nutrients-logo

Journal Browser

Journal Browser

Effects of Plant Extracts on Human Health

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Phytochemicals and Human Health".

Deadline for manuscript submissions: closed (25 October 2024) | Viewed by 23381

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Cellular Bioelectricity (IBIOCEL), Science & Health, Departament of Biochemistry, Center of Biological Sciences, Campus Trindade, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
Interests: natural compounds; diabetes; infertility; cancer; central nervous system diseases; chronic diseases; medicinal plants; pain and analgesia
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Departamento de Farmácia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 45-03, Bogotá 111321, DC, Colombia
Interests: drug delivery system; microparticles; nanoparticles; self-emulsifying delivery; pharmacokinetics; extracts standardization; bioactive compounds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce a Special Issue titled "Effects of Plant Extracts on Human Health" in Nutrients. This issue aims to explore the diverse impacts of plant extracts on human health, spanning from their nutritional value to their potential therapeutic effects/nutraceuticals.

We invite researchers, scientists, and experts to contribute their original research and reviews to this Special Issue. Submissions may include, but are not limited to, studies investigating:

The bioactive compounds present in plant extracts;

The mechanisms underlying the health effects of plant extracts;

The role of plant extracts in preventing or treating various health conditions;

The potential synergistic effects of combining different plant extracts;

The impact of processing and preparation methods on the bioavailability of plant extract compounds;

The utilization of plant extracts in functional foods and nutraceuticals.

We encourage submissions that utilize diverse methodologies, including in vitro and in vivo studies, clinical trials, and meta-analyses, to provide comprehensive insights into the effects of plant extracts on human health.

We look forward to receiving your contributions and to the collective advancement of knowledge in this important area of research.

Prof. Dr. Fátima Regina Mena Barreto Silva
Prof. Dr. Diana Marcela Aragon Novoa
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant extracts
  • human health
  • bioactive compounds
  • therapeutic effects
  • nutraceuticals

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 5110 KiB  
Article
Curcumin and Its Potential to Target the Glycolytic Behavior of Lactate-Acclimated Prostate Carcinoma Cells with Docetaxel
by Dongsic Choi, Jun Gi Lee, Su-Hak Heo, Moon-Kyen Cho, Hae-Seon Nam, Sang-Han Lee and Yoon-Jin Lee
Nutrients 2024, 16(24), 4338; https://doi.org/10.3390/nu16244338 - 16 Dec 2024
Viewed by 289
Abstract
Background: Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. Methods: In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The [...] Read more.
Background: Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. Methods: In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined. Results: PC-3AcT and DU145AcT cells that preadapted to lactic acid displayed increased growth behavior, increased dependence on glycolysis, and reduced sensitivity to docetaxel compared to parental PC-3 and DU145 cells. Molecular analyses revealed activation of the c-Raf/MEK/ERK pathway, upregulation of cyclin D1, cyclin B1, and p-cdc2Thr161, and increased levels and activities of key regulatory enzymes in glycolysis, including HK2, in lactate-acclimated cells. HK2 knockdown resulted in decreased cell growth and glycolytic activity, decreased levels of complexes I–V in the mitochondrial electron transport chain, loss of mitochondrial membrane potential, and depletion of intracellular ATP, ultimately leading to cell death. In a xenograft animal model, curcumin combined with docetaxel reduced tumor size and weight, induced downregulation of glycolytic enzymes, and stimulated the upregulation of apoptotic and necroptotic proteins. This was consistent with the in vitro results from 2D monolayer and 3D spheroid cultures, suggesting that the efficacy of curcumin is not affected by docetaxel. Conclusions: Overall, our findings suggest that metabolic plasticity through enhanced glycolysis observed in lactate-acclimated PC cells may be one of the underlying causes of docetaxel resistance, and targeting glycolysis by curcumin may provide potential for drug development that could improve treatment outcomes in PC patients. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Figure 1

