Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2991 KiB  
Article
Theoretical Study on Thermal Release of Helium-3 in Lunar Ilmenite
by Hongqing Song, Jie Zhang, Yueqiang Sun, Yongping Li, Xianguo Zhang, Dongyu Ma and Jue Kou
Minerals 2021, 11(3), 319; https://doi.org/10.3390/min11030319 - 19 Mar 2021
Cited by 6 | Viewed by 4002
Abstract
The in-situ utilization of lunar helium-3 resource is crucial to manned lunar landings and lunar base construction. Ilmenite was selected as the representative mineral which preserves most of the helium-3 in lunar soil. The implantation of helium-3 ions into ilmenite was simulated to [...] Read more.
The in-situ utilization of lunar helium-3 resource is crucial to manned lunar landings and lunar base construction. Ilmenite was selected as the representative mineral which preserves most of the helium-3 in lunar soil. The implantation of helium-3 ions into ilmenite was simulated to figure out the concentration profile of helium-3 trapped in lunar ilmenite. Based on the obtained concentration profile, the thermal release model for molecular dynamics was established to investigate the diffusion and release of helium-3 in ilmenite. The optimal heating temperature, the diffusion coefficient, and the release rate of helium-3 were analyzed. The heating time of helium-3 in lunar ilmenite under actual lunar conditions was also studied using similitude analysis. The results show that after the implantation of helium-3 into lunar ilmenite, it is mainly trapped in vacancies and interstitials of ilmenite crystal and the corresponding concentration profile follows a Gaussian distribution. As the heating temperature rises, the cumulative amounts of released helium-3 increase rapidly at first and then tend to stabilize. The optimal heating temperature of helium-3 is about 1000 K and the corresponding cumulative release amount is about 74%. The diffusion coefficient and activation energy of helium-3 increase with the temperature. When the energy of helium-3 is higher than the binding energy of the ilmenite lattice, the helium-3 is released rapidly on the microscale. Furthermore, when the heating temperature increases, the heating time for thermal release of helium-3 under actual lunar conditions decreases. For the optimal heating temperature of 1000 K, the thermal release time of helium-3 is about 1 s. The research could provide a theoretical basis for in-situ helium-3 resources utilization on the moon. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 3809 KiB  
Article
Strength Characteristics of Clay–Rubber Waste Mixtures in Low-Frequency Cyclic Triaxial Tests
by Małgorzata Jastrzębska and Krzysztof Tokarz
Minerals 2021, 11(3), 315; https://doi.org/10.3390/min11030315 - 18 Mar 2021
Cited by 16 | Viewed by 3250
Abstract
This paper presents the results of consolidated and undrained (CU) triaxial cyclic tests related to the influence of tire waste addition on the strength characteristics of two different soils from Southern Poland: unswelling kaolin and swelling red clay. The test procedure included the [...] Read more.
This paper presents the results of consolidated and undrained (CU) triaxial cyclic tests related to the influence of tire waste addition on the strength characteristics of two different soils from Southern Poland: unswelling kaolin and swelling red clay. The test procedure included the normally consolidated remolded specimens prepared from pure red clay (RC) and kaolin (K) and their mixtures with two different fractions of shredded rubber powder (P) and granulate (G) in 5%, 10%, and 25% mass proportions. All samples were subjected to low-frequency cyclic loading carried out with a constant stress amplitude. Analysis of the results includes consideration of the effect of rubber additive and number of load cycles on the development of excess pore pressure and axial strain during the cyclic load operation and on the maximum stress deviator value. A general decrease in the shear strength due to the cyclic load operation was observed, and various effects of shear strength depended on the mixture content and size of the rubber waste particles. In general, the use of soil–rubber mixtures, especially for expansive soils and powder, should be treated with caution for cyclic loading. Full article
Show Figures

Graphical abstract

21 pages, 5642 KiB  
Article
Impact of Grinding of Printed Circuit Boards on the Efficiency of Metal Recovery by Means of Electrostatic Separation
by Tomasz Suponik, Dawid M. Franke, Paweł M. Nuckowski, Piotr Matusiak, Daniel Kowol and Barbara Tora
Minerals 2021, 11(3), 281; https://doi.org/10.3390/min11030281 - 9 Mar 2021
Cited by 15 | Viewed by 4010
Abstract
This paper analyses the impact of the method of grinding printed circuit boards (PCBs) in a knife mill on the efficiency and purity of products obtained during electrostatic separation. The separated metals and plastics and ceramics can be used as secondary raw materials. [...] Read more.
This paper analyses the impact of the method of grinding printed circuit boards (PCBs) in a knife mill on the efficiency and purity of products obtained during electrostatic separation. The separated metals and plastics and ceramics can be used as secondary raw materials. This is in line with the principle of circular economy. Three different screen perforations were used in the mill to obtain different sizes of ground grains. Moreover, the effect of cooling the feed to cryogenic temperature on the final products of separation was investigated. The level of contamination of the concentrate, intermediate, and waste obtained as a result of the application of fixed, determined electrostatic separation parameters was assessed using ICP-AES, SEM–EDS, XRD, and microscopic analysis as well as specific density. The yields of grain classes obtained from grinding in a knife mill were tested through sieve analysis and by using a particle size analyser. The test results indicate that using a knife mill with a 1 mm screen perforation along with cooling the feed to cryogenic temperature significantly improves the efficiency of the process. The grinding products were characterised by the highest release level of the useful substance—metals in the free state. The purity of the concentrate and waste obtained from electrostatic separation was satisfactory, and the content of the intermediate, in which conglomerates of solid metal–plastic connections were present, was very low. The yield of concentrate and waste amounted to 26.2% and 71.0%, respectively. Their purity, reflected in the content of the identified metals (valuable metals), was at the level of 93.3% and 0.5%, respectively. In order to achieve effective recovery of metals from PCBs by means of electrostatic separation, one should strive to obtain a feed composed of grains <1000 μm and, optimally, <800 μm. Full article
Show Figures

Figure 1

23 pages, 6913 KiB  
Review
Active Treatment of Contaminants of Emerging Concern in Cold Mine Water Using Advanced Oxidation and Membrane-Related Processes: A Review
by Sébastien Ryskie, Carmen M. Neculita, Eric Rosa, Lucie Coudert and Patrice Couture
Minerals 2021, 11(3), 259; https://doi.org/10.3390/min11030259 - 2 Mar 2021
Cited by 13 | Viewed by 4553
Abstract
Responsible use and effective treatment of mine water are prerequisites of sustainable mining. The behavior of contaminants in mine water evolves in relation to the metastable characteristics of some species, changes related to the mine life cycle, and mixing processes at various scales. [...] Read more.
Responsible use and effective treatment of mine water are prerequisites of sustainable mining. The behavior of contaminants in mine water evolves in relation to the metastable characteristics of some species, changes related to the mine life cycle, and mixing processes at various scales. In cold climates, water treatment requires adaptation to site-specific conditions, including high flow rates, salinity, low temperatures, remoteness, and sensitivity of receiving waterbodies. Contaminants of emerging concern (CECs) represent a newer issue in mine water treatment. This paper reviews recent research on the challenges and opportunities related to CECs in mine water treatment, with a focus on advanced oxidation and membrane-based processes on mine sites operating in cold climates. Finally, the paper identifies research needs in mine water treatment. Full article
(This article belongs to the Special Issue Pollutants in Acid Mine Drainage)
Show Figures

Graphical abstract

27 pages, 8457 KiB  
Article
Contamination Alters the Physicochemical and Textural Characteristics of Clays in the Sediments of the Peri Urban Reconquista River, Affecting the Associated Indigenous Microorganisms
by Ana E. Tufo, Susana Vázquez, Natalia F. Porzionato, María Celeste Grimolizzi, María Belén Prados, Mauricio Sica and Gustavo Curutchet
Minerals 2021, 11(3), 242; https://doi.org/10.3390/min11030242 - 26 Feb 2021
Cited by 6 | Viewed by 3384
Abstract
The physicochemical and textural characteristics of river sediments and, essentially, their clays, are at the center of a network of biological and geochemical factors that are mutually modifying. Therefore, the contamination, the characteristics of the clays, and the associated microorganisms strongly influence each [...] Read more.
The physicochemical and textural characteristics of river sediments and, essentially, their clays, are at the center of a network of biological and geochemical factors that are mutually modifying. Therefore, the contamination, the characteristics of the clays, and the associated microorganisms strongly influence each other. In this work, sediments from two sites of the urban Reconquista River, near Buenos Aires City, Argentina, exposed to different environmental contexts were characterized. The huge differences in the organic matter content in the vertical profile between both sediments strongly evidenced the polluted status of San Francisco (SF) site as opposed to the Dique Roggero (DR) site. Thorough physicochemical and textural characterization of the sediments and their clay fraction performed by pH, Oxidation-reduction potential (ORP), spectrophotometry, XRD, laser diffraction, N2 adsorption–desorption isotherms, EDS, and SEM measurements revealed that organic matter (DR: 41 ± 5 g kg−1; SF: 150 ± 30 g kg−1) intervened in the retention of heavy metals (DR: 5.6 mg kg−1 Zn, 7 mg kg−1 Cu, 3.1 kg−1 Cr; SF: 240 mg kg−1 Zn, 60 mg kg−1 Cu, 270 mg kg−1 Cr) and affected the level of association and the formation of mineral–organic aggregates (DR: 15 ± 3 μm; SF: 23 ± 4 μm). This can be decisive in the surface interaction required for the establishment of bacterial assemblages, which determine the biogeochemical processes occurring in sediments and have a key role in the fate of contaminants in situ and in the remediation processes that need to be applied to restore the anoxic contaminated sediments. Full article
(This article belongs to the Special Issue Clay Minerals–Life Interplay)
Show Figures

Graphical abstract

14 pages, 1180 KiB  
Article
Soil Biochemical Indicators and Biological Fertility in Agricultural Soils: A Case Study from Northern Italy
by Livia Vittori Antisari, Chiara Ferronato, Mauro De Feudis, Claudio Natali, Gianluca Bianchini and Gloria Falsone
Minerals 2021, 11(2), 219; https://doi.org/10.3390/min11020219 - 20 Feb 2021
Cited by 12 | Viewed by 3410
Abstract
Industrial farming without considering soil biological features could lead to soil degradation. We aimed to evaluate the biochemical properties (BPs) and biological fertility (BF) of different soils under processing tomato cultivation; estimate the BF through the calculation of a simplified BF index (BFIs); [...] Read more.
Industrial farming without considering soil biological features could lead to soil degradation. We aimed to evaluate the biochemical properties (BPs) and biological fertility (BF) of different soils under processing tomato cultivation; estimate the BF through the calculation of a simplified BF index (BFIs); determine if the crop was affected by BP and BF. Three farms were individuated in Modena (MO), Ferrara (MEZ) and Ravenna (RA) provinces, Italy. Soil analysis included total and labile organic C, microbial biomass-C (Cmic) and microbial respiration measurements. The metabolic (qCO2), mineralization (qM) and microbial (qMIC) quotients, and BFIs were calculated. Furthermore, plant nutrient contents were determined. The low Cmic content and qMIC, and high qCO2 found in MEZ soils indicate the occurrence of stressful conditions. The high qMIC and qM, and the low qCO2 demonstrated an efficient organic carbon incorporation as Cmic in MO soils. In RA soils, the low total and labile organic C contents limited the Cmic and microbial respiration. Therefore, as confirmed by the BFIs, while MO showed the healthiest soils, RA soils had an inefficient ecophysiological energy state. However, no effects on plant nutrient contents were observed, likely because of masked by fertigation. Finally, BP monitoring is needed in order to avoid soil degradation and, in turn, crop production decline. Full article
(This article belongs to the Special Issue Elemental and Isotope Geochemistry of the Earth’s Critical Zone)
Show Figures

Figure 1

27 pages, 6824 KiB  
Review
REEs in the North Africa P-Bearing Deposits, Paleoenvironments, and Economic Perspectives: A Review
by Roberto Buccione, Rabah Kechiched, Giovanni Mongelli and Rosa Sinisi
Minerals 2021, 11(2), 214; https://doi.org/10.3390/min11020214 - 19 Feb 2021
Cited by 24 | Viewed by 5331
Abstract
A review of the compositional features of Tunisia, Algeria, and Morocco phosphorites is proposed in order to assess and compare the paleoenvironmental conditions that promoted the deposit formation as well as provide information about their economic perspective in light of growing worldwide demand. [...] Read more.
A review of the compositional features of Tunisia, Algeria, and Morocco phosphorites is proposed in order to assess and compare the paleoenvironmental conditions that promoted the deposit formation as well as provide information about their economic perspective in light of growing worldwide demand. Since these deposits share a very similar chemical and mineralogical composition, the attention was focused on the geochemistry of rare earth elements (REEs) and mostly on ΣREEs, Ce and Eu anomalies, and (La/Yb) and (La/Gd) normalized ratios. The REEs distributions reveal several differences between deposits from different locations, suggesting mostly that the Tunisian and Algerian phosphorites probably were part of the same depositional system. There, sub-reducing to sub-oxic conditions and a major REEs adsorption by early diagenesis were recorded. Conversely, in the Moroccan basins, sub-oxic to oxic environments and a minor diagenetic alteration occurred, which was likely due to a different seawater supply. Moreover, the drastic environmental changes associated to the Paleocene–Eocene Thermal Maximum event probably influenced the composition of Northern African phosphorites that accumulated the highest REEs amounts during that span of time. Based on the REEs concentrations, and considering the outlook coefficient of REE composition (Koutl) and the percentage of critical elements in ΣREEs (REEdef), the studied deposits can be considered as promising to highly promising REE ores and could represent a profitable alternative source for critical REEs. Full article
(This article belongs to the Special Issue Feature Papers in Mineral Deposits 2020)
Show Figures

