molecules-logo

Journal Browser

Journal Browser

Molecular Recognition of Host/Guest Molecules

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: closed (31 August 2023) | Viewed by 22788

Special Issue Editor


E-Mail Website
Guest Editor
G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
Interests: synthetic organic chemistry; chemistry of heterocyclic compounds; molecular recognition; hydrophobic and hydrophilic interactions; ion-assisted functional materials; sensors; nanotechnologies

Special Issue Information

Dear Colleagues,

Molecular recognition of host/guest molecules represents the basis of many biological processes and phenomena. Enzymatic catalysis and inhibition, immunological response, reproduction of genetic information, biological regulatory functions, the effects of drugs and ion transfer—all these processes include the stage of structure recognition during complexation. Molecular recognition is a process in which host molecules select and bind guest molecules due to multipoint intermolecular interactions into structurally highly organized systems. The goal of this Special Issue is, therefore, to solicit and publish the latest advances in molecular recognition of host/guest molecules occurring with noncovalent bonds (ionic, H-bridge, charge transfer, hydrophobic and hydrophilic interactions) and to inform researchers in related fields of its potential application.

Prof. Dr. Nugzar Mamardashvili
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular recognition
  • host/guest molecules
  • noncovalent bonds
  • shape complementarity
  • multipoint binding
  • hydrophobic and hydrophilic interactions
  • supramolecular architectures with well-defined geometry
  • polyfunctional molecular devices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 5049 KiB  
Article
Molecular Recognition of Imidazole-Based Drug Molecules by Cobalt(III)- and Zinc(II)-Coproporphyrins in Aqueous Media
by Galina Mamardashvili, Elena Kaigorodova, Ivan Lebedev and Nugzar Mamardashvili
Molecules 2023, 28(3), 964; https://doi.org/10.3390/molecules28030964 - 18 Jan 2023
Cited by 3 | Viewed by 1769
Abstract
The methods of 1H NMR, spectrophotometric titration, mass spectrometry and elemental analysis are applied to determine the selective binding ability of Co(III)- and Zn(II)-coproporphyrins I towards a series of imidazole-based drug molecules with a wide spectrum of pharmacological activity (metronidazole, histamine, histidine, [...] Read more.
The methods of 1H NMR, spectrophotometric titration, mass spectrometry and elemental analysis are applied to determine the selective binding ability of Co(III)- and Zn(II)-coproporphyrins I towards a series of imidazole-based drug molecules with a wide spectrum of pharmacological activity (metronidazole, histamine, histidine, tinidazole, mercazolil, and pilocarpine) in phosphate buffer (pH 7.4) simulating the blood plasma environment. It is shown that in aqueous buffer media, Co(III)-coproporphyrin I, unlike Zn(II)-coproporphyrin I, binds two imidazole derivatives, and the stability of mono-axial Co-coproporphyrin imidazole complexes is two to three orders of magnitude higher than that of similar complexes of Zn-coproporphyrin I. The studied porphyrinates are found to have the highest binding ability to histamine and histidine due to the formation of two additional hydrogen bonds between the carboxyl groups of the porphyrinate side chains and the binding sites of the ligands in the case of histidine and a hydrogen bond between the amino group of the ligand and the carbonyl oxygen atom of the carboxyl group of the porphyrinate in the case of histamine. The structures of the resulting complexes are optimized by DFT quantum chemical calculations. The results of these studies may be of use in the design of biosensors, including those for the detection, control and verification of various veterinary drug residues in human food samples. Full article
(This article belongs to the Special Issue Molecular Recognition of Host/Guest Molecules)
Show Figures