9 pages, 1337 KiB  
Article
Tryptanthrin Down-Regulates Oncostatin M by Targeting GM-CSF-Mediated PI3K-AKT-NF-κB Axis
by Na-Ra Han, Hi-Joon Park, Seong-Gyu Ko and Phil-Dong Moon
Nutrients 2024, 16(23), 4109; https://doi.org/10.3390/nu16234109 - 28 Nov 2024
Viewed by 502
Abstract
Background: Oncostatin M (OSM) is involved in several inflammatory responses. Tryptanthrin (TRYP), as a natural alkaloid, is a bioactive compound derived from indigo plants. Objectives/ Methods: The purpose of this study is to investigate the potential inhibitory activity of TRYP on OSM release [...] Read more.
Background: Oncostatin M (OSM) is involved in several inflammatory responses. Tryptanthrin (TRYP), as a natural alkaloid, is a bioactive compound derived from indigo plants. Objectives/ Methods: The purpose of this study is to investigate the potential inhibitory activity of TRYP on OSM release from neutrophils using neutrophils-like differentiated (d)HL-60 cells and neutrophils from mouse bone marrow. Results: The results showed that TRYP reduced the production and mRNA expression levels of OSM in the granulocyte–macrophage colony-stimulating factor (GM-CSF)-stimulated neutrophils-like dHL-60 cells. In addition, TRYP decreased the OSM production levels in the GM-CSF-stimulated neutrophils from mouse bone marrow. TRYP inhibited the phosphorylation of phosphatidylinositol 3-kinase (PI3K), AKT, and nuclear factor (NF)-κB in the GM-CSF-stimulated neutrophils-like dHL-60 cells. Conclusions: Therefore, these results reveal for the first time that TRYP inhibits OSM release via the down-regulation of PI3K-AKT-NF-κB axis from neutrophils, presenting its potential as a therapeutic agent for inflammatory responses. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Figure 1

22 pages, 5425 KiB  
Article
Phytochemical, Cytoprotective Profiling, and Anti-Inflammatory Potential of Colchicum luteum in Rheumatoid Arthritis: An Experimental and Simulation Study
by Huda Abbasi, Maria Sharif, Peter John, Attya Bhatti, Muhammad Qasim Hayat and Qaisar Mansoor
Nutrients 2024, 16(23), 4020; https://doi.org/10.3390/nu16234020 - 24 Nov 2024
Viewed by 775
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by severe pain, inflammation, and joint deformity. Currently, it affects 1% of the population, with a projection to exceed 23 million cases by 2030. Despite significant advancements, non-steroidal anti-inflammatory drugs (NSAIDs), the first [...] Read more.
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by severe pain, inflammation, and joint deformity. Currently, it affects 1% of the population, with a projection to exceed 23 million cases by 2030. Despite significant advancements, non-steroidal anti-inflammatory drugs (NSAIDs), the first line of treatment, are associated with a range of adverse effects. Consequently, plant-based derivatives are being utilized as an effective alternative. This study evaluates the anti-inflammatory and safety profile of Colchicum luteum hydroethanolic extract (CLHE) in comparison to NSAIDs, with a focus on COX-2 and TNFα inhibition. Methods: CLHE potential was evaluated by phytochemical screening and in vitro bioactivity assays. Toxicity profile was conducted in Human Colon Epithelial Cells (HCEC) and Balb/c mice. Anti-inflammatory potential was explored in a collagen-induced arthritic (CIA) mice model. Bioactive compounds were identified computationally from GCMS data and subjected to docking and simulation studies against COX2 and TNFα. Results: CLHE demonstrated significant antioxidant (IC-50 = 6.78 µg/mL) and anti-inflammatory (IC-50 = 97.39 µg/mL) activity. It maintained 50% cell viability at 78.5 μg/µL in HCEC cells and exhibited no toxicity at a dose of 5000 mg/kg in mice. In the CIA model, CLHE significantly reduced paw swelling, arthritic scoring, C-reactive protein levels, and spleen indices, outperforming ibuprofen. Expression analysis confirmed the downregulation of COX-2, TNFα, and MMP-9. Histopathological analysis indicated the superior efficacy of CLHE compared to ibuprofen in reducing inflammation, synovial hyperplasia, and bone erosion. Computational studies identified compound-15 (CL15), (4-(4,7-dimethoxy-1,3-benzodioxol-5-yl)-2-oxo pyrrolidine-3-carboxylic acid), a non-toxic compound with strong binding affinities to COX-2 (−12.9 KJ/mol), and TNF-α (−5.8 KJ/mol). Conclusions: The findings suggest the potential of Colchicum luteum as a safer, anti-inflammatory, and multi-targeted alternative to NSAIDs for RA treatment. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Figure 1

