ijms-logo

Journal Browser

Journal Browser

Molecular Research in Maize

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 24777

Special Issue Editor


E-Mail Website
Guest Editor
National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Interests: nitrogen; phosphorus; miRNA; maize

Special Issue Information

Dear Colleagues, 

Maize ranks first in terms of total production among the major staple cereals and is also an important raw material for biofuel and numerous other industrial products. Maize is also an important model system for genetic research because many observable maize phenotypes can be readily generated. Molecular research in maize significantly contributes to understanding the various developmental processes, signaling pathways, and adaptations to biotic and abiotic stresses in other crops.

As the Guest Editor of this Special Issue of IJMS, “Molecular Research in Maize”, I am anticipating submissions from the many researchers working within the wide spectrum of research on maize. The focus of this Special Issue is the link between molecular biology and maize. Examples of topics of interest for this Special Issue include developmental processes, stress responses, molecular breeding, and molecular technologies. The formats suitable for submission include original research reports, reviews, perspectives/opinions, and methodology articles.

Prof. Dr. Wenxue Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • development
  • stress
  • molecular breeding
  • technologies
  • maize

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 6512 KiB  
Article
Integrated QTL Mapping, Meta-Analysis, and RNA-Sequencing Reveal Candidate Genes for Maize Deep-Sowing Tolerance
by Xiaoqiang Zhao, Yining Niu, Zakir Hossain, Jing Shi, Taotao Mao and Xiaodong Bai
Int. J. Mol. Sci. 2023, 24(7), 6770; https://doi.org/10.3390/ijms24076770 - 5 Apr 2023
Cited by 6 | Viewed by 1845
Abstract
Synergetic elongation of mesocotyl and coleoptile are crucial in governing maize seedlings emergence, especially for the maize sown in deep soil. Studying the genomic regions controlling maize deep-sowing tolerance would aid the development of new varieties that are resistant to harsh conditions, such [...] Read more.
Synergetic elongation of mesocotyl and coleoptile are crucial in governing maize seedlings emergence, especially for the maize sown in deep soil. Studying the genomic regions controlling maize deep-sowing tolerance would aid the development of new varieties that are resistant to harsh conditions, such as drought and low temperature during seed germination. Using 346 F2:3 maize population families from W64A × K12 cross at three sowing depths, we identified 33 quantitative trait loci (QTLs) for the emergence rate, mesocotyl, coleoptile, and seedling lengths via composite interval mapping (CIM). These loci explained 2.89% to 14.17% of phenotypic variation in a single environment, while 12 of 13 major QTLs were identified at two or more sowing environments. Among those, four major QTLs in Bin 1.09, Bin 4.08, Bin 6.01, and Bin 7.02 supported pleiotropy for multiple deep-sowing tolerant traits. Meta-analysis identified 17 meta-QTLs (MQTLs) based on 130 original QTLs from present and previous studies. RNA-Sequencing of mesocotyl and coleoptile in both parents (W64A and K12) at 3 cm and 20 cm sowing environments identified 50 candidate genes expressed differentially in all major QTLs and MQTLs regions: six involved in the circadian clock, 27 associated with phytohormones biosynthesis and signal transduction, seven controlled lignin biosynthesis, five regulated cell wall organization formation and stabilization, three were responsible for sucrose and starch metabolism, and two in the antioxidant enzyme system. These genes with highly interconnected networks may form a complex molecular mechanism of maize deep-sowing tolerance. Findings of this study will facilitate the construction of molecular modules for deep-sowing tolerance in maize. The major QTLs and MQTLs identified could be used in marker-assisted breeding to develop elite maize varieties. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