Figure 1

17 pages, 7834 KiB  
Article
Mechanism and Influencing Factors of REY Enrichment in Deep-Sea Sediments
by Jiangbo Ren, Yan Liu, Fenlian Wang, Gaowen He, Xiguang Deng, Zhenquan Wei and Huiqiang Yao
Minerals 2021, 11(2), 196; https://doi.org/10.3390/min11020196 - 13 Feb 2021
Cited by 26 | Viewed by 3307
Abstract
Deep-sea sediments with high contents of rare-earth elements and yttrium (REY) are expected to serve as a potential resource for REY, which have recently been proved to be mainly contributed by phosphate component. Studies have shown that the carriers of REY in deep-sea [...] Read more.
Deep-sea sediments with high contents of rare-earth elements and yttrium (REY) are expected to serve as a potential resource for REY, which have recently been proved to be mainly contributed by phosphate component. Studies have shown that the carriers of REY in deep-sea sediments include aluminosilicate, Fe-Mn oxyhydroxides, and phosphate components. The ∑REY of the phosphate component is 1–2 orders of magnitude higher than those of the other two carriers, expressed as ∑REY = 0.001 × [Al2O3] − 0.002 × [MnO] + 0.056 × [P2O5] − 32. The sediment P2O5 content of 1.5% explains 89.1% of the total variance of the sediment ∑REY content. According to global data, P has a stronger positive correlation with ∑REY compared with Mn, Fe, Al, etc.; 45.5% of samples have a P2O5 content of less than 0.25%, and ∑REY of not higher than 400 ppm. The ∑REY of the phosphate component reaches n × 104 ppm, much higher than that of marine phosphorites and lower than that of REY-phosphate minerals, which are called REY-rich phosphates in this study. The results of microscopic observation and separation by grain size indicate that the REY-rich phosphate component is mainly composed of bioapatite. When ∑REY > 2000 ppm, the average CaO/P2O5 ratio of the samples is 1.55, indicating that the phosphate composition is between carbonate fluoroapatite and hydroxyfluorapatite. According to a knowledge map of sediment elements, the phosphate component is mainly composed of P, Ca, Sr, REY, Sc, U, and Th, and its chemical composition is relatively stable. The phosphate component has a negative Ce anomaly and positive Y anomaly, and a REY pattern similar to that of marine phosphorites and seawater. After the early diagenesis process (biogeochemistry, adsorption, desorption, transformation, and migration), the REY enrichment in the phosphate component is completed near the seawater/sediment interface. In the process of REY enrichment, the precipitation and enrichment of P is critical. According to current research progress, the REY enrichment is the result of comprehensive factors, including low sedimentation rate, high ∑REY of the bottom seawater, a non-carbonate depositional environment, oxidation conditions, and certain bottom current conditions. Full article
Show Figures

Figure 1

18 pages, 7747 KiB  
Article
Geoecological Zonation of Revegetation Enhances Biodiversity at Historic Mine Sites, Southern New Zealand
by Dave Craw and Cathy Rufaut
Minerals 2021, 11(2), 181; https://doi.org/10.3390/min11020181 - 9 Feb 2021
Cited by 7 | Viewed by 2984
Abstract
Rocks exposed by mining can form physically, mineralogically, and geochemically diverse surface substrates. Engineered mine rehabilitation typically involves covering these rocks with a uniform layer of soil and vegetation. An alternative approach is to encourage the establishment of plant species that are tolerant [...] Read more.
Rocks exposed by mining can form physically, mineralogically, and geochemically diverse surface substrates. Engineered mine rehabilitation typically involves covering these rocks with a uniform layer of soil and vegetation. An alternative approach is to encourage the establishment of plant species that are tolerant of challenging geochemical settings. The zonation of geochemical parameters can therefore lead to geoecological zonation and enhanced biodiversity. Abandoned gold mines in southern New Zealand have developed such geoecological zonations that resulted from establishment of salt-tolerant ecosystems on substrates with evaporative NaCl. A salinity threshold equivalent to substrate electrical conductivity of 1000 µS separates this ecosystem from less salt-tolerant plant ecosystems. Acid mine drainage from pyrite-bearing waste rocks at an abandoned coal mine has caused variations in surface pH between 1 and 7. The resultant substrate pH gradients have led to differential plant colonisation and the establishment of distinctive ecological zones. Substrate pH <3 remained bare ground, whereas pH 3–4 substrates host two acid-tolerant shrubs. These shrubs are joined by a tree species between pH 4 and 5. At higher pH, all local species can become established. The geoecological zonation, and the intervening geochemical thresholds, in these examples involve New Zealand native plant species. However, the principle of enhancing biodiversity by the selection or encouragement of plant species tolerant of diverse geochemical conditions on exposed mine rocks is applicable for site rehabilitation anywhere in the world. Full article
(This article belongs to the Special Issue Environmental Geochemistry in the Mining Environment)
Show Figures

Graphical abstract

25 pages, 16141 KiB  
Article
UAS-Based Hyperspectral Environmental Monitoring of Acid Mine Drainage Affected Waters
by Hernan Flores, Sandra Lorenz, Robert Jackisch, Laura Tusa, I. Cecilia Contreras, Robert Zimmermann and Richard Gloaguen
Minerals 2021, 11(2), 182; https://doi.org/10.3390/min11020182 - 9 Feb 2021
Cited by 35 | Viewed by 8207
Abstract
The exposure of metal sulfides to air or water, either produced naturally or due to mining activities, can result in environmentally damaging acid mine drainage (AMD). This needs to be accurately monitored and remediated. In this study, we apply high-resolution unmanned aerial system [...] Read more.
The exposure of metal sulfides to air or water, either produced naturally or due to mining activities, can result in environmentally damaging acid mine drainage (AMD). This needs to be accurately monitored and remediated. In this study, we apply high-resolution unmanned aerial system (UAS)-based hyperspectral mapping tools to provide a useful, fast, and non-invasive method for the monitoring aspect. Specifically, we propose a machine learning framework to integrate visible to near-infrared (VNIR) hyperspectral data with physicochemical field data from water and sediments, together with laboratory analyses to precisely map the extent of acid mine drainage in the Tintillo River (Spain). This river collects the drainage from the western part of the Rio Tinto massive sulfide deposit and discharges large quantities of acidic water with significant amounts of dissolved metals (Fe, Al, Cu, Zn, amongst others) into the Odiel River. At the confluence of these rivers, different geochemical and mineralogical processes occur due to the interaction of very acidic water (pH 2.5–3.0) with neutral water (pH 7.0–8.0). This complexity makes the area an ideal test site for the application of hyperspectral mapping to characterize both rivers and better evaluate contaminated water bodies with remote sensing imagery. Our approach makes use of a supervised random forest (RF) regression for the extended mapping of water properties, using the samples collected in the field as ground-truth and training data. The resulting maps successfully estimate the concentration of dissolved metals and related physicochemical properties in water, and trace associated iron species (e.g., jarosite, goethite) within sediments. These results highlight the capabilities of UAS-based hyperspectral data to monitor water bodies in mining environments, by mapping their hydrogeochemical properties, using few field samples. Hence, we have demonstrated that our workflow allows the rapid discrimination and mapping of AMD contamination in water, providing an essential basis for monitoring and subsequent remediation. Full article
(This article belongs to the Special Issue Pollutants in Acid Mine Drainage)
Show Figures

Graphical abstract

10 pages, 11526 KiB  
Article
Twinning of Tetrahedrite—OD Approach
by Emil Makovicky
Minerals 2021, 11(2), 170; https://doi.org/10.3390/min11020170 - 7 Feb 2021
Cited by 2 | Viewed by 2337
Abstract
The common twinning of tetrahedrite and tennantite can be described as an order–disorder (OD) phenomenon. The unit OD layer is a one-tetrahedron-thick (111) layer composed of six-member rings of tetrahedra, with gaps between them filled with Sb(As) coordination pyramids and triangular-coordinated (Cu, Ag). [...] Read more.
The common twinning of tetrahedrite and tennantite can be described as an order–disorder (OD) phenomenon. The unit OD layer is a one-tetrahedron-thick (111) layer composed of six-member rings of tetrahedra, with gaps between them filled with Sb(As) coordination pyramids and triangular-coordinated (Cu, Ag). The stacking sequence of six-member rings is ABCABC, which can also be expressed as a sequence of three consecutive tetrahedron configurations, named α, β, and γ. When the orientation of component tetrahedra is uniform, the α, β, γ, α sequence builds the familiar cage structure of tetrahedrite. However, when the tetrahedra of the β layer are rotated by 180° against those in the underlying α configurations and/or when a rotated α configuration follows after the β configuration (instead of γ), twinning is generated. If repeated, this could generate the ABAB sequence which would modify the structure considerably. If the rest of the structure grows as a regular cubic tetrahedrite structure, the single occurrence of the described defect sequences creates a twin. Full article
(This article belongs to the Special Issue Modularity and Twinning in Mineral Crystal Structures)
Show Figures

Figure 1

15 pages, 820 KiB  
Review
Ocean-Floor Sediments as a Resource of Rare Earth Elements: An Overview of Recently Studied Sites
by Jelena Milinovic, Francisco J. L. Rodrigues, Fernando J. A. S. Barriga and Bramley J. Murton
Minerals 2021, 11(2), 142; https://doi.org/10.3390/min11020142 - 30 Jan 2021
Cited by 23 | Viewed by 5075
Abstract
The rare earth elements (REE), comprising 15 elements of the lanthanum series (La-Lu) together with yttrium (Y) and scandium (Sc), have become of particular interest because of their use, for example, in modern communications, renewable energy generation, and the electrification of transport. However, [...] Read more.
The rare earth elements (REE), comprising 15 elements of the lanthanum series (La-Lu) together with yttrium (Y) and scandium (Sc), have become of particular interest because of their use, for example, in modern communications, renewable energy generation, and the electrification of transport. However, the security of supply of REE is considered to be at risk due to the limited number of sources, with dependence largely on one supplier that produced approximately 63% of all REE in 2019. As a result, there is a growing need to diversify supply. This has resulted in the drive to seek new resources elsewhere, and particularly on the deep-ocean floor. Here, we give a summary of REE distribution in minerals, versatile applications, and an update of their economic value. We present the most typical onshore methods for the determination of REE and examine methods for their offshore exploration in near real time. The motivation for this comes from recent studies over the past decade that showed ΣREE concentrations as high as 22,000 ppm in ocean-floor sediments in the Pacific Ocean. The ocean-floor sediments are evaluated in terms of their potential as resources of REE, while the likely economic cost and environmental impacts of deep-sea mining these are also considered. Full article
(This article belongs to the Special Issue Genesis and Exploration for Submarine Sulphide Deposits)
Show Figures