14 pages, 7075 KiB  
Article
Lysimachia mauritiana Lam. Extract Alleviates Airway Inflammation Induced by Particulate Matter Plus Diesel Exhaust Particles in Mice
by Yoon-Young Sung, Seung-Hyung Kim, Won-Kyung Yang, Heung Joo Yuk, Mi-Sun Kim and Dong-Seon Kim
Nutrients 2024, 16(21), 3732; https://doi.org/10.3390/nu16213732 - 31 Oct 2024
Viewed by 615
Abstract
Exposure to air pollution poses a risk to human respiratory health, and a preventive and therapeutic remedy against fine dust-induced respiratory disease is needed. Background/Objectives: The respiratory-protective effects of Lysimachia mauritiana (LM) against airway inflammation were evaluated in a mouse model exposed to [...] Read more.
Exposure to air pollution poses a risk to human respiratory health, and a preventive and therapeutic remedy against fine dust-induced respiratory disease is needed. Background/Objectives: The respiratory-protective effects of Lysimachia mauritiana (LM) against airway inflammation were evaluated in a mouse model exposed to a fine dust mixture of diesel exhaust particles and particulate matter with a diameter of less than 10 µm (PM10D). Methods: To induce airway inflammation, PM10D was intranasally injected into BALB/c mice three times a day for 12 days, and LM extracts were given orally once per day. The immune cell subtypes, histopathology, and expression of inflammatory mediators were analyzed from the bronchoalveolar lavage fluid (BALF) and lungs. Results: LM alleviated the accumulation of neutrophils and the number of inflammatory cells in the lungs and the BALF of the PM10D-exposed mice. LM also reduced the release of inflammatory mediators (MIP-2, IL-17, IL-1α, CXCL1, TNF-α, MUC5AC, and TRP receptor channels) in the BALF and lungs. Lung histopathology was used to examine airway inflammation and the accumulation of collagen fibers and inflammatory cells after PM10D exposure and showed that LM administration improved this inflammation. Furthermore, LM extract inhibited the MAPK and NF-κB signaling pathway in the lungs and improved expectoration activity through an increase in phenol red release from the trachea. Conclusions: LM alleviated PM10D-exposed neutrophilic airway inflammation by suppressing MAPK/NF-κB activation. This study indicates that LM extract may be an effective therapeutic agent against inflammatory respiratory diseases. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Figure 1

21 pages, 11740 KiB  
Article
Network Pharmacology Combined with Experimental Validation to Investigate the Mechanism of the Anti-Hyperuricemia Action of Portulaca oleracea Extract
by Yiming Zhang, Shengying Zhu, Yueming Gu, Yanjing Feng and Bo Gao
Nutrients 2024, 16(20), 3549; https://doi.org/10.3390/nu16203549 - 19 Oct 2024
Viewed by 1421
Abstract
Background/Objectives: Hyperuricemia (HUA) is a common metabolic disease caused by purine metabolic disorders in the body. Portulaca oleracea L. (PO) is an edible wild vegetable. Methods: In this study, the regulatory effect of PO on HUA and its potential mechanism were initially elucidated [...] Read more.
Background/Objectives: Hyperuricemia (HUA) is a common metabolic disease caused by purine metabolic disorders in the body. Portulaca oleracea L. (PO) is an edible wild vegetable. Methods: In this study, the regulatory effect of PO on HUA and its potential mechanism were initially elucidated through network pharmacology and experimental validation. Results: The results showed that PO from Sichuan province was superior to the plant collected from other habitats in inhibiting xanthine oxidase (XOD) activity. Berberine and stachydrine were isolated and identified from PO for the first time by UPLC-Q-Exactive Orbitrap MS. The potential molecular targets and related signaling pathways were predicted by network pharmacology and molecular docking techniques. Molecular docking showed that berberine had strong docking activity with XOD, and the results of in vitro experiments verified this prediction. Through experimental analysis of HUA mice, we found that PO can reduce the production of uric acid (UA) in the organism by inhibiting XOD activity. On the other hand, PO can reduce the body ‘s reabsorption of urate and aid in its excretion out of the body by inhibiting the urate transporter proteins (GLUT9, URAT1) and promoting the high expression of urate excretory protein (ABCG2). The results of H/E staining showed that, compared with the positive drug (allopurinol and benzbromarone) group, there was no obvious renal injury in the middle- and high-dose groups of PO extract. Conclusions: In summary, our findings reveal the potential of wild plant PO as a functional food for the treatment of hyperuricemia. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Figure 1