27 pages, 5705 KiB  
Article
Genetic Variation, DIMBOA Accumulation, and Candidate Gene Identification in Maize Multiple Insect-Resistance
by Yining Niu, Xiaoqiang Zhao, Wun Chao, Peina Lu, Xiaodong Bai and Taotao Mao
Int. J. Mol. Sci. 2023, 24(3), 2138; https://doi.org/10.3390/ijms24032138 - 21 Jan 2023
Cited by 5 | Viewed by 1806
Abstract
Maize seedlings contain high amounts of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and the effect of DIMBOA is directly associated with multiple insect-resistance against insect pests such as Asian corn borer and corn leaf aphids. Although numerous genetic loci for multiple insect-resistant traits have been identified, little [...] Read more.
Maize seedlings contain high amounts of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and the effect of DIMBOA is directly associated with multiple insect-resistance against insect pests such as Asian corn borer and corn leaf aphids. Although numerous genetic loci for multiple insect-resistant traits have been identified, little is known about genetic controls regarding DIMBOA content. In this study, the best linear unbiased prediction (BLUP) values of DIMBOA content in two ecological environments across 310 maize inbred lines were calculated; and their phenotypic data and BLUP values were used for marker-trait association analysis. We identified nine SSRs that were significantly associated with DIMBOA content, which explained 4.30–20.04% of the phenotypic variation. Combined with 47 original genetic loci from previous studies, we detected 19 hot loci and approximately 11 hot loci (in Bin 1.04, Bin 2.00–2.01, Bin 2.03–2.04, Bin 4.00–4.03, Bin 5.03, Bin 5.05–5.07, Bin 8.01–8.03, Bin 8.04–8.05, Bin 8.06, Bin 9.01, and Bin 10.04 regions) supported pleiotropy for their association with two or more insect-resistant traits. Within the 19 hot loci, we identified 49 candidate genes, including 12 controlling DIMBOA biosynthesis, 6 involved in sugar metabolism/homeostasis, 2 regulating peroxidases activity, 21 associated with growth and development [(auxin-upregulated RNAs (SAUR) family member and v-myb avian myeloblastosis viral oncogene homolog (MYB)], and 7 involved in several key enzyme activities (lipoxygenase, cysteine protease, restriction endonuclease, and ubiquitin-conjugating enzyme). The synergy and antagonism interactions among these genes formed the complex defense mechanisms induced by multiple insect pests. Moreover, sufficient genetic variation was reported for DIMBOA performance and SSR markers in the 310 tested maize inbred lines, and 3 highly (DIMBOA content was 402.74–528.88 μg g−1 FW) and 15 moderate (DIMBOA content was 312.92–426.56 μg g−1 FW) insect-resistant genotypes were major enriched in the Reid group. These insect-resistant inbred lines can be used as parents in maize breeding programs to develop new varieties. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

18 pages, 6678 KiB  
Article
Integrating BSA-Seq with RNA-Seq Reveals a Novel Fasciated Ear5 Mutant in Maize
by Pengshuai Yan, Weihua Li, Enxiang Zhou, Ye Xing, Bing Li, Jing Liu, Zhanhui Zhang, Dong Ding, Zhiyuan Fu, Huiling Xie and Jihua Tang
Int. J. Mol. Sci. 2023, 24(2), 1182; https://doi.org/10.3390/ijms24021182 - 7 Jan 2023
Cited by 4 | Viewed by 2317
Abstract
Increasing grain yield is required to meet the rapidly expanding demands for food, feed, and fuel. Inflorescence meristems are central to plant growth and development. However, the question concerning whether inflorescence development can be regulated to improve grain yield remains unclear. Here, we [...] Read more.
Increasing grain yield is required to meet the rapidly expanding demands for food, feed, and fuel. Inflorescence meristems are central to plant growth and development. However, the question concerning whether inflorescence development can be regulated to improve grain yield remains unclear. Here, we describe a naturally occurring single recessive mutation called fea5 that can increase grain yield in maize. Using bulk segregant analysis sequencing (BSA-seq), the candidate region was initially mapped to a large region on chromosome 4 (4.68 Mb–11.26 Mb). Transcriptome sequencing (RNA-seq) revealed a total of 1246 differentially expressed genes (DEGs), of which 835 were up-regulated and 411 were down-regulated. Further analysis revealed the enrichment of DEGs in phytohormone signal transduction. Consistently, phytohormone profiling indicated that auxin (IAA), jasmonic acid (JA), ethylene (ETH), and cytokinin (CK) levels increased significantly, whereas the gibberellin (GA) level decreased significantly in fea5. By integrating BSA-seq with RNA-seq, we identified Zm00001d048841 as the most likely candidate gene. Our results provide valuable insight into this new germplasm resource and the molecular mechanism underlying fasciated ears that produce a higher kernel row number in maize. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