Figure 1

39 pages, 19761 KiB  
Article
Mineralogy and Geochemistry of Deep-Sea Sediments from the Ultraslow-Spreading Southwest Indian Ridge: Implications for Hydrothermal Input and Igneous Host Rock
by Xian Chen, Xiaoming Sun, Zhongwei Wu, Yan Wang, Xiao Lin and Hongjun Chen
Minerals 2021, 11(2), 138; https://doi.org/10.3390/min11020138 - 29 Jan 2021
Cited by 13 | Viewed by 4344
Abstract
Detailed mineralogical and geochemical characteristics of typical surface sediments and hydrothermal deposits collected from the ultraslow-spreading Southwest Indian Ridge (SWIR) were studied by high-resolution XRD, SEM-EDS, XRF, and ICP-MS. The SWIR marine samples can be generally classified into two main categories: surface sediment [...] Read more.
Detailed mineralogical and geochemical characteristics of typical surface sediments and hydrothermal deposits collected from the ultraslow-spreading Southwest Indian Ridge (SWIR) were studied by high-resolution XRD, SEM-EDS, XRF, and ICP-MS. The SWIR marine samples can be generally classified into two main categories: surface sediment (biogenic, volcanic) and hydrothermal-derived deposit; moreover, the surface sediment can be further classified into metalliferous and non-metalliferous based on the metalliferous sediment index (MSI). The chemical composition of biogenic sediment (mainly biogenic calcite) was characterized by elevated contents of Ca, Ba, Rb, Sr, Th, and light rare earth elements (LREE), while volcanic sediment (mainly volcanogenic debris) was relatively enriched in Mn, Mg, Al, Si, Ni, Cr, and high field strength elements (HFSEs). By contrast, the hydrothermal-derived deposit (mainly pyrite-marcasite, chalcopyrite-isocubanite, and low-temperature cherts) contained significantly higher contents of Fe, Cu, Zn, Pb, Mn, Co, Mo, Ag, and U. In addition, the metalliferous surface sediment contained a higher content of Cu, Mn, Fe, Co, Mo, Ba, and As. Compared with their different host (source) rock, the basalt-hosted marine sediments contained higher contents of Ti–Al–Zr–Sc–Hf and/or Mo–Ba–Ag; In contrast, the peridotite-hosted marine sediments were typically characterized by elevated concentrations of Mg–Cu–Ni–Cr and/or Co–Sn–Au. The differences in element enrichment and mineral composition between these sediment types were closely related to their sedimentary environments (e.g., near/far away from the vent sites) and inherited from their host (source) rock. Together with combinations of certain characteristic elements (such as Al–Fe–Mn and Si–Al–Mg), relict hydrothermal products, and diagnostic mineral tracers (e.g., nontronite, SiO2(bio), olivine, serpentine, talc, sepiolite, pyroxene, zeolite, etc.), it would be more effective to differentiate the host rock of deep-sea sediments and to detect a possible hydrothermal input. Full article
(This article belongs to the Special Issue Genesis and Exploration for Submarine Sulphide Deposits)
Show Figures

Figure 1

16 pages, 1859 KiB  
Review
Low-Temperature Chlorite Geothermometry and Related Recent Analytical Advances: A Review
by Franck Bourdelle
Minerals 2021, 11(2), 130; https://doi.org/10.3390/min11020130 - 28 Jan 2021
Cited by 22 | Viewed by 5070
Abstract
Chlorite, a 2:1:1 phyllosilicate, has all the required attributes to form the basis of a geothermometer: this mineral is ubiquitous in metamorphic, diagenetic, and hydrothermal systems with a broad field of stability and a chemical composition partly dependent on temperature (T) and pressure [...] Read more.
Chlorite, a 2:1:1 phyllosilicate, has all the required attributes to form the basis of a geothermometer: this mineral is ubiquitous in metamorphic, diagenetic, and hydrothermal systems with a broad field of stability and a chemical composition partly dependent on temperature (T) and pressure (P) conditions. These properties led to the development of a multitude of chlorite thermometers, ranging from those based on empirical calibrations (linking T to AlIV content) to thermodynamic or semi-empirical models (linking T to chlorite + quartz + water equilibrium constant). This present study provides an overview of these geothermometers proposed in the literature for low-temperature chlorite (T < 350 °C), specifying the advantages and limitations of each method. Recent analytical developments that allow for circumventing or responding to certain criticisms regarding the low-temperature application of thermometers are also presented. The emphasis is on micrometric and nanometric analysis, highlighting chemical intracrystalline zoning—which can be considered as evidence of a succession of local equilibria justifying a thermometric approach—and mapping ferric iron content. New perspectives in terms of analysis (e.g., Mn redox in Mn-chlorite) and geothermometer (molecular solid-solution model, oxychlorite end-member) are also addressed. Full article
(This article belongs to the Special Issue Advances in Low-Temperature Mineralogy and Geochemistry)
Show Figures

Figure 1

28 pages, 11013 KiB  
Article
Rare-Metal (In, Bi, Te, Se, Be) Mineralization of Skarn Ores in the Pitkäranta Mining District, Ladoga Karelia, Russia
by Vasily I. Ivashchenko
Minerals 2021, 11(2), 124; https://doi.org/10.3390/min11020124 - 27 Jan 2021
Cited by 14 | Viewed by 3986
Abstract
The results of the study of rare-metal (Bi, Te, Se. Be, In) mineralization of skarn deposits (Sn, Zn) in the Pitkäranta Mining District, genetically related to the Salmi anorthosite-rapakivi granite batholiths of Early Riphean age are reported. Minerals and their chemical composition were [...] Read more.
The results of the study of rare-metal (Bi, Te, Se. Be, In) mineralization of skarn deposits (Sn, Zn) in the Pitkäranta Mining District, genetically related to the Salmi anorthosite-rapakivi granite batholiths of Early Riphean age are reported. Minerals and their chemical composition were identified on the base of optical microscopy as well as electron microanalysis. The diversity of rare-metal ore mineralization (native metals, oxides, and hydroxides, carbonates, tellurides, selenides, sulfides, sulphosalts, borates, and silicates) in Pitkäranta Mining District ores is indicative of considerable variations in the physicochemical conditions of their formation controlled by the discrete-pulse-like supply of fluids. Bismuth, wittichenite, and matildite are the most common rare-metal minerals. Sulfosalts of the bismuthinite-aikinite series are represented only by its end-members. The absence of solid solution exsolution structures in sulfobismuthides suggests that they crystallized from hydrothermal solutions at low temperatures. Be (>10 minerals) and In (roquesite) minerals occur mainly in aposkarn greisens. Roquesite in Pitkäranta Mining District ores formed upon greisen alteration of skarns with In released upon the alteration of In-bearing solid sphalerite (Cu1+ In3+) ↔ (Zn2+, Fe2+) and chalcopyrite In3+ ↔ Fe3+ and 2Fe3+ ↔ (Fe2+, Zn2+) Sn4+ solutions. Sphalerite with an average In concentration of 2001 ppm, is a major In-bearing mineral in the ores. Full article
(This article belongs to the Special Issue Ore Mineralogy and Geochemistry of Rare Metal Deposits)
Show Figures

Figure 1

14 pages, 3499 KiB  
Review
Specific Refractory Gold Flotation and Bio-Oxidation Products: Research Overview
by Richmond K. Asamoah
Minerals 2021, 11(1), 93; https://doi.org/10.3390/min11010093 - 19 Jan 2021
Cited by 27 | Viewed by 6122
Abstract
This paper presents a research overview, reconciling key and useful case study findings, towards uncovering major causes of gold refractoriness and maximising extraction performance of specific gold flotation and bio-oxidation products. Through systematic investigation of the ore mineralogical and gold deportment properties, leaching [...] Read more.
This paper presents a research overview, reconciling key and useful case study findings, towards uncovering major causes of gold refractoriness and maximising extraction performance of specific gold flotation and bio-oxidation products. Through systematic investigation of the ore mineralogical and gold deportment properties, leaching mechanisms, and kinetic behaviour and pulp rheology, it was observed that the predominant cause of the poor extraction efficacy of one bio-oxidised product is the presence of recalcitrant sulphate minerals (e.g., jarosite and gypsum) produced during the oxidation process. This was followed by carbonaceous matter and other gangue minerals such as muscovite, quartz, and rutile. The underpining leaching mechanism and kinetics coupled with the pulp rheology were influenced by the feed mineralogy/chemistry, time, agitation/shear rate, interfacial chemistry, pH modifier type, and mechano-chemical activation. For instance, surface exposure of otherwise unavailable gold particles by mechano-chemical activation enhanced the gold leaching rate and yield. This work reflect the remarkable impact of subtle deposit feature changes on extraction performance. Full article
Show Figures

Figure 1

16 pages, 4477 KiB  
Article
Fly Ash Utilisation in Mullite Fabrication: Development of Novel Percolated Mullite
by Pramod Koshy, Naomi Ho, Vicki Zhong, Luisa Schreck, Sandor Alex Koszo, Erik J. Severin and Charles Christopher Sorrell
Minerals 2021, 11(1), 84; https://doi.org/10.3390/min11010084 - 16 Jan 2021
Cited by 6 | Viewed by 3186
Abstract
Fly ash is an aluminosilicate and the major by-product from coal combustion in power stations; its increasing volumes are major economic and environmental concerns, particularly since it is one of the largest mineral resources based on current estimates. Mullite (3Al2O3 [...] Read more.
Fly ash is an aluminosilicate and the major by-product from coal combustion in power stations; its increasing volumes are major economic and environmental concerns, particularly since it is one of the largest mineral resources based on current estimates. Mullite (3Al2O3·2SiO2) is the only stable phase in the Al2O3-SiO2 system and is used in numerous applications owing to its high-temperature chemical and mechanical stabilities. Hence, fly ash offers a potential economical resource for mullite fabrication, which is confirmed by a review of the current literature. This review details the methodologies to utilise fly ash with different additives to fabricate what are described as porous interconnected mullite skeletons or dense mullite bodies of approximately stoichiometric compositions. However, studies of pure fly ash examined only high-Al2O3 forms and none of these works reported long-term, high-temperature, firing shrinkage data for these mullite bodies. In the present work, high-SiO2 fly ashes were used to fabricate percolated mullite, which is demonstrated by the absence of firing shrinkage upon long-term high-temperature soaking. The major glass component of the fly ash provides viscosities suitably high for shape retention but low enough for ionic diffusion and the minor mullite component provides the nucleating agent to grow mullite needles into a direct-bonded, single-crystal, continuous, needle network that prevents high-temperature deformation and isolates the residual glass in the triple points. These attributes confer outstanding long-term dimensional stability at temperatures exceeding 1500 °C, which is unprecedented for mullite-based compositions. Full article
Show Figures

Figure 1

24 pages, 15020 KiB  
Article
Viscosity and Strength Properties of Cemented Tailings Backfill with Fly Ash and Its Strength Predicted
by Jie Wang, Jianxin Fu, Weidong Song and Yongfang Zhang
Minerals 2021, 11(1), 78; https://doi.org/10.3390/min11010078 - 15 Jan 2021
Cited by 17 | Viewed by 2464
Abstract
It is of great significance to study the effect of solid contents (SC), binder-to-tailings (b/t) ratio, types and dosage of fly ash (FA) on the viscosity (V) and uniaxial compressive strength (UCS) of backfill. It can improve filling efficiency and reduce [...] Read more.
It is of great significance to study the effect of solid contents (SC), binder-to-tailings (b/t) ratio, types and dosage of fly ash (FA) on the viscosity (V) and uniaxial compressive strength (UCS) of backfill. It can improve filling efficiency and reduce filling costs to understand the relationship between SC, b/t ratio, FA dosage and viscosity, and UCS of backfill. Consequently, this paper carried out uniaxial compression tests and rheological tests on five different types of backfill specimens. Experimental results indicate that, with the increase of SC, the viscosity and UCS of all backfill samples increases as a power function. With the decrease of b/t ratio, the viscosity and UCS of all backfill samples decreases as an exponential function. The coupling effect of SC and b/t ratio has a great influence on the viscosity and UCS of backfill samples. The relationship between SC, b/t ratio and viscosity, and UCS is a quadratic polynomial function. The order of the viscosity of the backfill slurry is: pure tailings < backfill slurry mixed with Ordinary Portland Cement (OPC) < backfill slurry mixed with FA1 < backfill slurry mixed with FA2. The higher the FA dosage, the greater the viscosity. The order of the UCS of backfill is: backfill with OPC > backfill with FA1 > backfill with FA2. The higher the FA dosage, the smaller the UCS. The UCS of all backfill samples increased with the increase of curing time (CT). The relations between the viscosity and UCS of backfill present the positively linear functions. It is feasible to use viscosity to predict the UCS of backfill, and the error between the UCS predicted value and the test value is mostly controlled within 10%. Ultimately, the findings of the experimental work will provide a scientific reference for the mine to design the strength of the backfill. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

12 pages, 3526 KiB  
Article
Adsorption of Pharmaceuticals onto Smectite Clay Minerals: A Combined Experimental and Theoretical Study
by Gwenaëlle Corbin, Emmanuelle Vulliet, Bruno Lanson, Albert Rimola and Pierre Mignon
Minerals 2021, 11(1), 62; https://doi.org/10.3390/min11010062 - 11 Jan 2021
Cited by 18 | Viewed by 3078
Abstract
The adsorption of two pharmaceuticals, carbamazepine and paracetamol, onto the expandable clay mineral saponite has been studied through the combination of kinetic experiments, X-ray diffraction, and theoretical modeling. Kinetic experiments indicate low adsorption for carbamazepine and paracetamol on expandable smectite clay. Accordingly, X-ray [...] Read more.
The adsorption of two pharmaceuticals, carbamazepine and paracetamol, onto the expandable clay mineral saponite has been studied through the combination of kinetic experiments, X-ray diffraction, and theoretical modeling. Kinetic experiments indicate low adsorption for carbamazepine and paracetamol on expandable smectite clay. Accordingly, X-ray diffraction experiments show that neither compound enters smectite interlayer space. Molecular dynamics simulations were carried out to understand the interactions between the two pharmaceuticals and the saponite basal surface in the presence of Na+ cations. Calculations reveal that paracetamol almost does not coordinate solution cations, whereas a rather low coordination to cation is observed for carbamazepine. As a result, the adsorption onto the clay surface results mainly from van der Waals interactions for both pharmaceuticals. Carbamazepine does adsorb the surface via two configurations, one involving cation coordination, which corresponds to a rather stable adsorption compared to paracetamol. This is confirmed by structural analyses completed with desorption free energy profile. Full article
(This article belongs to the Special Issue Recent Advances in Molecular Modeling of Clay Minerals Interfaces)
Show Figures