Figure 1

18 pages, 6143 KiB  
Article
Oxyethylated Fluoresceine—(thia)calix[4]arene Conjugates: Synthesis and Visible-Light Photoredox Catalysis in Water–Organic Media
by Vladimir Burilov, Aigul Fatykhova, Diana Mironova, Elza Sultanova, Ramil Nugmanov, Alina Artemenko, Anastasia Volodina, Amina Daminova, Vladimir Evtugyn, Svetlana Solovieva and Igor Antipin
Molecules 2023, 28(1), 261; https://doi.org/10.3390/molecules28010261 - 28 Dec 2022
Cited by 4 | Viewed by 2136
Abstract
Fluorescent derivatives attract the attention of researchers for their use as sensors, photocatalysts and for the creation of functional materials. In order to create amphiphilic fluorescent derivatives of calixarenes, a fluorescein derivative containing oligoethylene glycol and propargyl groups was obtained. The resulting fluorescein [...] Read more.
Fluorescent derivatives attract the attention of researchers for their use as sensors, photocatalysts and for the creation of functional materials. In order to create amphiphilic fluorescent derivatives of calixarenes, a fluorescein derivative containing oligoethylene glycol and propargyl groups was obtained. The resulting fluorescein derivative was introduced into three different (thia)calix[4]arene azide derivatives. For all synthesized compounds, the luminescence quantum yields have been established in different solvents. Using UV-visible spectroscopy, dynamic light scattering, as well as transmission and confocal microscopy, aggregation of macrocycles was studied. It was evaluated that calixarene derivatives with alkyl substituents form spherical aggregates, while symmetrical tetrafluorescein-containing thiacalix[4]arene forms extended worm-like aggregates. The macrocycle containing tetradecyl fragments was found to be the most efficient in photoredox ipso-oxidation of phenylboronic acid. In addition, it was shown that in a number of different electron donors (NEt3, DABCO and iPr2EtN), the photoredox ipso-oxidation proceeds best with triethylamine. It has been shown that a low molecular weight surfactant Triton-X100 can also improve the photocatalytic abilities of an oligoethylene glycol fluorescein derivative, thus showing the importance of a combination of micellar and photoredox catalysis. Full article
(This article belongs to the Special Issue Molecular Recognition of Host/Guest Molecules)
Show Figures

Graphical abstract

18 pages, 4568 KiB  
Article
Donor–Acceptor Complexes of (5,10,15,20-Tetra(4-methylphenyl)porphyrinato)cobalt(II) with Fullerenes C60: Self-Assembly, Spectral, Electrochemical and Photophysical Properties
by Nataliya G. Bichan, Ekaterina N. Ovchenkova, Varvara A. Mozgova, Alexander A. Ksenofontov, Nadezhda O. Kudryakova, Ivan V. Shelaev, Fedor E. Gostev and Tatyana N. Lomova
Molecules 2022, 27(24), 8900; https://doi.org/10.3390/molecules27248900 - 14 Dec 2022
Cited by 9 | Viewed by 1982
Abstract
The noncovalent interactions of (5,10,15,20-tetra(4-methylphenyl)porphinato)cobalt(II) (CoTTP) with C60 and 1-N-methyl-2-(pyridin-4-yl)-3,4-fullero[60]pyrrolidine (PyC60) were studied in toluene using absorption and fluorescence titration methods. The self-assembly in the 2:1 complexes (the triads) (C60)2CoTTP and (PyC60)2CoTTP [...] Read more.
The noncovalent interactions of (5,10,15,20-tetra(4-methylphenyl)porphinato)cobalt(II) (CoTTP) with C60 and 1-N-methyl-2-(pyridin-4-yl)-3,4-fullero[60]pyrrolidine (PyC60) were studied in toluene using absorption and fluorescence titration methods. The self-assembly in the 2:1 complexes (the triads) (C60)2CoTTP and (PyC60)2CoTTP was established. The bonding constants for (C60)2CoTTP and (PyC60)2CoTTP are defined to be (3.47 ± 0.69) × 109 and (1.47 ± 0.28) × 1010 M−2, respectively. 1H NMR, IR spectroscopy, thermogravimetric analysis and cyclic voltammetry data have provided very good support in favor of efficient complex formation in the ground state between fullerenes and CoTTP. PyC60/C60 fluorescence quenching in the PyC60/C60–CoTTP systems was studied and the fluorescence lifetime with various CoTTP additions was determined. The singlet oxygen quantum yield was determined for PyC60 and the intensity decrease in the 1O2 phosphorescence for C60 and PyC60 with the CoTTP addition leading to the low efficiency of intercombination conversion for the formation of the 3C60* triplet excited state was found. Using femtosecond transient absorption measurements in toluene, the photoinduced electron transfer from the CoTTP in the excited singlet state to fullerene moiety was established. Quantum chemical calculations were used for the determination of molecular structure, stability and the HOMO/LUMO energy levels of the triads as well as to predict the localization of frontier orbitals in the triads. Full article
(This article belongs to the Special Issue Molecular Recognition of Host/Guest Molecules)
Show Figures