20 pages, 7441 KiB  
Article
The Anthocyanin Accumulation Related ZmBZ1, Facilitates Seedling Salinity Stress Tolerance via ROS Scavenging
by Jie Wang, Delin Li, Yixuan Peng, Minghao Cai, Zhi Liang, Zhipeng Yuan, Xuemei Du, Jianhua Wang, Patrick S. Schnable, Riliang Gu and Li Li
Int. J. Mol. Sci. 2022, 23(24), 16123; https://doi.org/10.3390/ijms232416123 - 17 Dec 2022
Cited by 11 | Viewed by 2041
Abstract
Anthocyanins are a class of antioxidants that scavenge free radicals in cells and play an important role in promoting human health and preventing many diseases. Here, we characterized a maize Bronze gene (BZ1) from the purple colored W22 introgression line, which [...] Read more.
Anthocyanins are a class of antioxidants that scavenge free radicals in cells and play an important role in promoting human health and preventing many diseases. Here, we characterized a maize Bronze gene (BZ1) from the purple colored W22 introgression line, which encodes an anthocyanin 3-O-glucosyltransferase, a key enzyme in the anthocyanin synthesis pathway. Mutation of ZmBZ1 showed bronze-colored seeds and reduced anthocyanins in seeds aleurone layer, seedlings coleoptile, and stem of mature plants by comparison with purple colored W22 (WT). Furthermore, we proved that maize BZ1 is an aleurone layer-specific expressed protein and sub-located in cell nucleus. Real-time tracing of the anthocyanins in developing seeds demonstrated that the pigment was visible from 16 DAP (day after pollination) in field condition, and first deposited in the crown part then spread all over the seed. Additionally, it was transferred along with the embryo cell activity during seed germination, from aleurone layer to cotyledon and coleoptile, as confirmed by microscopy and real-time qRT-PCR. Finally, we demonstrated that the ZmBZ1 contributes to stress tolerance, especially salinity. Further study proved that ZmBZ1 participates in reactive oxygen scavenging (ROS) by accumulating anthocyanins, thereby enhancing the tolerance to abiotic stress. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

16 pages, 990 KiB  
Article
Linkage Mapping Reveals QTL for Flowering Time-Related Traits under Multiple Abiotic Stress Conditions in Maize
by Pengfei Leng, Siffat Ullah Khan, Dengfeng Zhang, Guyi Zhou, Xuhuan Zhang, Yanxiao Zheng, Tianyu Wang and Jun Zhao
Int. J. Mol. Sci. 2022, 23(15), 8410; https://doi.org/10.3390/ijms23158410 - 29 Jul 2022
Cited by 11 | Viewed by 1600
Abstract
Variation in flowering plays a major role in maize photoperiod adaptation during long-term domestication. It is of high value to investigate the genetic basis of maize flowering under a wide range of environmental conditions in order to overcome photoperiod sensitivity or enhance stress [...] Read more.
Variation in flowering plays a major role in maize photoperiod adaptation during long-term domestication. It is of high value to investigate the genetic basis of maize flowering under a wide range of environmental conditions in order to overcome photoperiod sensitivity or enhance stress tolerance. A recombinant inbred line (RIL) population derived from a cross between Huangzaosi and Mo17, composed of 121 lines and genotyped by 8329 specifically developed markers, was field evaluated in two consecutive years under two planting densities (67,500 and 120,000 plants ha−1) and two water treatments (normal irrigation and drought stress at the flowering stage). The days to silking (DTS), days to anthesis (DTA), and anthesis to silking interval (ASI) were all evaluated. Within the RIL population, DTS and DTA expanded as planting density and water deficit increased. For DTA, DTS, ASI, and ASI-delay, a total of 22, 17, 21, and 11 QTLs were identified, respectively. More than two significant QTLs were identified in each of the nine chromosomal intervals. Under diverse conditions and locations, six QTLs (quantitative trait locus) for DTS and DTA were discovered in Chr. 8: 118.13–125.31 Mb. Three chromosome regions, Chr. 3: 196.14–199.89 Mb, Chr. 8: 169.02–172.46 Mb, and Chr. 9: 128.12–137.26 Mb, all had QTLs for ASI-delay under normal and stress conditions, suggesting their possible roles in stress tolerance enhancement. These QTL hotspots will promote early-maturing or multiple abiotic stress-tolerant maize breeding, as well as shed light on the development of maize varieties with a broad range of adaptations. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