Figure 1

19 pages, 9747 KiB  
Article
A Novel Particle-Based Approach for Modeling a Wet Vertical Stirred Media Mill
by Simon Larsson, Juan Manuel Rodríguez Prieto, Hannu Heiskari and Pär Jonsén
Minerals 2021, 11(1), 55; https://doi.org/10.3390/min11010055 - 9 Jan 2021
Cited by 16 | Viewed by 2990
Abstract
Modeling of wet stirred media mill processes is challenging since it requires the simultaneous modeling of the complex multiphysics in the interactions between grinding media, the moving internal agitator elements, and the grinding fluid. In the present study, a multiphysics model of an [...] Read more.
Modeling of wet stirred media mill processes is challenging since it requires the simultaneous modeling of the complex multiphysics in the interactions between grinding media, the moving internal agitator elements, and the grinding fluid. In the present study, a multiphysics model of an HIG5 pilot vertical stirred media mill with a nominal power of 7.5 kW is developed. The model is based on a particle-based coupled solver approach, where the grinding fluid is modeled with the particle finite element method (PFEM), the grinding media are modeled with the discrete element method (DEM), and the mill structure is modeled with the finite element method (FEM). The interactions between the different constituents are treated by loose (or weak) two-way couplings between the PFEM, DEM, and FEM models. Both water and a mineral slurry are used as grinding fluids, and they are modeled as Newtonian and non-Newtonian fluids, respectively. In the present work, a novel approach for transferring forces between grinding fluid and grinding media based on the Reynolds number is implemented. This force transfer is realized by specifying the drag coefficient as a function of the Reynolds number. The stirred media mill model is used to predict the mill power consumption, dynamics of both grinding fluid and grinding media, interparticle contacts of the grinding media, and the wear development on the mill structure. The numerical results obtained within the present study show good agreement with experimental measurements. Full article
Show Figures

Figure 1

16 pages, 4239 KiB  
Article
Mineralogical and Geochemical Characterization of Gold Mining Tailings and Their Potential to Generate Acid Mine Drainage (Minas Gerais, Brazil)
by Mariana Lemos, Teresa Valente, Paula Marinho Reis, Rita Fonseca, Itamar Delbem, Juliana Ventura and Marcus Magalhães
Minerals 2021, 11(1), 39; https://doi.org/10.3390/min11010039 - 31 Dec 2020
Cited by 20 | Viewed by 4724
Abstract
For more than 30 years, sulfide gold ores were treated in metallurgic plants located in Nova Lima, Minas Gerais, Brazil, and accumulated in the Cocoruto tailings dam. Both flotation and leaching tailings from a deactivated circuit, as well as roasted and leaching tailings [...] Read more.
For more than 30 years, sulfide gold ores were treated in metallurgic plants located in Nova Lima, Minas Gerais, Brazil, and accumulated in the Cocoruto tailings dam. Both flotation and leaching tailings from a deactivated circuit, as well as roasted and leaching tailings from an ongoing plant, were studied for their acid mine drainage potential and elements’ mobility. Detailed characterization of both tailings types indicates the presence of fine-grain size material hosting substantial amounts of sulfides that exhibit distinct geochemical and mineralogical characteristics. The samples from the ongoing plant show high grades of Fe in the form of oxides, cyanide, and sulfates. Differently, samples from the old circuit shave higher average concentrations of Al (0.88%), Ca (2.4%), Mg (0.96%), and Mn (0.17%), present as silicates and carbonates. These samples also show relics of preserved sulfides, such as pyrite and pyrrhotite. Concentrations of Zn, Cu, Au, and As are higher in the tailings of the ongoing circuit, while Cr and Hg stand out in the tailings of the deactivated circuit. Although the obtained results show that the sulfide wastes do not tend to generate acid mine drainage, leaching tests indicate the possibility of mobilization of toxic elements, namely As and Mn in the old circuit, and Sb, As, Fe, Ni, and Se in the tailings of the plant that still works. This work highlights the need for proper management and control of tailing dams even in alkaline drainage environments such as the one of the Cocoruto dam. Furthermore, strong knowledge of the tailings’ dynamics in terms of geochemistry and mineralogy would be pivotal to support long-term decisions on wastes management and disposal. Full article
(This article belongs to the Special Issue Pollutants in Acid Mine Drainage)
Show Figures

Figure 1

23 pages, 2915 KiB  
Review
Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion
by Guoxiang Chi, Larryn W. Diamond, Huanzhang Lu, Jianqing Lai and Haixia Chu
Minerals 2021, 11(1), 7; https://doi.org/10.3390/min11010007 - 24 Dec 2020
Cited by 95 | Viewed by 11293
Abstract
The study of fluid inclusions is important for understanding various geologic processes involving geofluids. However, there are a number of problems that are frequently encountered in the study of fluid inclusions, especially by beginners, and many of these problems are critical for the [...] Read more.
The study of fluid inclusions is important for understanding various geologic processes involving geofluids. However, there are a number of problems that are frequently encountered in the study of fluid inclusions, especially by beginners, and many of these problems are critical for the validity of the fluid inclusion data and their interpretations. This paper discusses some of the most common problems and/or pitfalls, including those related to fluid inclusion petrography, metastability, fluid phase relationships, fluid temperature and pressure calculation and interpretation, bulk fluid inclusion analysis, and data presentation. A total of 16 problems, many of which have been discussed in the literature, are described and analyzed systematically. The causes of the problems, their potential impact on data quality and interpretation, as well as possible remediation or alleviation, are discussed. Full article
Show Figures

Graphical abstract

15 pages, 2967 KiB  
Article
Experimental Study on the Link between Optical Emission, Crystal Defects and Photocatalytic Activity of Artist Pigments Based on Zinc Oxide
by Alessia Artesani, Maria Vittoria Dozzi, Lucia Toniolo, Gianluca Valentini and Daniela Comelli
Minerals 2020, 10(12), 1129; https://doi.org/10.3390/min10121129 - 15 Dec 2020
Cited by 8 | Viewed by 2287
Abstract
The historical knowledge inherited from house paint documents and the experimental research on synthetic pigments show that production methods have an important role in the performance of paint. In this regard, this work investigates the links existing between the optical emission, crystal defects [...] Read more.
The historical knowledge inherited from house paint documents and the experimental research on synthetic pigments show that production methods have an important role in the performance of paint. In this regard, this work investigates the links existing between the optical emission, crystal defects and photocatalytic activity of zinc white pigment from different contemporary factories, with the aim of elucidating the effects of these characteristics onto the tendency of the pigment to induce paint failures. The analysed samples display highly similar crystallite structure, domain size, and specific surface area, whilst white pigments differ from pure ZnO in regards to the presence of zinc carbonate hydrate that is found as a foreign compound. In contrast, the photoluminescence measurements categorize the analysed samples into two groups, which display different trap-assisted emissions ascribed to point crystal defects introduced during the synthesis process, and associated to Zn or O displacement. The photocatalytic degradation tests infer that the emerged defective structure and specific surface area of ZnO-based samples influence their tendency to oxidize organic molecules under light irradiation. In particular, the results indicate that the zinc interstitial defects may be able to promote the photogenerated electron-hole couples separation with a consequent increase of the overall ZnO photocatalytic activity, negatively affecting the binding medium stability. This groundwork paves the way for further studies on the link between the photoluminescence emission of the zinc white pigment and its tendency to decompose organic components contained in the binding medium. Full article
(This article belongs to the Special Issue Spectral Behavior of Mineral Pigments)
Show Figures

Figure 1

15 pages, 2376 KiB  
Article
The Kinetics of Manganese Sorption on Ukrainian Tuff and Basalt—Order and Diffusion Models Analysis
by Lidia Reczek, Magdalena M. Michel, Yuliia Trach, Tadeusz Siwiec and Marta Tytkowska-Owerko
Minerals 2020, 10(12), 1065; https://doi.org/10.3390/min10121065 - 28 Nov 2020
Cited by 19 | Viewed by 2747
Abstract
The study aimed to determine the nature of the kinetics of the manganese sorption process on Ukrainian tuff and basalt at different temperatures characteristic of the natural water environment. The scope of the research included manganese sorption kinetic test on natural mineral sorbents [...] Read more.
The study aimed to determine the nature of the kinetics of the manganese sorption process on Ukrainian tuff and basalt at different temperatures characteristic of the natural water environment. The scope of the research included manganese sorption kinetic test on natural mineral sorbents at temperatures of 10, 17.5 and 25 °C in slightly acidic conditions. Sorption (pseudo-first order, pseudo-second order and Elovich models) and diffusion kinetic models (liquid film diffusion and intraparticle diffusion) were used in the analysis of test results. The manganese sorption process on both tuff and basalt proceeded quickly. The dynamic equilibrium state of manganese sorption settled after 35 and 45 min on tuff and basalt respectively. Although the process took place in a slightly acidic environment and below pHPZC of the sorbents, possible electrostatic repulsion did not inhibit the removal of Mn. The Mn sorption on both materials followed the PSO kinetics model. Based on the diffusion kinetic models, it was determined that Mn sorption process on both materials was influenced by diffusion through the boundary layer and intraparticle diffusion. The differences in removal efficiency and rate of Mn sorption in the temperature range of 10–25 °C were not found. Full article
(This article belongs to the Special Issue Soil Sorption Capacity and Remediation Methods)
Show Figures

Figure 1

49 pages, 16933 KiB  
Review
Gravity Concentration in Artisanal Gold Mining
by Marcello M. Veiga and Aaron J. Gunson
Minerals 2020, 10(11), 1026; https://doi.org/10.3390/min10111026 - 18 Nov 2020
Cited by 37 | Viewed by 17088
Abstract
Worldwide there are over 43 million artisanal miners in virtually all developing countries extracting at least 30 different minerals. Gold, due to its increasing value, is the main mineral extracted by at least half of these miners. The large majority use amalgamation either [...] Read more.
Worldwide there are over 43 million artisanal miners in virtually all developing countries extracting at least 30 different minerals. Gold, due to its increasing value, is the main mineral extracted by at least half of these miners. The large majority use amalgamation either as the final process to extract gold from gravity concentrates or from the whole ore. This latter method has been causing large losses of mercury to the environment and the most relevant world’s mercury pollution. For years, international agencies and researchers have been promoting gravity concentration methods as a way to eventually avoid the use of mercury or to reduce the mass of material to be amalgamated. This article reviews typical gravity concentration methods used by artisanal miners in developing countries, based on numerous field trips of the authors to more than 35 countries where artisanal gold mining is common. Full article
(This article belongs to the Special Issue Gravity Concentration)
Show Figures

Figure 1

24 pages, 3581 KiB  
Article
Controls on Associations of Clay Minerals in Phanerozoic Evaporite Formations: An Overview
by Yaroslava Yaremchuk, Sofiya Hryniv, Tadeusz Peryt, Serhiy Vovnyuk and Fanwei Meng
Minerals 2020, 10(11), 974; https://doi.org/10.3390/min10110974 - 1 Nov 2020
Cited by 7 | Viewed by 2534
Abstract
Information on the associations of clay minerals in Upper Proterozoic and Phanerozoic marine evaporite formations suggests that cyclic changes in the (SO4-rich and Ca-rich) chemical type of seawater during the Phanerozoic could affect the composition of associations of authigenic clay minerals [...] Read more.
Information on the associations of clay minerals in Upper Proterozoic and Phanerozoic marine evaporite formations suggests that cyclic changes in the (SO4-rich and Ca-rich) chemical type of seawater during the Phanerozoic could affect the composition of associations of authigenic clay minerals in marine evaporite deposits. The vast majority of evaporite clay minerals are authigenic. The most common are illite, chlorite, smectite and disordered mixed-layer illite-smectite and chlorite-smectite; all the clay minerals are included regardless of their quantity. Corrensite, sepiolite, palygorskite and talc are very unevenly distributed in the Phanerozoic. Other clay minerals (perhaps with the exception of kaolinite) are very rare. Evaporites precipitated during periods of SO4-rich seawater type are characterized by both a greater number and a greater variety of clay minerals—smectite and mixed-layer minerals, as well as Mg-corrensite, palygorskite, sepiolite, and talc, are more common in associations. The composition of clay mineral association in marine evaporites clearly depends on the chemical type of seawater and upon the brine concentration in the evaporite basin. Along with increasing salinity, aggradational transformations of clay minerals lead to the ordering of their structure and, ideally, to a decrease in the number of minerals. In fact, evaporite deposits of higher stages of brine concentration often still contain unstable clay minerals. This is due to the intense simultaneous volcanic activity that brought a significant amount of pyroclastic material into the evaporite basin; intermediate products of its transformation (in the form of swelling minerals) often remained in the deposits of the potassium salt precipitation stage. Full article
(This article belongs to the Special Issue Mineralogy, Petrology and Geochemistry of Evaporites)
Show Figures