Graphical abstract

20 pages, 5254 KiB  
Article
Amine-Reactive BODIPY Dye: Spectral Properties and Application for Protein Labeling
by Ksenia V. Ksenofontova, Anastasia A. Kerner, Alexander A. Ksenofontov, Artyom Yu. Shagurin, Pavel S. Bocharov, Michael M. Lukanov, Airat R. Kayumov, Darya E. Zhuravleva, Zalina I. Iskhakova, Evgeniy E. Molchanov, Dmitriy A. Merkushev, Ilya A. Khodov and Yuriy S. Marfin
Molecules 2022, 27(22), 7911; https://doi.org/10.3390/molecules27227911 - 16 Nov 2022
Cited by 7 | Viewed by 2609
Abstract
A boron-dipyrromethene (BODIPY) derivative reactive towards amino groups of proteins (NHS-Ph-BODIPY) was synthesized. Spectroscopic and photophysical properties of amine-reactive NHS-Ph-BODIPY and its non-reactive precursor (COOH-Ph-BODIPY) in a number of organic solvents were investigated. Both fluorescent dyes were characterized by [...] Read more.
A boron-dipyrromethene (BODIPY) derivative reactive towards amino groups of proteins (NHS-Ph-BODIPY) was synthesized. Spectroscopic and photophysical properties of amine-reactive NHS-Ph-BODIPY and its non-reactive precursor (COOH-Ph-BODIPY) in a number of organic solvents were investigated. Both fluorescent dyes were characterized by green absorption (521–532 nm) and fluorescence (538–552 nm) and medium molar absorption coefficients (46,500–118,500 M−1·cm−1) and fluorescence quantum yields (0.32 – 0.73). Solvent polarizability and dipolarity were found to play a crucial role in solvent effects on COOH-Ph-BODIPY and NHS-Ph-BODIPY absorption and emission bands maxima. Quantum-chemical calculations were used to show why solvent polarizability and dipolarity are important as well as to understand how the nature of the substituent affects spectroscopic properties of the fluorescent dyes. NHS-Ph-BODIPY was used for fluorescent labeling of a number of proteins. Conjugation of NHS-Ph-BODIPY with bovine serum albumin (BSA) resulted in bathochromic shifts of absorption and emission bands and noticeable fluorescence quenching (about 1.5 times). It was demonstrated that the sensitivity of BSA detection with NHS-Ph-BODIPY was up to eight times higher than with Coomassie brilliant blue while the sensitivity of PII-like protein PotN (PotN) detection with NHS-Ph-BODIPY and Coomassie brilliant blue was almost the same. On the basis of the molecular docking results, the most probable binding sites of NHS-Ph-BODIPY in BSA and PotN and the corresponding binding free energies were estimated. Full article
(This article belongs to the Special Issue Molecular Recognition of Host/Guest Molecules)
Show Figures