16 pages, 3717 KiB  
Article
The Protective Effects of an Aged Black Garlic Water Extract on the Prostate
by Maria Loreta Libero, Antonio J. Montero-Hidalgo, Lucia Recinella, Raúl M. Luque, Daniele Generali, Alessandra Acquaviva, Giustino Orlando, Claudio Ferrante, Luigi Menghini, Simonetta Cristina Di Simone, Nilofar Nilofar, Annalisa Chiavaroli, Luigi Brunetti and Sheila Leone
Nutrients 2024, 16(17), 3025; https://doi.org/10.3390/nu16173025 - 7 Sep 2024
Viewed by 2401
Abstract
Chronic inflammation is a recognized risk factor for various cancers, including prostate cancer (PCa). We aim to explore the potential protective effects of aged black garlic extract (ABGE) against inflammation-induced prostate damage and its impact on prostate cancer cell lines. We used an [...] Read more.
Chronic inflammation is a recognized risk factor for various cancers, including prostate cancer (PCa). We aim to explore the potential protective effects of aged black garlic extract (ABGE) against inflammation-induced prostate damage and its impact on prostate cancer cell lines. We used an ex vivo model of inflammation induced by Escherichia coli lipopolysaccharide (LPS) on C57BL/6 male mouse prostate specimens to investigate the anti-inflammatory properties of ABGE. The gene expression levels of pro-inflammatory biomarkers (COX-2, NF-κB, and TNF-α, IL-6) were measured. Additionally, we evaluated ABGE’s therapeutic effects on the prostate cancer cell lines through in vitro functional assays, including colony formation, tumorsphere formation, migration assays, and phosphorylation arrays to assess the signaling pathways (MAPK, AKT, JAK/STAT, and TGF-β). ABGE demonstrated significant anti-inflammatory and antioxidant effects in preclinical models, partly attributed to its polyphenolic content, notably catechin and gallic acid. In the ex vivo model, ABGE reduced the gene expression levels of COX-2, NF-κB, TNF-α, and IL-6. The in vitro studies showed that ABGE inhibited cell proliferation, colony and tumorsphere formation, and cell migration in the prostate cancer cells, suggesting its potential as a therapeutic agent. ABGE exhibits promising anti-inflammatory and anti-cancer properties, supporting further investigation into ABGE as a potential agent for managing inflammation and prostate cancer. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Figure 1

14 pages, 3650 KiB  
Article
Effects of Castanopsis echinocarpa on Sensorineural Hearing Loss via Neuronal Gene Regulation
by Isabel Rodriguez, Youn Hee Nam, Sung Woo Shin, Gyeong Jin Seo, Na Woo Kim, Wanlapa Nuankaew, Do Hoon Kim, Yu Hwa Park, Hwa Yeon Lee, Xi Hui Peng, Bin Na Hong and Tong Ho Kang
Nutrients 2024, 16(16), 2716; https://doi.org/10.3390/nu16162716 - 15 Aug 2024
Cited by 1 | Viewed by 1036
Abstract
Sensorineural hearing loss (SNHL), characterized by damage to the inner ear or auditory nerve, is a prevalent auditory disorder. This study explores the potential of Castanopsis echinocarpa (CAE) as a therapeutic agent for SNHL. In vivo experiments were conducted using zebrafish and mouse [...] Read more.
Sensorineural hearing loss (SNHL), characterized by damage to the inner ear or auditory nerve, is a prevalent auditory disorder. This study explores the potential of Castanopsis echinocarpa (CAE) as a therapeutic agent for SNHL. In vivo experiments were conducted using zebrafish and mouse models. Zebrafish with neomycin-induced ototoxicity were treated with CAE, resulting in otic hair cell protection with an EC50 of 0.49 µg/mL and a therapeutic index of 1020. CAE treatment improved auditory function and protected cochlear sensory cells in a mouse model after noise-induced hearing loss (NIHL). RNA sequencing of NIHL mouse cochleae revealed that CAE up-regulates genes involved in neurotransmitter synthesis, secretion, transport, and neuronal survival. Real-time qPCR validation showed that NIHL decreased the mRNA expression of genes related to neuronal function, such as Gabra1, Gad1, Slc32a1, CaMK2b, CaMKIV, and Slc17a7, while the CAE treatment significantly elevated these levels. In conclusion, our findings provide strong evidence that CAE protects against hearing loss by promoting sensory cell protection and enhancing the expression of genes critical for neuronal function and survival. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Figure 1