Figure 1

26 pages, 14531 KiB  
Review
Carbonatite-Related REE Deposits: An Overview
by Zhen-Yu Wang, Hong-Rui Fan, Lingli Zhou, Kui-Feng Yang and Hai-Dong She
Minerals 2020, 10(11), 965; https://doi.org/10.3390/min10110965 - 28 Oct 2020
Cited by 49 | Viewed by 16441
Abstract
The rare earth elements (REEs) have unique and diverse properties that make them function as an “industrial vitamin” and thus, many countries consider them as strategically important resources. China, responsible for more than 60% of the world’s REE production, is one of the [...] Read more.
The rare earth elements (REEs) have unique and diverse properties that make them function as an “industrial vitamin” and thus, many countries consider them as strategically important resources. China, responsible for more than 60% of the world’s REE production, is one of the REE-rich countries in the world. Most REE (especially light rare earth elements (LREE)) deposits are closely related to carbonatite in China. Such a type of deposit may also contain appreciable amounts of industrially critical metals, such as Nb, Th and Sc. According to the genesis, the carbonatite-related REE deposits can be divided into three types: primary magmatic type, hydrothermal type and carbonatite weathering-crust type. This paper provides an overview of the carbonatite-related endogenetic REE deposits, i.e., primary magmatic type and hydrothermal type. The carbonatite-related endogenetic REE deposits are mainly distributed in continental margin depression or rift belts, e.g., Bayan Obo REE-Nb-Fe deposit, and orogenic belts on the margin of craton such as the Miaoya Nb-REE deposit. The genesis of carbonatite-related endogenetic REE deposits is still debated. It is generally believed that the carbonatite magma is originated from the low-degree partial melting of the mantle. During the evolution process, the carbonatite rocks or dykes rich in REE were formed through the immiscibility of carbonate-silicate magma and fractional crystallization of carbonate minerals from carbonatite magma. The ore-forming elements are mainly sourced from primitive mantle, with possible contribution of crustal materials that carry a large amount of REE. In the magmatic-hydrothermal system, REEs migrate in the form of complexes, and precipitate corresponding to changes of temperature, pressure, pH and composition of the fluids. A simple magmatic evolution process cannot ensure massive enrichment of REE to economic values. Fractional crystallization of carbonate minerals and immiscibility of melts and hydrothermal fluids in the hydrothermal evolution stage play an important role in upgrading the REE mineralization. Future work of experimental petrology will be fundamental to understand the partitioning behaviors of REE in magmatic-hydrothermal system through simulation of the metallogenic geological environment. Applying “comparative metallogeny” methods to investigate both REE fertile and barren carbonatites will enhance the understanding of factors controlling the fertility. Full article
Show Figures

Figure 1

23 pages, 5069 KiB  
Article
Mineralogical Setting of Precious Metals at the Assarel Porphyry Copper-Gold Deposit, Bulgaria, as Supporting Information for the Development of New Drill Core 3D XCT-XRF Scanning Technology
by Mihaela-Elena Cioacă, Marian Munteanu, Edward P. Lynch, Nikolaos Arvanitidis, Mikael Bergqvist, Gelu Costin, Desislav Ivanov, Viorica Milu, Ronald Arvidsson, Adina Iorga-Pavel, Karin Högdahl and Ventsislav Stoilov
Minerals 2020, 10(11), 946; https://doi.org/10.3390/min10110946 - 24 Oct 2020
Cited by 6 | Viewed by 3973
Abstract
A petrographic investigation of ore samples from the Assarel porphyry copper deposit in the Srednogorie metallogenic zone (Bulgaria) constrains the setting and character of precious metals (Au, Ag, PGE) and related minerals within the deposit. This work supports renewed interest in understanding the [...] Read more.
A petrographic investigation of ore samples from the Assarel porphyry copper deposit in the Srednogorie metallogenic zone (Bulgaria) constrains the setting and character of precious metals (Au, Ag, PGE) and related minerals within the deposit. This work supports renewed interest in understanding the deportment of precious metals and provides mineralogical knowledge during the testing and validation of novel drill core 3D X-ray computed tomography–X-ray fluorescence (XCT-XRF) scanning technology being developed as part of the X-MINE project. Scanning electron microscopy–energy dispersive spectrometry (SEM-EDS) results indicate precious metals occur in their native state (Au, Ag), as sulfides (Ag), sulfosalts (Au), tellurides (Ag, Pd), and selenides (Ag), and typically form micron-sized inclusions in pyrite and chalcopyrite or are disseminated in the groundmass of the rock. Preservation of early Fe oxide–chalcopyrite ± bornite assemblage as relics in the more dominant pyrite-chalcopyrite mineralization assemblage supports mineral disequilibrium relationships and multi-stage mineralization events. Several rare minerals (e.g., merenskyite, acanthite, sorosite, tetra-auricupride, auricupride, greenokite, bismuthinite, nagyagite, native Ni) are reported for the first time at Assarel and highlight the mineralogical diversity of the ore. The occurrence of precious metals and related minerals at Assarel attest to a complex hydrothermal system that underwent progressive physicochemical changes during the evolution of the mineralizing system (e.g., redox conditions, fluid chemistry). Full article
(This article belongs to the Special Issue Ore Mineralogy and Geochemistry of Rare Metal Deposits)
Show Figures

Figure 1

17 pages, 3247 KiB  
Review
Clay Minerals in Hydrothermal Systems
by Paolo Fulignati
Minerals 2020, 10(10), 919; https://doi.org/10.3390/min10100919 - 16 Oct 2020
Cited by 45 | Viewed by 9613
Abstract
The study of active and fossil hydrothermal systems shows clay minerals to be a fundamental tool for the identification and characterization of hydrothermal alteration facies. The occurrence and composition of hydrothermal alteration facies could provide useful information on the physicochemical conditions of the [...] Read more.
The study of active and fossil hydrothermal systems shows clay minerals to be a fundamental tool for the identification and characterization of hydrothermal alteration facies. The occurrence and composition of hydrothermal alteration facies could provide useful information on the physicochemical conditions of the hydrothermal activity affecting a rock volume. In particular, clay minerals (i.e., smectite group, chlorite, illite, kaoline group, pyrophyllite, biotite) are pivotal for extrapolating important parameters that strongly affect the development of water/rock interaction processes such as the temperature and pH of the hydrothermal environment. This work aims to give a general reference scheme concerning the occurrence of clay minerals in hydrothermal alteration paragenesis, their significance, and the information that can be deduced by their presence and chemical composition, with some examples from active and fossil hydrothermal systems around the world. The main mineralogical geothermometers based on chlorite and illite composition are presented, together with the use of hydrogen and oxygen isotope investigation of clay minerals in hydrothermal systems. These techniques provide a useful tool for the reconstruction of the origin and evolution of fluids involved in hydrothermal alteration. Finally, a list of oxygen and hydrogen fractionation factor equations between the main clay minerals and water is also provided. Full article
(This article belongs to the Special Issue Clays, Clay Minerals and Geology)
Show Figures

Figure 1

12 pages, 2695 KiB  
Article
Diamonds Certify Themselves: Multivariate Statistical Provenance Analysis
by Catherine E. McManus, Nancy J. McMillan, James Dowe and Julie Bell
Minerals 2020, 10(10), 916; https://doi.org/10.3390/min10100916 - 16 Oct 2020
Cited by 14 | Viewed by 3482
Abstract
The country or mine of origin is an important economic and societal issue inherent in the diamond industry. Consumers increasingly want to know the provenance of their diamonds to ensure their purchase does not support inhumane working conditions. Governments around the world reduce [...] Read more.
The country or mine of origin is an important economic and societal issue inherent in the diamond industry. Consumers increasingly want to know the provenance of their diamonds to ensure their purchase does not support inhumane working conditions. Governments around the world reduce the flow of conflict diamonds via paper certificates through the Kimberley Process, a United Nations mandate. However, certificates can be subject to fraud and do not provide a failsafe solution to stopping the flow of illicit diamonds. A solution tied to the diamonds themselves that can withstand the cutting and manufacturing process is required. Here, we show that multivariate analysis of LIBS (laser-induced breakdown spectroscopy) diamond spectra predicts the mine of origin at greater than 95% accuracy, distinguishes between natural and synthetic stones, and distinguishes between synthetic stones manufactured in different laboratories by different methods. Two types of spectral features, elemental emission peaks and emission clusters from C-N and C-C molecules, are significant in the analysis, indicating that the provenance signal is contained in the carbon structure itself rather than in inclusions. Full article
(This article belongs to the Special Issue Analytical Tools to Constrain the Origin of Minerals)
Show Figures

Graphical abstract

45 pages, 9929 KiB  
Article
Ultrahigh-Temperature Sphalerite from Zn-Cd-Se-Rich Combustion Metamorphic Marbles, Daba Complex, Central Jordan: Paragenesis, Chemistry, and Structure
by Ella V. Sokol, Svetlana N. Kokh, Yurii V. Seryotkin, Anna S. Deviatiiarova, Sergey V. Goryainov, Victor V. Sharygin, Hani N. Khoury, Nikolay S. Karmanov, Victoria A. Danilovsky and Dmitry A. Artemyev
Minerals 2020, 10(9), 822; https://doi.org/10.3390/min10090822 - 17 Sep 2020
Cited by 18 | Viewed by 4128
Abstract
Minerals of the Zn-Cd-S-Se system that formed by moderately reduced ~800–850 °C combustion metamorphic (CM) alteration of marly sediments were found in marbles from central Jordan. Their precursor sediments contain Se- and Ni-enriched authigenic pyrite and ZnS modifications with high Cd enrichment (up [...] Read more.
Minerals of the Zn-Cd-S-Se system that formed by moderately reduced ~800–850 °C combustion metamorphic (CM) alteration of marly sediments were found in marbles from central Jordan. Their precursor sediments contain Se- and Ni-enriched authigenic pyrite and ZnS modifications with high Cd enrichment (up to ~10 wt%) and elevated concentrations of Cu, Sb, Ag, Mo, and Pb. The marbles are composed of calcite, carbonate-fluorapatite, spurrite, and brownmillerite and characterized by high P, Zn, Cd, U, and elevated Se, Ni, V, and Mo contents. Main accessories are either Zn-bearing oxides or sphalerite, greenockite, and Ca-Fe-Ni-Cu-O-S-Se oxychalcogenides. CM alteration lead to compositional homogenization of metamorphic sphalerite, for which trace-element suites become less diverse than in the authigenic ZnS. The CM sphalerites contain up to ~14 wt% Cd and ~6.7 wt% Se but are poor in Fe (means 1.4–2.2 wt%), and bear 100–250 ppm Co, Ni, and Hg. Sphalerite (Zn,Cd,Fe)(S,O,Se)cub is a homogeneous solid solution with a unit cell smaller than in ZnScub as a result of S2− → O2− substitution (a = 5.40852(12) Å, V = 158.211(6) Å3). The amount of lattice-bound oxygen in the CM sphalerite is within the range for synthetic ZnS1−xOx crystals (0 < x ≤ 0.05) growing at 900 °C. Full article
(This article belongs to the Special Issue Mineral Formation in Pyrometamorphic Process)
Show Figures

Figure 1

56 pages, 10496 KiB  
Article
Unconformity-Type Uranium Systems: A Comparative Review and Predictive Modelling of Critical Genetic Factors
by Matt Bruce, Oliver Kreuzer, Andy Wilde, Amanda Buckingham, Kristin Butera and Frank Bierlein
Minerals 2020, 10(9), 738; https://doi.org/10.3390/min10090738 - 21 Aug 2020
Cited by 14 | Viewed by 7798
Abstract
A review of descriptive and genetic models is presented for unconformity-type uranium deposits with particular attention given to spatial representations of key process components of the mineralising system and their mappable expressions. This information formed the basis for the construction of mineral potential [...] Read more.
A review of descriptive and genetic models is presented for unconformity-type uranium deposits with particular attention given to spatial representations of key process components of the mineralising system and their mappable expressions. This information formed the basis for the construction of mineral potential models for the world’s premier unconformity-style uranium provinces, the Athabasca Basin in Saskatchewan, Canada (>650,000 t U3O8), and the NW McArthur Basin in the Northern Territory, Australia (>450,000 t U3O8). A novel set of ‘edge’ detection routines was used to identify high-contrast zones in gridded geophysical data in support of the mineral potential modelling. This approach to geophysical data processing and interpretation offers a virtually unbiased means of detecting potential basement structures under cover and at a range of scales. Fuzzy logic mineral potential mapping was demonstrated to be a useful tool for delineating areas that have high potential for hosting economic uranium concentrations, utilising all knowledge and incorporating all relevant spatial data available for the project area. The resulting models not only effectively ‘rediscover’ the known uranium mineralisation but also highlight several other areas containing all of the mappable components deemed critical for the accumulation of economic uranium deposits. The intelligence amplification approach to mineral potential modelling presented herein is an example of augmenting expert-driven conceptual targeting with the powerful logic and rationality of modern computing. The result is a targeting tool that captures the current status quo of geospatial and exploration information and conceptual knowledge pertaining to unconformity-type uranium systems. Importantly, the tool can be readily updated once new information or knowledge comes to hand. As with every targeting tool, these models should not be utilised in isolation, but as one of several inputs informing exploration decision-making. Nor should they be regarded as ‘treasure maps’, but rather as pointers towards areas of high potential that are worthy of further investigation. Full article
(This article belongs to the Special Issue Geology of Uranium Deposits)
Show Figures

