reserve, and their nearby sea areas. The resource peaked at latitude 28.3° N. Additionally, the most important variables affecting the distribution of S. japonica were depth of water, followed by sea surface salinity, pH, dissolved oxygen, sea surface temperature, and chlorophyll a. S. japonica mainly inhabited sea areas with a depth of 15~25 m and a sea surface salinity of 26~32. When the pH ranged from 7.6 to 8.3, dissolved oxygen ranged from 6 to 9 mg/L, sea surface temperature ranged from 14 to 17 °C, and chlorophyll a ranged from 2.5 to 5 µg/L, S. japonica was more likely to be present. This study provides insights into the spatial distribution of S. japonica in offshore Zhejiang province, offering a reference for the rational utilization and scientific protection of this resource. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes)
Show Figures

Figure 1

20 pages, 5524 KiB  
Article
Evaluation Performance of Three Standardization Models to Estimate Catch-per-Unit-Effort: A Case Study on Pacific Sardine (Sardinops sagax) in the Northwest Pacific Ocean
by Yongchuang Shi, Haibin Han, Fenghua Tang, Shengmao Zhang, Wei Fan, Heng Zhang and Zuli Wu
Fishes 2023, 8(12), 606; https://doi.org/10.3390/fishes8120606 - 11 Dec 2023
Viewed by 1742
Abstract
Catch-per-unit-effort (CPUE) standardization in fisheries is a critical foundation for conducting stock assessment and fishery conservation. The Pacific sardine (Sardinops sagax) is one of the economically important fish species in the Northwest Pacific Ocean (NPO). Hence, the importance of choosing an [...] Read more.
Catch-per-unit-effort (CPUE) standardization in fisheries is a critical foundation for conducting stock assessment and fishery conservation. The Pacific sardine (Sardinops sagax) is one of the economically important fish species in the Northwest Pacific Ocean (NPO). Hence, the importance of choosing an appropriate CPUE standardization model cannot be overstated when it comes to achieving a precise relative abundance index for the efficient management of Pacific sardine fishery. This study’s main aim was to assess and compare the efficacy of three models, specifically the General Linear Model (GLM), the Generalized Linear Mixed Model (GLMM), and the spatio-temporal GLMM (VAST), in the CPUE standardization for Pacific sardine fishery in the NPO, with the ultimate goal of identifying the most appropriate model. An influence analysis was applied to analyze the impact of individual variables on the disparity among standardized and nominal CPUE, and the main explanatory variables influencing standardized CPUE were identified. A coefficient–distribution–influence (CDI) plot was generated to analyze the impact of the different models on the annual standardized CPUE. Additionally, a simulation testing framework was developed to evaluate the estimated accuracy of the three models. The results indicated that the standardized CPUE and the nominal CPUE exhibited similar trends between 2014 and 2021 for the three models. Compared to the GLM and the GLMM, the VAST demonstrates larger conditional R2 and smaller conditional AIC, indicating a better performance in standardizing the CPUE for Pacific sardines due to its consideration of spatial and temporal variations. The interaction terms within the three models exert significant influences on the annual standardized CPUE, necessitating their inclusion in the model construction. CDI plots indicate that the spatio-temporal influence of the VAST model exhibits a smaller variation trend, suggesting that the VAST is more robust when standardizing the CPUE for Pacific sardines. Simulation testing additionally demonstrated that the VAST model displays smaller model root mean squared error (RMSE) and bias, establishing it as the superior performer for standardizing CPUE. Our results provide a theoretical basis for the scientific management of Pacific sardines in the NPO and can be extended to CPUE standardization for other small pelagic fish species worldwide. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes)
Show Figures

Figure 1

Back to TopTop