10 pages, 3551 KiB  
Article
Selaginella tamariscina Ethanol Extract Attenuates Influenza A Virus Infection by Inhibiting Hemagglutinin and Neuraminidase
by Won-Kyung Cho, Hee-Jeong Choi and Jin Yeul Ma
Nutrients 2024, 16(14), 2377; https://doi.org/10.3390/nu16142377 - 22 Jul 2024
Viewed by 1093
Abstract
Selaginella tamariscina is a perennial plant that is used for diverse diseases. This study investigated whether Selaginella tamariscina has an antiviral effect against influenza A virus (IAV) infection. We used green fluorescent protein (GFP)-tagged influenza A virus (IAV) to examine the effect of [...] Read more.
Selaginella tamariscina is a perennial plant that is used for diverse diseases. This study investigated whether Selaginella tamariscina has an antiviral effect against influenza A virus (IAV) infection. We used green fluorescent protein (GFP)-tagged influenza A virus (IAV) to examine the effect of Selaginella tamariscina ethanol extract (STE) on influenza viral infection. Fluorescence microscopy and flow cytometry showed that STE potently represses GFP expression by the virus, dose-dependently. STE significantly inhibited the expression of the IAV M2, NP, HA, NA, NS1, and PB2 proteins. Time-of-addition and hemagglutination inhibition assays showed that STE has an inhibitory effect on hemagglutinin and viral binding on the cells at an early infection time. In addition, STE exerted a suppressive effect on the neuraminidase activity of the H1N1 and H3N2 IAVs. Furthermore, dose-dependently, STE inhibited the cytopathic effect induced by H3N2, as well as by H1N1 IAV. Especially in the presence of 200 µg/mL STE, the cytopathic effect was completely blocked. Our findings suggest that STE has antiviral efficacy against IAV infection; thus, it could be developed as a natural IAV inhibitor. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Figure 1

12 pages, 1726 KiB  
Article
Antithrombotic Effect of Oil from the Pulp of Bocaiúva—Acrocomia aculeata (Jacq.) Lodd. ex Mart. (Arecaceae)
by Isabelly Teixeira Espinoça, Denise Caroline Luiz Soares Basilio, Anna Júlia Papa de Araujo, Rafael Seiji Nakano Ota, Kamylla Fernanda Souza de Souza, Nadla Soares Cassemiro, Davi Campos Lagatta, Edgar Julian Paredes-Gamero, Maria Lígia Rodrigues Macedo, Denise Brentan Silva, Janaina de Cássia Orlandi Sardi, Danilo Wilhelm-Filho, Ana Cristina Jacobowski and Eduardo Benedetti Parisotto
Nutrients 2024, 16(13), 2024; https://doi.org/10.3390/nu16132024 - 26 Jun 2024
Viewed by 1611
Abstract
The study aimed to evaluate the antithrombotic action of Acrocomia aculeata pulp oil (AAPO) in natura, in an in vitro experimental model. AAPO was obtained by solvent extraction, and its chemical characterization was performed by gas chromatography coupled to a mass spectrometer (GC-MS). [...] Read more.
The study aimed to evaluate the antithrombotic action of Acrocomia aculeata pulp oil (AAPO) in natura, in an in vitro experimental model. AAPO was obtained by solvent extraction, and its chemical characterization was performed by gas chromatography coupled to a mass spectrometer (GC-MS). In vitro toxicity was evaluated with the Trypan Blue exclusion test and in vivo by the Galleria mellonella model. ADP/epinephrine-induced platelet aggregation after treatment with AAPO (50, 100, 200, 400, and 800 μg/mL) was evaluated by turbidimetry, and coagulation was determined by prothrombin activity time (PT) and activated partial thromboplastin time (aPTT). Platelet activation was measured by expression of P-selectin on the platelet surface by flow cytometry and intraplatelet content of reactive oxygen species (ROS) by fluorimetry. The results showed that AAPO has as major components such as oleic acid, palmitic acid, lauric acid, caprylic acid, and squalene. AAPO showed no toxicity in vitro or in vivo. Platelet aggregation decreased against agonists using treatment with different concentrations of AAPO. Oil did not interfere in PT and aPTT. Moreover, it expressively decreased ROS-induced platelet activation and P-selectin expression. Therefore, AAPO showed antiplatelet action since it decreased platelet activation verified by the decrease in P-selectin expression as well as in ROS production. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Graphical abstract