Graphical abstract

38 pages, 1516 KiB  
Review
Mine Waste Rock: Insights for Sustainable Hydrogeochemical Management
by Bas Vriens, Benoît Plante, Nicolas Seigneur and Heather Jamieson
Minerals 2020, 10(9), 728; https://doi.org/10.3390/min10090728 - 19 Aug 2020
Cited by 64 | Viewed by 13971
Abstract
Mismanagement of mine waste rock can mobilize acidity, metal (loid)s, and other contaminants, and thereby negatively affect downstream environments. Hence, strategic long-term planning is required to prevent and mitigate deleterious environmental impacts. Technical frameworks to support waste-rock management have existed for decades and [...] Read more.
Mismanagement of mine waste rock can mobilize acidity, metal (loid)s, and other contaminants, and thereby negatively affect downstream environments. Hence, strategic long-term planning is required to prevent and mitigate deleterious environmental impacts. Technical frameworks to support waste-rock management have existed for decades and typically combine static and kinetic testing, field-scale experiments, and sometimes reactive-transport models. Yet, the design and implementation of robust long-term solutions remains challenging to date, due to site-specificity in the generated waste rock and local weathering conditions, physicochemical heterogeneity in large-scale systems, and the intricate coupling between chemical kinetics and mass- and heat-transfer processes. This work reviews recent advances in our understanding of the hydrogeochemical behavior of mine waste rock, including improved laboratory testing procedures, innovative analytical techniques, multi-scale field investigations, and reactive-transport modeling. Remaining knowledge-gaps pertaining to the processes involved in mine waste weathering and their parameterization are identified. Practical and sustainable waste-rock management decisions can to a large extent be informed by evidence-based simplification of complex waste-rock systems and through targeted quantification of a limited number of physicochemical parameters. Future research on the key (bio)geochemical processes and transport dynamics in waste-rock piles is essential to further optimize management and minimize potential negative environmental impacts. Full article
Show Figures

Figure 1

38 pages, 8995 KiB  
Article
Lower Cretaceous Rodby and Palaeocene Lista Shales: Characterisation and Comparison of Top-Seal Mudstones at Two Planned CCS Sites, Offshore UK
by Richard H. Worden, Michael J. Allen, Daniel R. Faulkner, James E. P. Utley, Clare E. Bond, Juan Alcalde, Niklas Heinemann, R. Stuart Haszeldine, Eric Mackay and Saeed Ghanbari
Minerals 2020, 10(8), 691; https://doi.org/10.3390/min10080691 - 3 Aug 2020
Cited by 19 | Viewed by 5657
Abstract
Petroleum-rich basins at a mature stage of exploration and production offer many opportunities for large-scale Carbon Capture and Storage (CCS) since oil and gas were demonstrably contained by low-permeability top-sealing rocks, such as shales. For CCS to work, there must be effectively no [...] Read more.
Petroleum-rich basins at a mature stage of exploration and production offer many opportunities for large-scale Carbon Capture and Storage (CCS) since oil and gas were demonstrably contained by low-permeability top-sealing rocks, such as shales. For CCS to work, there must be effectively no leakage from the injection site, so the nature of the top-seal is an important aspect for consideration when appraising prospective CCS opportunities. The Lower Cretaceous Rodby Shale and the Palaeocene Lista Shale have acted as seals to oil and gas accumulations (e.g., the Atlantic and Balmoral fields) and may now play a critical role in sealing the Acorn and East Mey subsurface carbon storage sites. The characteristics of these important shales have been little addressed in the hydrocarbon extraction phase, with an understandable focus on reservoir properties and their influence on resource recovery rates. Here, we assess the characteristics of the Rodby and Lista Shales using wireline logs, geomechanical tests, special core analysis (mercury intrusion) and mineralogical and petrographic techniques, with the aim of highlighting key properties that identify them as suitable top-seals. The two shales, defined using the relative gamma log values (or Vshale), have similar mean pore throat radius (approximately 18 nm), splitting tensile strength (approximately 2.5 MPa) and anisotropic values of splitting tensile strength, but they display significant differences in terms of wireline log character, porosity and mineralogy. The Lower Cretaceous Rodby Shale has a mean porosity of approximately 14 %, a mean permeability of 263 nD (2.58 × 10−19 m2), and is calcite rich and has clay minerals that are relatively rich in non-radioactive phases such as kaolinite. The Palaeocene Lista Shale has a mean porosity of approximately 16% a mean permeability of 225 nD (2.21 × 10−19 m2), and is calcite free, but contains abundant quartz silt and is dominated by smectite. The 2% difference in porosity does not seem to equate to a significant difference in permeability. Elastic properties derived from wireline log data show that Young’s modulus, material stiffness, is very low (5 GPa) for the most shale (clay mineral)-rich Rodby intervals, with Young’s modulus increasing as shale content decreases and as cementation (e.g., calcite) increases. Our work has shown that Young’s modulus, which can be used to inform the likeliness of tensile failure, may be predictable based on routine gamma, density and compressive sonic logs in the majority of wells where the less common shear logs were not collected. The predictability of Young’s modulus from routine well log data could form a valuable element of CCS-site top-seal appraisals. This study has shown that the Rodby and Lista Shales represent good top-seals to the Acorn and East Mey CCS sites and they can hold CO2 column heights of approximately 380 m. The calcite-rich Rodby Shale may be susceptible to localised carbonate dissolution and increasing porosity and permeability but decreasing tendency to develop fracture permeability in the presence of injected CO2, as brittle calcite dissolves. In contrast, the calcite-free, locally quartz-rich, Lista Shale will be geochemically inert to injected CO2 but retain its innate tendency to develop fracture permeability (where quartz rich) in the presence of injected CO2. Full article
(This article belongs to the Special Issue Characterisation of Mudrocks: Textures and Mineralogy)
Show Figures

Graphical abstract

22 pages, 5053 KiB  
Article
High-Performance Recovery of Cobalt and Nickel from the Cathode Materials of NMC Type Li-Ion Battery by Complexation-Assisted Solvent Extraction
by Wen-Yu Wang, Hong-Chi Yang and Ren-Bin Xu
Minerals 2020, 10(8), 662; https://doi.org/10.3390/min10080662 - 26 Jul 2020
Cited by 13 | Viewed by 7875
Abstract
The annual global volume of waste lithium-ion batteries (LIBs) has been increasing over years. Although solvent extraction method seems well developed, the separation factor between cobalt and nickel is still relatively low—only 72 when applying conventional continuous-countercurrent extraction. In this study, we improved [...] Read more.
The annual global volume of waste lithium-ion batteries (LIBs) has been increasing over years. Although solvent extraction method seems well developed, the separation factor between cobalt and nickel is still relatively low—only 72 when applying conventional continuous-countercurrent extraction. In this study, we improved the separation factor of cobalt and nickel by complexation-assisted solvent extraction. Before solvent extraction procedure, leaching kinetic of Li, Ni, Co and Mn was studied and can be explained by the Avrami equation. Leached residues were also investigated by SEM and XRD. Operation parameters of complexation-assisted solvent extraction were examined, including volume ratio of extractant to diluent, types of diluent, type of complexing reagent, extractant saponification percentage and volume ratio of organic phase to aqueous phase. The optimal separation factor of complexation-assisted solvent extraction could be improved to 372, which is five times that of conventional solvent extraction. The separation tendency would be interpreted by the relationship between extraction equilibrium pH and log distribution coefficient. Full article
Show Figures

Figure 1

18 pages, 2593 KiB  
Article
Dissolution Test Protocol for Estimating Water Quality Changes in Minerals Processing Plants Operating With Closed Water Circulation
by Thi Minh Khanh Le, Nóra Schreithofer and Olli Dahl
Minerals 2020, 10(8), 653; https://doi.org/10.3390/min10080653 - 23 Jul 2020
Cited by 14 | Viewed by 3376
Abstract
To save freshwater resources and comply with environmental regulations, minerals processing operations are transitioning to partially or fully closed water circulation. However, the accumulation of electrolytes and the addition of reagents lead to changes in water composition and may compromise flotation performance and [...] Read more.
To save freshwater resources and comply with environmental regulations, minerals processing operations are transitioning to partially or fully closed water circulation. However, the accumulation of electrolytes and the addition of reagents lead to changes in water composition and may compromise flotation performance and plant maintenance. As a consequence, costly modifications are often required to cope with these challenges. Therefore, knowledge about water quality variation owing to closed water circulation and its potential effect on the flotation performance is crucial. The experimental methodology presented in this paper targeted three main objectives: (1) predicting the tendency of the accumulation of elements and compounds into the process water during comminution, flotation, and storage in tailings facilities; (2) establishing a relationship between laboratory results and plant historical water quality data; and (3) predicting the potential effect of recycling water on flotation performance. The results obtained with Boliden Kevitsa ore showed a good correlation between the water matrix of the actual process water on-site and that obtained in the ore dissolution tests done in the laboratory. The final water composition came close to the process water in terms of major elements and some of the minor elements. Additionally, the work presented in this paper demonstrated that a dissolution loop allowed us to predict the potential impact of the recycling water on the ore flotability. This methodology could serve as an aid for predicting water quality matrix variation and designing closed water circulation systems at existing and new plants. Full article
(This article belongs to the Special Issue Water within Minerals Processing)
Show Figures

Figure 1

19 pages, 8014 KiB  
Article
Geochemistry of Tourmaline from the Laodou Gold Deposit in the West Qinling Orogen, Central China: Implications for the Ore-Forming Process
by Xiaoye Jin and Jixiang Sui
Minerals 2020, 10(8), 647; https://doi.org/10.3390/min10080647 - 22 Jul 2020
Cited by 6 | Viewed by 4076
Abstract
The Laodou gold deposit, located in the West Qinling Orogen of central China, is a newly recognized intrusion-related gold deposit. It consists of auriferous quartz-sulfide-tourmaline and minor quartz-stibnite veins that are structurally controlled by fault zones transecting the host quartz diorite porphyry. Two [...] Read more.
The Laodou gold deposit, located in the West Qinling Orogen of central China, is a newly recognized intrusion-related gold deposit. It consists of auriferous quartz-sulfide-tourmaline and minor quartz-stibnite veins that are structurally controlled by fault zones transecting the host quartz diorite porphyry. Two types of tourmaline were identified in this study: Type 1 tourmaline occurs as quartz-tourmaline nodules within the quartz diorite porphyry, whereas type 2 tourmaline occurs as quartz-sulfide-tourmaline veins in auriferous lodes. Here, we present a major and trace element analysis by electron microprobe and laser ablation inductively coupled plasma mass spectrometry on these two types of tourmaline. Both tourmaline types fall into the alkali group, and are classified under the schorl-dravite solid solution series. The substitutions of FeMg–1, FeAl–1, AlO((Fe, Mg)(OH)) –1, and X-site vacancyCa–1 are inferred by the variations of their major element compositions. Field and mineralogy observations suggest that type 1 tourmaline is a product of the late crystallization process of the quartz diorite porphyry, whereas type 2 tourmaline coexists with Au-bearing arsenopyrite and is crystallized from the ore-forming fluids. Their rare earth element compositions record the related magmatic hydrothermal evolution. The Co and Ni concentrations of the coexisting type 2 tourmaline and arsenopyrite define a regression line (correlation coefficient = 0.93) with an angular coefficient of 0.66, which represents the Co/Ni ratio of the tourmaline and arsenopyrite-precipitating fluids. This value is close to the Co/Ni ratios of the host quartz diorite porphyry, indicating a magma origin of the ore-forming fluids. The substitution of Al3+ by Fe3+ in both tourmaline types shows that type 1 tourmaline approaches the end member of povondraite whereas type 2 tourmaline occurs in opposite plots near the end member of Oxy-dravite, reflecting a more oxidizing environment for type 2 tourmaline formation. Moreover, the redox-sensitive V and Cr values of type 2 tourmaline are commonly 1–2 orders of magnitude higher than those of type 1 tourmaline, which also suggests that type 2 tourmaline forms from more oxidizing fluids. Combined with gold occurrence and fluid properties, we propose that the increasing of oxygen fugacity in the ore-forming fluids is a trigger of gold precipitation. Full article
Show Figures