15 pages, 994 KiB  
Article
Associative and Physical Mapping of Markers Related to Fusarium in Maize Resistance, Obtained by Next-Generation Sequencing (NGS)
by Aleksandra Sobiech, Agnieszka Tomkowiak, Bartosz Nowak, Jan Bocianowski, Łukasz Wolko and Julia Spychała
Int. J. Mol. Sci. 2022, 23(11), 6105; https://doi.org/10.3390/ijms23116105 - 29 May 2022
Cited by 9 | Viewed by 2003
Abstract
On the basis of studies carried out in the last few years, it is estimated that maize diseases cause yield losses of up to 30% each year. The most dangerous diseases are currently considered to be caused by fungi of the genus Fusarium [...] Read more.
On the basis of studies carried out in the last few years, it is estimated that maize diseases cause yield losses of up to 30% each year. The most dangerous diseases are currently considered to be caused by fungi of the genus Fusarium, which are the main culprits of root rot, ear rots, and stalk rot. Early plant infection causes grain diminution, as well as a significant deterioration in nutritional value and fodder quality due to the presence of harmful mycotoxins. Therefore, the aim of the research was to identify new markers of the SilicoDArT and SNP type, which could be used for the mass selection of varieties resistant to fusarium. The plant material consisted of 186 inbred maize lines. The lines came from experimental plots belonging to two Polish breeding companies: Plant Breeding Smolice Ltd., (Co., Kobylin, Poland). Plant Breeding and Acclimatization Institute—National Research Institute Group (51°41′23.16″ N, 17°4′18.241″ E), and Małopolska Plant Breeding Kobierzyce, Poland Ltd., (Co., Kobierzyce, Poland) (50°58′19.411″ N, 16°55′47.323″ E). As a result of next-generation sequencing, a total of 81,602 molecular markers were obtained, of which, as a result of the associative mapping, 2962 (321 SilicoDArT and 2641 SNP) significantly related to plant resistance to fusarium were selected. Out of 2962 markers significantly related to plant resistance in the fusarium, seven markers (SilicoDArT, SNP) were selected, which were significant at the level of 0.001. They were used for physical mapping. As a result of the analysis, it was found that two out of seven selected markers (15,097—SilicoDArT and 58,771—SNP) are located inside genes, on chromosomes 2 and 3, respectively. Marker 15,097 is anchored to the gene encoding putrescine N-hydroxycinnamoyltransferase while marker 58,771 is anchored to the gene encoding the peroxidase precursor 72. Based on the literature data, both of these genes may be associated with plant resistance to fusarium. Therefore, the markers 15,097 (SilicoDArT) and 58,771 (SNP) can be used in breeding programs to select lines resistant to fusarium. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

15 pages, 2235 KiB  
Article
Dissection of the Genetic Basis of Yield Traits in Line per se and Testcross Populations and Identification of Candidate Genes for Hybrid Performance in Maize
by Yuting Ma, Dongdong Li, Zhenxiang Xu, Riliang Gu, Pingxi Wang, Junjie Fu, Jianhua Wang, Wanli Du and Hongwei Zhang
Int. J. Mol. Sci. 2022, 23(9), 5074; https://doi.org/10.3390/ijms23095074 - 3 May 2022
Cited by 4 | Viewed by 2071
Abstract
Dissecting the genetic basis of yield traits in hybrid populations and identifying the candidate genes are important for molecular crop breeding. In this study, a BC1F3:4 population, the line per se (LPS) population, was constructed by using elite inbred lines Zheng58 and PH4CV [...] Read more.
Dissecting the genetic basis of yield traits in hybrid populations and identifying the candidate genes are important for molecular crop breeding. In this study, a BC1F3:4 population, the line per se (LPS) population, was constructed by using elite inbred lines Zheng58 and PH4CV as the parental lines. The population was genotyped with 55,000 SNPs and testcrossed to Chang7-2 and PH6WC (two testers) to construct two testcross (TC) populations. The three populations were evaluated for hundred kernel weight (HKW) and yield per plant (YPP) in multiple environments. Marker–trait association analysis (MTA) identified 24 to 151 significant SNPs in the three populations. Comparison of the significant SNPs identified common and specific quantitative trait locus/loci (QTL) in the LPS and TC populations. Genetic feature analysis of these significant SNPs proved that these SNPs were associated with the tested traits and could be used to predict trait performance of both LPS and TC populations. RNA-seq analysis was performed using maize hybrid varieties and their parental lines, and differentially expressed genes (DEGs) between hybrid varieties and parental lines were identified. Comparison of the chromosome positions of DEGs with those of significant SNPs detected in the TC population identified potential candidate genes that might be related to hybrid performance. Combining RNA-seq analysis and MTA results identified candidate genes for hybrid performance, providing information that could be useful for maize hybrid breeding. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