Graphical abstract

13 pages, 4052 KiB  
Article
Azocalix[4]arene-Rhodamine Supramolecular Hypoxia-Sensitive Systems: A Search for the Best Calixarene Hosts and Rhodamine Guests
by Diana Mironova, Vladimir Burilov, Farida Galieva, Mohamed Ali Mohamed Khalifa, Sofia Kleshnina, Alsu Gazalieva, Ramil Nugmanov, Svetlana Solovieva and Igor Antipin
Molecules 2021, 26(18), 5451; https://doi.org/10.3390/molecules26185451 - 7 Sep 2021
Cited by 10 | Viewed by 2741
Abstract
A potential hypoxia-sensitive system host-guest complex of three calixarenes (including two with four anionic carboxyl and sulphonate azo fragments on the upper rim and a newly synthesized bis-azo adduct of calixarene in the cone configuration with azo fragments on the lower rim with [...] Read more.
A potential hypoxia-sensitive system host-guest complex of three calixarenes (including two with four anionic carboxyl and sulphonate azo fragments on the upper rim and a newly synthesized bis-azo adduct of calixarene in the cone configuration with azo fragments on the lower rim with the most widespread cationic and zwitterionic rhodamine dyes (123, 6G and B)) was studied using UV-VIS spectrometry and fluorescence as well as 1D and 2D NMR techniques. It was found that all three calixarenes form a complex with rhodamine dyes with a 1:1 composition. The association constants of calixarene-dye complexes with sulfonate calixarenes, especially in the case of tetra-anionic calixarene, turned out to be higher compared with carboxyl calixarene due to the more intense electrostatic interactions. For the first time using an HRESI MS technique, it was shown that the treatment of rhodamine 6G and 123 with sodium dithionite (SDT) produces a non-fluorescent leuco form of the dye, and only rhodamine B can be used with SDT without the occurrence of a side reduction. Moreover, it was identified that in addition to the reduction in the azo groups, SDT causes partial cleavage of the aryl ether bonds. The found features of SDT should be taken into account when SDT is used as an azoreductase mimic. Full article
(This article belongs to the Special Issue Molecular Recognition of Host/Guest Molecules)
Show Figures

Graphical abstract

22 pages, 6120 KiB  
Article
Molecular Recognition of Imidazole Derivatives by Co(III)-Porphyrins in Phosphate Buffer (pH = 7.4) and Cetylpyridinium Chloride Containing Solutions
by Galina Mamardashvili, Elena Kaigorodova, Olga Dmitrieva, Oscar Koifman and Nugzar Mamardashvili
Molecules 2021, 26(4), 868; https://doi.org/10.3390/molecules26040868 - 6 Feb 2021
Cited by 10 | Viewed by 3164
Abstract
By means of spectrophotometric titration and NMR spectroscopy, the selective binding ability of the Co(III)-5,15-bis-(3-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin (Co(III)P1) and Co(III)-5,15-bis-(2-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin (Co(III)P2) towards imidazole derivatives of various nature (imidazole (L1), metronidazole (L2), and histamine (L3)) in phosphate buffer (pH 7.4) has been studied. It was found [...] Read more.
By means of spectrophotometric titration and NMR spectroscopy, the selective binding ability of the Co(III)-5,15-bis-(3-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin (Co(III)P1) and Co(III)-5,15-bis-(2-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin (Co(III)P2) towards imidazole derivatives of various nature (imidazole (L1), metronidazole (L2), and histamine (L3)) in phosphate buffer (pH 7.4) has been studied. It was found that in the case of L2, L3 the binding of the “first” ligand molecule by porphyrinates Co(III)P1 and Co(III)P2 occurs with the formation of complexes with two binding sites (donor–acceptor bond at the center and hydrogen bond at the periphery of the macrocycle), while the “second” ligand molecule is added to the metalloporphyrin only due to the formation of the donor–acceptor bond at the macrocycle coordination center. The formation of stable complexes with two binding sites has been confirmed by density functional theory method (DFT) quantum chemical calculations and two-dimensional NMR experiments. It was shown that among the studied porphyrinates, Co(III)P2 is more selective towards to L1-L3 ligands, and localization of cobalt porphyrinates in cetylpyridinium chloride (CPC) micelles does not prevent the studied imidazole derivatives reversible binding. The obtained materials can be used to develop effective receptors for recognition, delivery, and prolonged release of drug compounds to the sites of their functioning. Considering that cetylpyridinium chloride is a widely used cationic biocide as a disinfectant, the designed materials may also prove to be effective antimicrobial agents. Full article
(This article belongs to the Special Issue Molecular Recognition of Host/Guest Molecules)
Show Figures