Figure 1

17 pages, 2820 KiB  
Article
Rietveld Analysis of Elpidite Framework Flexibility Using in Situ Powder XRD Data of Thermally Treated Samples
by Vladislav V. Kostov-Kytin and Thomas N. Kerestedjian
Minerals 2020, 10(7), 639; https://doi.org/10.3390/min10070639 - 19 Jul 2020
Cited by 2 | Viewed by 2505
Abstract
The present study demonstrates the capabilities of the Rietveld procedure to track the structural transformations and framework flexibility on the example of the natural water-containing zirconosilicate elpidite, subjected (in bulk) to thermal treatment from room temperature to 300 °C. The methodological approach to [...] Read more.
The present study demonstrates the capabilities of the Rietveld procedure to track the structural transformations and framework flexibility on the example of the natural water-containing zirconosilicate elpidite, subjected (in bulk) to thermal treatment from room temperature to 300 °C. The methodological approach to the performed refinements and the obtained results are in accordance with the previously reported data from in situ single crystal X-ray diffraction studies on heated samples of the same mineral. More light has been drawn on the temperature interval in which the non-reconstructive topotactic phase transition occurs upon partial dehydration. The framework flexibility observed as a response to the water loss and subsequent thermal expansion was evaluated in terms of intentionally introduced set of geometric parameters characterizing the spatial orientation of symmetrically related zirconium octahedra in the structure, the coordination polyhedra volumes, their distortion indices, and bond angle variances. Full article
(This article belongs to the Special Issue The Rietveld Method in Geomaterials Characterisation)
Show Figures

Graphical abstract

18 pages, 5913 KiB  
Article
The Evolution of Pollutant Concentrations in a River Severely Affected by Acid Mine Drainage: Río Tinto (SW Spain)
by Manuel Olías, Carlos R. Cánovas, Francisco Macías, María Dolores Basallote and José Miguel Nieto
Minerals 2020, 10(7), 598; https://doi.org/10.3390/min10070598 - 30 Jun 2020
Cited by 20 | Viewed by 6175
Abstract
The Río Tinto, located in the Iberian Pyrite Belt (SW Spain), constitutes an extreme case of pollution by acid mine drainage. Mining in the area dates back to the Copper Age, although large-scale mining of massive sulfide deposits did not start until the [...] Read more.
The Río Tinto, located in the Iberian Pyrite Belt (SW Spain), constitutes an extreme case of pollution by acid mine drainage. Mining in the area dates back to the Copper Age, although large-scale mining of massive sulfide deposits did not start until the second half of the 19th century. Due to acidic mining discharges, the Río Tinto usually maintains a pH close to 2.5 and high concentrations of pollutants along its course. From a detailed sampling during the hydrological year 2017/18, it was observed that most pollutants followed a similar seasonal pattern, with maximum concentrations during autumn due to the washout of secondary soluble sulfate salts and minimum values during large flood events. Nevertheless, As and Pb showed different behavior, with delayed concentration peaks. The dissolved pollutant load throughout the monitored year reached 5000 tons of Fe, 2600 tons of Al, 680 tons of Zn, and so on. While most elements were transported almost exclusively in the dissolved phase, Fe, Pb, Cr, and, above all, As showed high values associated with particulate matter. River water quality data from 1969 to 2019 showed a sharp worsening in 2000, immediately after the mine closure. From 2001 on, an improvement was observed. Full article
(This article belongs to the Special Issue Pollutants in Acid Mine Drainage)
Show Figures

Graphical abstract

83 pages, 38477 KiB  
Review
Ruby Deposits: A Review and Geological Classification
by Gaston Giuliani, Lee A. Groat, Anthony E. Fallick, Isabella Pignatelli and Vincent Pardieu
Minerals 2020, 10(7), 597; https://doi.org/10.3390/min10070597 - 30 Jun 2020
Cited by 30 | Viewed by 38843
Abstract
Corundum is not uncommon on Earth but the gem varieties of ruby and sapphire are relatively rare. Gem corundum deposits are classified as primary and secondary deposits. Primary deposits contain corundum either in the rocks where it crystallized or as xenocrysts and xenoliths [...] Read more.
Corundum is not uncommon on Earth but the gem varieties of ruby and sapphire are relatively rare. Gem corundum deposits are classified as primary and secondary deposits. Primary deposits contain corundum either in the rocks where it crystallized or as xenocrysts and xenoliths carried by magmas to the Earth’s surface. Classification systems for corundum deposits are based on different mineralogical and geological features. An up-to-date classification scheme for ruby deposits is described in the present paper. Ruby forms in mafic or felsic geological environments, or in metamorphosed carbonate platforms but it is always associated with rocks depleted in silica and enriched in alumina. Two major geological environments are favorable for the presence of ruby: (1) amphibolite to medium pressure granulite facies metamorphic belts and (2) alkaline basaltic volcanism in continental rifting environments. Primary ruby deposits formed from the Archean (2.71 Ga) in Greenland to the Pliocene (5 Ma) in Nepal. Secondary ruby deposits have formed at various times from the erosion of metamorphic belts (since the Precambrian) and alkali basalts (from the Cenozoic to the Quaternary). Primary ruby deposits are subdivided into two types based on their geological environment of formation: (Type I) magmatic-related and (Type II) metamorphic-related. Type I is characterized by two sub-types, specifically Type IA where xenocrysts or xenoliths of gem ruby of metamorphic (sometimes magmatic) origin are hosted by alkali basalts (Madagascar and others), and Type IB corresponding to xenocrysts of ruby in kimberlite (Democratic Republic of Congo). Type II also has two sub-types; metamorphic deposits sensu stricto (Type IIA) that formed in amphibolite to granulite facies environments, and metamorphic-metasomatic deposits (Type IIB) formed via high fluid–rock interaction and metasomatism. Secondary ruby deposits, i.e., placers are termed sedimentary-related (Type III). These placers are hosted in sedimentary rocks (soil, rudite, arenite, and silt) that formed via erosion, gravity effect, mechanical transport, and sedimentation along slopes or basins related to neotectonic motions and deformation. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Ruby)
Show Figures

Figure 1

39 pages, 12293 KiB  
Article
Late Paleozoic–Early Mesozoic Granite Magmatism on the Arctic Margin of the Siberian Craton during the Kara-Siberia Oblique Collision and Plume Events
by Valery A. Vernikovsky, Antonina Vernikovskaya, Vasilij Proskurnin, Nikolay Matushkin, Maria Proskurnina, Pavel Kadilnikov, Alexander Larionov and Alexey Travin
Minerals 2020, 10(6), 571; https://doi.org/10.3390/min10060571 - 25 Jun 2020
Cited by 19 | Viewed by 3730
Abstract
We present new structural, petrographic, geochemical and geochronological data for the late Paleozoic–early Mesozoic granites and associated igneous rocks of the Taimyr Peninsula. It is demonstrated that large volumes of granites were formed due to the oblique collision of the Kara microcontinent and [...] Read more.
We present new structural, petrographic, geochemical and geochronological data for the late Paleozoic–early Mesozoic granites and associated igneous rocks of the Taimyr Peninsula. It is demonstrated that large volumes of granites were formed due to the oblique collision of the Kara microcontinent and the Siberian paleocontinent. Based on U-Th-Pb isotope data for zircons, we identify syncollisional (315–282 Ma) and postcollisional (264–248 Ma) varieties, which differ not only in age but also in petrochemical and geochemical features. It is also shown that as the postcollisional magmatism was coming to an end, Siberian plume magmatism manifested in the Kara orogen and was represented by basalts and dolerites of the trap formation (251–249 Ma), but also by differentiated and individual intrusions of monzonites, quartz monzonites and syenites (Early–Middle Triassic) with a mixed crustal-mantle source. We present a geodynamic model for the formation of the Kara orogen and discuss the relationship between collisional and trap magmatism. Full article
Show Figures

Figure 1

42 pages, 35266 KiB  
Article
Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process
by António Mateus, Jorge Figueiras, Ivo Martins, Pedro C. Rodrigues and Filipe Pinto
Minerals 2020, 10(6), 551; https://doi.org/10.3390/min10060551 - 19 Jun 2020
Cited by 10 | Viewed by 4392
Abstract
Panasqueira is a world-class W-Sn-Cu lode-type deposit located in Portugal. It consists of a dense swarm of subhorizontal quartz lodes criss-crossed by several ENE–WSW and N–S fault zones, bordering Late Variscan granite and hosted in Late Ediacaran—Early Cambrian metasediments. The relative abundance and [...] Read more.
Panasqueira is a world-class W-Sn-Cu lode-type deposit located in Portugal. It consists of a dense swarm of subhorizontal quartz lodes criss-crossed by several ENE–WSW and N–S fault zones, bordering Late Variscan granite and hosted in Late Ediacaran—Early Cambrian metasediments. The relative abundance and compositional variation (assessed with EPMA) of the main silicates, oxides and phosphates forming the quartz lodes and their margins were examined, aiming to explore: (i) mineral and geochemical zonation at the mine scale; and (ii) some conclusions on the chemical nature of prevalent fluid inflows and T-conditions of mineral deposition. Quartz lodes nearby or far from the known greisen-granite cupola display significant differences, reflecting multiple fluid influxes of somewhat distinct composition related to various opening and closing events extending for several My, ranging from an early “oxide–silicate stage” (OSS) to a “main sulfide stage” (MSS), and further on to a post-ore carbonate stage (POCS); however, a rejuvenation event occurred after MSS. The onset of OSS was placed at ca. 299 ± 5 Ma and the rejuvenation event at ca. 292 Ma. The OSS was confined to ≈500 ≤ T ≤ 320 °C, following rutile and tourmaline growth under ≈640 ≤ T ≤ 540 °C (depending on aSiO2). The rejuvenation event (≈440–450 °C) preceded a late chlorite growth (≈250–270 °C) and the progression towards POCS. Full article
(This article belongs to the Special Issue Granite-Related Mineralization Systems)
Show Figures

Graphical abstract

12 pages, 3261 KiB  
Article
Geochemical Modeling of Iron and Aluminum Precipitation during Mixing and Neutralization of Acid Mine Drainage
by Darrell Kirk Nordstrom
Minerals 2020, 10(6), 547; https://doi.org/10.3390/min10060547 - 17 Jun 2020
Cited by 28 | Viewed by 5553
Abstract
Geochemical modeling of precipitation reactions in the complex matrix of acid mine drainage is fundamental to understanding natural attenuation, lime treatment, and treatment procedures that separate constituents for potential reuse or recycling. The three main dissolved constituents in acid mine drainage are iron, [...] Read more.
Geochemical modeling of precipitation reactions in the complex matrix of acid mine drainage is fundamental to understanding natural attenuation, lime treatment, and treatment procedures that separate constituents for potential reuse or recycling. The three main dissolved constituents in acid mine drainage are iron, aluminum, and sulfate. During the neutralization of acid mine drainage (AMD) by mixing with clean tributaries or by titration with a base such as sodium hydroxide or slaked lime, Ca(OH)2, iron precipitates at pH values of 2–3 if oxidized and aluminum precipitates at pH values of 4–5 and both processes buffer the pH during precipitation. Mixing processes were simulated using the ion-association model in the PHREEQC code. The results are sensitive to the solubility product constant (Ksp) used for the precipitating phases. A field example with data on discharge and water composition of AMD before and after mixing along with massive precipitation of an aluminum phase is simulated and shows that there is an optimal Ksp to give the best fit to the measured data. Best fit is defined when the predicted water composition after mixing and precipitation matches most closely the measured water chemistry. Slight adjustment to the proportion of stream discharges does not give a better fit. Full article
(This article belongs to the Special Issue Pollutants in Acid Mine Drainage)
Show Figures

Figure 1

18 pages, 8257 KiB  
Article
Metal-Selective Processing from the Los Sulfatos Porphyry-Type Deposit in Chile: Co, Au, and Re Recovery Workflows Based on Advanced Geochemical Characterization
by Germán Velásquez, Humberto Estay, Iván Vela, Stefano Salvi and Marcial Pablo
Minerals 2020, 10(6), 531; https://doi.org/10.3390/min10060531 - 11 Jun 2020
Cited by 7 | Viewed by 3442
Abstract
Sulfides extracted from porphyry-type deposits can contain a number of metals critical for the global energy transition, e.g., Co and precious metals such as Au and Re. These metals are currently determined on composite mineral samples, which commonly results in their dilution. Thus, [...] Read more.
Sulfides extracted from porphyry-type deposits can contain a number of metals critical for the global energy transition, e.g., Co and precious metals such as Au and Re. These metals are currently determined on composite mineral samples, which commonly results in their dilution. Thus, it is possible that some metals of interest are overlooked during metallurgical processing and are subsequently lost to tailings. Here, an advanced geochemical characterization is implemented directly on metal-bearing sulfides, determining the grade of each targeted trace metal and recognizing its specific host mineral. Results show that pyrite is a prime host mineral for Co (up to 24,000 ppm) and commonly contains Au (up to 5 ppm), while molybdenite contains high grades of Re (up to 514 ppm) and Au (up to 31 ppm). Both minerals represent around 0.2% of the mineralized samples. The dataset is used to evaluate the possibility of extracting trace metals as by-products during Cu-sulfide processing, by the addition of unit operations to conventional plant designs. A remarkable advantage of the proposed workflows is that costs of mining, crushing, and grinding stages are accounted for in the copper production investments. The proposed geochemical characterization can be applied to other porphyry-type operations to improve the metallic benefits from a single deposit. Full article
Show Figures