22 pages, 9747 KiB  
Article
The Combination of Conventional QTL Analysis, Bulked-Segregant Analysis, and RNA-Sequencing Provide New Genetic Insights into Maize Mesocotyl Elongation under Multiple Deep-Seeding Environments
by Xiaoqiang Zhao and Yining Niu
Int. J. Mol. Sci. 2022, 23(8), 4223; https://doi.org/10.3390/ijms23084223 - 11 Apr 2022
Cited by 9 | Viewed by 2291
Abstract
Mesocotyl length (MES) is an important trait that affects the emergence of maize seedlings after deep-seeding and is closely associated with abiotic stress. The elucidation of constitutive-QTLs (cQTLs) and candidate genes for MES and tightly molecular markers are thus of great importance in [...] Read more.
Mesocotyl length (MES) is an important trait that affects the emergence of maize seedlings after deep-seeding and is closely associated with abiotic stress. The elucidation of constitutive-QTLs (cQTLs) and candidate genes for MES and tightly molecular markers are thus of great importance in marker-assisted selection (MAS) breeding. Therefore, the objective of this study was to perform detailed genetic analysis of maize MES across 346 F2:3 families, 30/30 extreme bulks of an F2 population, and two parents by conventional QTL analysis, bulked-segregation analysis (BSA), and RNA-sequencing when maize was sown at the depths of 3, 15, and 20 cm, respectively. QTL analysis identified four major QTLs in Bin 1.09, Bin 3.04, Bin 4.06–4.07, and Bin 6.01 under two or more environments, which explained 2.89–13.97% of the phenotypic variance within a single environment. BSA results revealed the presence of seven significantly linked SNP/InDel regions on chromosomes 1 and 4, and six SNP/InDel regions and the major QTL of qMES4-1 overlapped and formed a cQTL, cQMES4, within the 160.98–176.22 Mb region. In total, 18,001 differentially expressed genes (DEGs) were identified across two parents by RNA-sequencing, and 24 of these genes were conserved core DEGs. Finally, we validated 15 candidate genes in cQMES4 to involve in cell wall structure, lignin biosyntheis, phytohormones (auxin, abscisic acid, brassinosteroid) signal transduction, circadian clock, and plant organ formation and development. Our findings provide a basis for MAS breeding and enhance our understanding of the deep-seeding tolerance of maize. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

16 pages, 5129 KiB  
Article
Dek504 Encodes a Mitochondrion-Targeted E+-Type Pentatricopeptide Repeat Protein Essential for RNA Editing and Seed Development in Maize
by Zheyuan Wang, Weiwei Chen, Song Zhang, Jiawen Lu, Rongrong Chen, Junjie Fu, Riliang Gu, Guoying Wang, Jianhua Wang and Yu Cui
Int. J. Mol. Sci. 2022, 23(5), 2513; https://doi.org/10.3390/ijms23052513 - 24 Feb 2022
Cited by 4 | Viewed by 1953
Abstract
In flowering plants, RNA editing is a post-transcriptional process that selectively deaminates cytidines (C) to uridines (U) in organellar transcripts. Pentatricopeptide repeat (PPR) proteins have been identified as site-specific recognition factors for RNA editing. Here, we report the map-based cloning and molecular characterization [...] Read more.
In flowering plants, RNA editing is a post-transcriptional process that selectively deaminates cytidines (C) to uridines (U) in organellar transcripts. Pentatricopeptide repeat (PPR) proteins have been identified as site-specific recognition factors for RNA editing. Here, we report the map-based cloning and molecular characterization of the defective kernel mutant dek504 in maize. Loss of Dek504 function leads to delayed embryogenesis and endosperm development, which produce small and collapsed kernels. Dek504 encodes an E+-type PPR protein targeted to the mitochondria, which is required for RNA editing of mitochondrial NADH dehydrogenase 3 at the nad3-317 and nad3-44 sites. Biochemical analysis of mitochondrial protein complexes revealed a significant reduction in the mitochondrial NADH dehydrogenase complex I activity, indicating that the alteration of the amino acid sequence at nad3-44 and nad3-317 through RNA editing is essential for NAD3 function. Moreover, the amino acids are highly conserved in monocots and eudicots, whereas the events of C-to-U editing are not conserved in flowering plants. Thus, our results indicate that Dek504 is essential for RNA editing of nad3, which is critical for NAD3 function, mitochondrial complex I stability, and seed development in maize. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