Graphical abstract

Review

Jump to: Research

40 pages, 22129 KiB  
Review
Macrocyclic Receptors for Identification and Selective Binding of Substrates of Different Nature
by Galina Mamardashvili, Nugzar Mamardashvili and Oscar Koifman
Molecules 2021, 26(17), 5292; https://doi.org/10.3390/molecules26175292 - 31 Aug 2021
Cited by 10 | Viewed by 2739
Abstract
Molecular recognition of host/guest molecules represents the basis of many biological processes and phenomena. Enzymatic catalysis and inhibition, immunological response, reproduction of genetic information, biological regulatory functions, the effects of drugs, and ion transfer—all these processes include the stage of structure recognition during [...] Read more.
Molecular recognition of host/guest molecules represents the basis of many biological processes and phenomena. Enzymatic catalysis and inhibition, immunological response, reproduction of genetic information, biological regulatory functions, the effects of drugs, and ion transfer—all these processes include the stage of structure recognition during complexation. The goal of this review is to solicit and publish the latest advances in the design and sensing and binding abilities of porphyrin-based heterotopic receptors with well-defined geometries, the recognition ability of which is realized due to ionic, H-bridge, charge transfer, hydrophobic, and hydrophilic interactions. The dissection of the considered low-energy processes at the molecular scale expands our capabilities in the development of effective systems for controlled recognition, selective delivery, and prolonged release of substrates of different natures (including drugs) to their sites of functioning. Full article
(This article belongs to the Special Issue Molecular Recognition of Host/Guest Molecules)
Show Figures

Figure 1

18 pages, 5702 KiB  
Review
Fluorescent Probes for Selective Recognition of Hypobromous Acid: Achievements and Future Perspectives
by Yuyu Fang and Wim Dehaen
Molecules 2021, 26(2), 363; https://doi.org/10.3390/molecules26020363 - 12 Jan 2021
Cited by 26 | Viewed by 3943
Abstract
Reactive oxygen species (ROS) have been implicated in numerous pathological processes and their homeostasis facilitates the dynamic balance of intracellular redox states. Among ROS, hypobromous acid (HOBr) has a high similarity to hypochlorous acid (HOCl) in both chemical and physical properties, whereas it [...] Read more.
Reactive oxygen species (ROS) have been implicated in numerous pathological processes and their homeostasis facilitates the dynamic balance of intracellular redox states. Among ROS, hypobromous acid (HOBr) has a high similarity to hypochlorous acid (HOCl) in both chemical and physical properties, whereas it has received relatively little attention. Meanwhile, selective recognition of endogenous HOBr suffers great challenges due to the fact that the concentration of this molecule is much lower than that of HOCl. Fluorescence-based detection systems have emerged as very important tools to monitor biomolecules in living cells and organisms owing to distinct advantages, particularly the temporal and spatial sampling for in vivo imaging applications. To date, the development of HOBr-specific fluorescent probes is still proceeding quite slowly, and the research related to this area has not been systematically summarized. In this review, we are the first to review the progress made so far in fluorescent probes for selective recognition and detection of HOBr. The molecular structures, sensing mechanisms, and their successful applications of these probes as bioimaging agents are discussed here in detail. Importantly, we hope this review will call for more attention to this rising field, and that this could stimulate new future achievements. Full article
(This article belongs to the Special Issue Molecular Recognition of Host/Guest Molecules)
Show Figures

Figure 1

Back to TopTop