Figure 1

14 pages, 4712 KiB  
Article
Measurement of 3D-Shape Preferred Orientation (SPO) Using Synchrotron μ-CT: Applications for Estimation of Fault Motion Sense in a Fault Gouge
by Ho Sim, Yungoo Song, Jaehun Kim, Eomzi Yang, Tae Sup Yun and Jae-Hong Lim
Minerals 2020, 10(6), 528; https://doi.org/10.3390/min10060528 - 9 Jun 2020
Cited by 4 | Viewed by 3402
Abstract
We propose a 3D-shape preferred orientation (SPO) measurement method of rigid grains using synchrotron micro-computational tomography (μ-CT). The method includes oriented sampling, 3D μ-CT imaging, image filtering, ellipsoid fitting, and SPO measurement. After CT imaging, all processes are computerized, and the directions of [...] Read more.
We propose a 3D-shape preferred orientation (SPO) measurement method of rigid grains using synchrotron micro-computational tomography (μ-CT). The method includes oriented sampling, 3D μ-CT imaging, image filtering, ellipsoid fitting, and SPO measurement. After CT imaging, all processes are computerized, and the directions of thousands of rigid grains in 3D-space can be automatically measured. This method is optimized for estimating the orientation of the silt-sized rigid grains in fault gouge, which indicates P-shear direction in a fault system. This allows us to successfully deduce fault motion sense and quantify fault movement. Because this method requires a small amount of sample, it can be applied as an alternative to study fault systems, where the shear sense indicators are not distinct in the outcrop and the fault gouge is poorly developed. We applied the newly developed 3D-SPO method for a fault system in the Yangsan fault, one of the major faults in the southeastern Korean Peninsula, and observed the P-shear direction successfully. Full article
(This article belongs to the Special Issue Microtexture Characterization of Rocks and Minerals)
Show Figures

Figure 1

17 pages, 3187 KiB  
Article
Reutilization Prospects of Diamond Clay Tailings at the Lomonosov Mine, Northwestern Russia
by Mariya A. Pashkevich and Alexey V. Alekseenko
Minerals 2020, 10(6), 517; https://doi.org/10.3390/min10060517 - 2 Jun 2020
Cited by 17 | Viewed by 6177
Abstract
Approaches to reutilization of diamond clay tailings in northern environments are considered in the example of the Subarctic region of Russia. The monitoring studies are conducted at storage facilities of Severalmaz PJSC where ca. 14 million cubic meters of waste rock are produced [...] Read more.
Approaches to reutilization of diamond clay tailings in northern environments are considered in the example of the Subarctic region of Russia. The monitoring studies are conducted at storage facilities of Severalmaz PJSC where ca. 14 million cubic meters of waste rock are produced annually after kimberlite mining and processing. The tailings of diamond ore dressing waste are situated in complex geological conditions of high-groundwater influx and harsh cold climate with low levels of solar radiation and the average annual temperature below freezing point. Furthermore, the adjoining protected forests with a significant diversity of biogeocenoses and salmon-spawning rivers are affected by the storage area. Reducing the impact of the tailings can be achieved through the reuse of the stored clay magnesia rocks obtained from saponite-containing suspension. The experiments reveal the most promising ways of their application as potential secondary mineral raw materials: cement clinker and ceramics manufacture, integration of alkaline clay into the reclamation of acidic peat bogs, and production of aqueous clay-based drilling fluid. Field and laboratory tests expose the advantages and prospects of each suggested treatment technique. Full article
(This article belongs to the Special Issue Reutilization and Valorization of Mine Waste)
Show Figures

Figure 1

16 pages, 5397 KiB  
Article
Leaching Kinetics of Weathered Crust Elution-Deposited Rare Earth Ore with Compound Ammonium Carboxylate
by Xiuwei Chai, Guoqing Li, Zhenyue Zhang, Ruan Chi and Zhuo Chen
Minerals 2020, 10(6), 516; https://doi.org/10.3390/min10060516 - 2 Jun 2020
Cited by 20 | Viewed by 3369
Abstract
Due to the special properties of the ammonium salts, ammonium acetate and ammonium citrate were used to explore the best leaching conditions of rare earth with compound ammonium carboxylate. This paper explored the influence of the molar ratio, ammonium concentration, experimental temperature, and [...] Read more.
Due to the special properties of the ammonium salts, ammonium acetate and ammonium citrate were used to explore the best leaching conditions of rare earth with compound ammonium carboxylate. This paper explored the influence of the molar ratio, ammonium concentration, experimental temperature, and pH of the compound leaching agents on the leaching efficiency of rare earth and aluminum, and it analyzed the leaching process based on the leaching kinetics, which provides a new method for leaching rare earth from the weathered crust elution-deposited rare earth ore. The results showed that under the conditions where the molar ratio of ammonium acetate and ammonium citrate was 7:3 and the ammonium concentration was 0.15 mol/L, the leaching efficiency of rare earth was the highest when the pH of leaching agent was 4.0 and the experimental temperature was 313 K. Meanwhile, when CH3COONH4 and (NH4)3Cit were used to leach rare earth ore, the leaching reaction kinetics equation of rare earth and aluminum were obtained. In the temperature range of 283–323 K, the apparent activation energy of rare earth was 14.89 kJ/mol and that of aluminum was 19.17 kJ/mol. The reaction order of rare earth was 0.98 and that of aluminum was 0.79. The results were in accordance with the shrinking core model and indicate that the concentration of the leaching agent had a greater influence on rare earth than aluminum. This process can reduce the use of ammonium salt, and it is of great significance to extract rare earth elements from weathered crust elution-deposited rare earth ore and improve the utilization rate of resources. Full article
(This article belongs to the Special Issue Surface Chemistry in Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

18 pages, 4847 KiB  
Article
Strain-Induced Fabric Transition of Chlorite and Implications for Seismic Anisotropy in Subduction Zones
by Dohyun Kim, Haemyeong Jung and Jungjin Lee
Minerals 2020, 10(6), 503; https://doi.org/10.3390/min10060503 - 31 May 2020
Cited by 5 | Viewed by 2969
Abstract
Seismic anisotropy of S-wave, trench-parallel or trench-normal polarization direction of fast S-wave, has been observed in the fore-arc and back-arc regions of subduction zones. Lattice preferred orientation (LPO) of elastically anisotropic chlorite has been suggested as one of the major causes of seismic [...] Read more.
Seismic anisotropy of S-wave, trench-parallel or trench-normal polarization direction of fast S-wave, has been observed in the fore-arc and back-arc regions of subduction zones. Lattice preferred orientation (LPO) of elastically anisotropic chlorite has been suggested as one of the major causes of seismic anisotropy in subduction zones. However, there are two different LPOs of chlorite reported based on the previous studies of natural chlorite peridotites, which can produce different expression of seismic anisotropy. The mechanism for causing the two different LPOs of chlorite is not known. Therefore, we conducted deformation experiments of chlorite peridotite under high pressure–temperature conditions (P = 0.5–2.5 GPa, T = 540–720 °C). We found that two different chlorite LPOs were developed depending on the magnitude of shear strain. The type-1 chlorite LPO is characterized by the [001] axes aligned subnormal to the shear plane, and the type-2 chlorite LPO is characterized by a girdle distribution of the [001] axes subnormal to the shear direction. The type-1 chlorite LPO developed under low shear strain (γ ≤ 3.1 ± 0.3), producing trench-parallel seismic anisotropy. The type-2 chlorite LPO developed under high shear strain (γ ≥ 5.1 ± 1.5), producing trench-normal seismic anisotropy. The anisotropy of S-wave velocity (AVs) of chlorite was very strong up to AVs = 48.7% so that anomalous seismic anisotropy in subduction zones can be influenced by the chlorite LPOs. Full article
(This article belongs to the Special Issue Microtexture Characterization of Rocks and Minerals)
Show Figures

Figure 1

32 pages, 6633 KiB  
Article
IR Features of Hydrous Mg2SiO4-Ringwoodite, Unannealed and Annealed at 200–600 °C and 1 atm, with Implications to Hydrogen Defects and Water-Coupled Cation Disorder
by Xi Liu, Zhaoyang Sui, Hongzhan Fei, Wei Yan, Yunlu Ma and Yu Ye
Minerals 2020, 10(6), 499; https://doi.org/10.3390/min10060499 - 30 May 2020
Cited by 8 | Viewed by 3636
Abstract
Three batches of Mg2SiO4-ringwoodites (Mg-Rw) with different water contents (CH2O = ~1019(238), 5500(229) and 16,307(1219) ppm) were synthesized by using conventional high-P experimental techniques. Thirteen thin sections with different thicknesses (~14–113 μm) were prepared from them [...] Read more.
Three batches of Mg2SiO4-ringwoodites (Mg-Rw) with different water contents (CH2O = ~1019(238), 5500(229) and 16,307(1219) ppm) were synthesized by using conventional high-P experimental techniques. Thirteen thin sections with different thicknesses (~14–113 μm) were prepared from them and examined for water-related IR peaks using unpolarized infrared spectra at ambient P-T conditions, leading to the observation of 15 IR peaks at ~3682, 3407, 3348, 3278, 3100, 2849, 2660, 2556, 2448, 1352, 1347, 1307, 1282, 1194 and 1186 cm−1. These IR peaks suggest multiple types of hydrogen defects in hydrous Mg-Rw. We have attributed the IR peaks at ~3680, 3650–3000 and 3000–2000 cm−1, respectively, to the hydrogen defects [VSi(OH)4], [VMg(OH)2MgSiSiMg] and [VMg(OH)2]. Combining these IR features with the chemical characteristics of hydrous Rw, we have revealed that the hydrogen defects [VMg(OH)2MgSiSiMg] are dominant in hydrous Rw at high P-T conditions, and the defects [VSi(OH)4] and [VMg(OH)2] play negligible roles. Extensive IR measurements were performed on seven thin sections annealed for several times at T of 200–600 °C and quickly quenched to room T. They display many significant variations, including an absorption enhancement of the peak at ~3680 cm−1, two new peaks occurring at ~3510 and 3461 cm−1, remarkable intensifications of the peaks at ~3405 and 3345 cm−1 and significant absorption reductions of the peaks at ~2500 cm−1. These phenomena imply significant hydrogen migration among different crystallographic sites and rearrangement of the O-H dipoles in hydrous Mg-Rw at high T. From the IR spectra obtained for hydrous Rw both unannealed and annealed at high T, we further infer that substantial amounts of cation disorder should be present in hydrous Rw at the P-T conditions of the mantle transition zone, as required by the formation of the hydrogen defects [VMg(OH)2MgSiSiMg]. The Mg-Si disorder may have very large effects on the physical and chemical properties of Rw, as exampled by its disproportional effects on the unit-cell volume and thermal expansivity. Full article
Show Figures

Figure 1

18 pages, 7181 KiB  
Article
Three-Dimensional Regularized Focusing Migration: A Case Study from the Yucheng Mining Area, Shandong, China
by Yidan Ding, Guoqing Ma, Shengqing Xiong and Haoran Wang
Minerals 2020, 10(5), 471; https://doi.org/10.3390/min10050471 - 22 May 2020
Cited by 2 | Viewed by 2445
Abstract
Gravity migration is a fast imaging technique based on the migration concept to obtain subsurface density distribution. For higher resolution of migration imaging results, we propose a 3D regularized focusing migration method that implements migration imaging of an entire gravity survey with a [...] Read more.
Gravity migration is a fast imaging technique based on the migration concept to obtain subsurface density distribution. For higher resolution of migration imaging results, we propose a 3D regularized focusing migration method that implements migration imaging of an entire gravity survey with a focusing stabilizer based on regularization theory. When determining the model parameters, the iterative direction is chosen as the conjugate migration direction, and the step size is selected on the basis of the Wolfe–Powell conditions. The model tests demonstrate that the proposed method can improve the resolution and precision of imaging results, especially for blocky structures. At the same time, the method has high computational efficiency, which allows rapid imaging for large-scale gravity data. It also has high stability in noisy conditions. The developed novel method is applied to interpret gravity data collected from the skarn-type iron deposits in Yucheng, Shandong province. Migration results show that the depth of the buried iron ore in this area is 750–1500 m, which is consistent with the drilling data. We also provide recommendations for further mineral exploration in the survey area. This method can be used to complete rapid global imaging of large mining areas and it provides important technical support for exploration of deep, concealed deposits. Full article
(This article belongs to the Special Issue Geophysics for Mineral Exploration)
Show Figures

Figure 1

Back to TopTop