21 pages, 11503 KiB  
Article
Comparative Transcriptome Analysis Reveals Mechanisms of Folate Accumulation in Maize Grains
by Tong Lian, Xuxia Wang, Sha Li, Haiyang Jiang, Chunyi Zhang, Huan Wang and Ling Jiang
Int. J. Mol. Sci. 2022, 23(3), 1708; https://doi.org/10.3390/ijms23031708 - 1 Feb 2022
Cited by 4 | Viewed by 2294
Abstract
Previously, the complexity of folate accumulation in the early stages of maize kernel development has been reported, but the mechanisms of folate accumulation are unclear. Two maize inbred lines, DAN3130 and JI63, with different patterns of folate accumulation and different total folate contents [...] Read more.
Previously, the complexity of folate accumulation in the early stages of maize kernel development has been reported, but the mechanisms of folate accumulation are unclear. Two maize inbred lines, DAN3130 and JI63, with different patterns of folate accumulation and different total folate contents in mature kernels were used to investigate the transcriptional regulation of folate metabolism during late stages of kernel formation by comparative transcriptome analysis. The folate accumulation during DAP 24 to mature kernels could be controlled by circumjacent pathways of folate biosynthesis, such as pyruvate metabolism, glutamate metabolism, and serine/glycine metabolism. In addition, the folate variation between these two inbred lines was related to those genes among folate metabolism, such as genes in the pteridine branch, para-aminobenzoate branch, serine/tetrahydrofolate (THF)/5-methyltetrahydrofolate cycle, and the conversion of THF monoglutamate to THF polyglutamate. The findings provided insight into folate accumulation mechanisms during maize kernel formation to promote folate biofortification. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

21 pages, 96751 KiB  
Article
Morphological Characterization and Transcriptome Analysis of New Dwarf and Narrow-Leaf (dnl2) Mutant in Maize
by Lulu Han, Chenggong Jiang, Wei Zhang, Hongwu Wang, Kun Li, Xiaogang Liu, Zhifang Liu, Yujin Wu, Changling Huang and Xiaojiao Hu
Int. J. Mol. Sci. 2022, 23(2), 795; https://doi.org/10.3390/ijms23020795 - 12 Jan 2022
Cited by 11 | Viewed by 3400
Abstract
Lodging is the primary factor limiting high yield under a high plant density. However, an optimal plant height and leaf shape can effectively decrease the lodging risk. Here we studied an ethyl methanesulfonate (EMS)-induced dwarf and a narrow-leaf mutant, dnl2. Gene mapping [...] Read more.
Lodging is the primary factor limiting high yield under a high plant density. However, an optimal plant height and leaf shape can effectively decrease the lodging risk. Here we studied an ethyl methanesulfonate (EMS)-induced dwarf and a narrow-leaf mutant, dnl2. Gene mapping indicated that the mutant was controlled by a gene located on chromosome nine. Phenotypic and cytological observations revealed that dnl2 showed inhibited cell growth, altered vascular bundle patterning, and disrupted secondary cell wall structure when compared with the wild-type, which could be the direct cause of the dwarf and narrow-leaf phenotype. The phytohormone levels, especially auxin and gibberellin, were significantly decreased in dnl2 compared to the wild-type plants. Transcriptome profiling of the internodes of the dnl2 mutant and wild-type revealed a large number of differentially expressed genes enriched in the cell wall biosynthesis, remodeling, and hormone biosynthesis and signaling pathways. Therefore, we suggest that crosstalk between hormones (the altered vascular bundle and secondary cell wall structure) may contribute to the dwarf and narrow-leaf phenotype by influencing cell growth. These results provide a foundation for DNL2 gene cloning and further elucidation of the molecular mechanism of the regulation of plant height and leaf shape in maize. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

Back to TopTop