14 pages, 2167 KiB  
Article
Antidiabetic Effect of Passiflora ligularis Leaves in High Fat-Diet/Streptozotocin-Induced Diabetic Mice
by Diana P. Rey, Sandra M. Echeverry, Ivonne H. Valderrama, Ingrid A. Rodriguez, Luis F. Ospina, Fatima Regina Mena Barreto Silva and Marcela Aragón
Nutrients 2024, 16(11), 1669; https://doi.org/10.3390/nu16111669 - 29 May 2024
Viewed by 1310
Abstract
Type 2 diabetes mellitus (T2DM) is a major global public health concern, prompting the ongoing search for new treatment options. Medicinal plants have emerged as one such alternative. Our objective was to evaluate the antidiabetic effect of an extract from the leaves of [...] Read more.
Type 2 diabetes mellitus (T2DM) is a major global public health concern, prompting the ongoing search for new treatment options. Medicinal plants have emerged as one such alternative. Our objective was to evaluate the antidiabetic effect of an extract from the leaves of Passiflora ligularis (P. ligularis). For this purpose, T2DM was first induced in mice using a high-fat diet and low doses of streptozotocin. Subsequently, an aqueous extract or an ethanolic extract of P. ligularis leaves was administered for 21 days. The following relevant results were found: fasting blood glucose levels were reduced by up to 41%, and by 29% after an oral glucose overload. The homeostasis model assessment of insulin resistance (HOMA-IR) was reduced by 59%. Histopathologically, better preservation of pancreatic tissue was observed. Regarding oxidative stress parameters, there was an increase of up to 48% in superoxide dismutase (SOD), an increase in catalase (CAT) activity by 35% to 80%, and a decrease in lipid peroxidation (MDA) by 35% to 80% in the liver, kidney, or pancreas. Lastly, regarding the lipid profile, triglycerides (TG) were reduced by up to 30%, total cholesterol (TC) by 35%, and low-density lipoproteins (LDL) by up to 32%, while treatments increased high-density lipoproteins (HDL) by up to 35%. With all the above, we can conclude that P. ligularis leaves showed antihyperglycemic, hypolipidemic, and antioxidant effects, making this species promising for the treatment of T2DM. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 327 KiB  
Review
Ashwagandha’s Multifaceted Effects on Human Health: Impact on Vascular Endothelium, Inflammation, Lipid Metabolism, and Cardiovascular Outcomes—A Review
by Michał Wiciński, Anna Fajkiel-Madajczyk, Zuzanna Kurant, Sara Liss, Paweł Szyperski, Monika Szambelan, Bartłomiej Gromadzki, Iga Rupniak, Maciej Słupski and Iwona Sadowska-Krawczenko
Nutrients 2024, 16(15), 2481; https://doi.org/10.3390/nu16152481 - 31 Jul 2024
Cited by 1 | Viewed by 10846
Abstract
Withania somnifera, commonly known as Ashwagandha, has been popular for many years. Numerous studies have shown that the extract of this plant, due to its wealth of active substances, can induce anti-inflammatory, neuroprotective, immunomodulatory, hepatoprotective, cardioprotective, anti-diabetic, adaptogenic, anti-arthritic, anti-stress, and antimicrobial [...] Read more.
Withania somnifera, commonly known as Ashwagandha, has been popular for many years. Numerous studies have shown that the extract of this plant, due to its wealth of active substances, can induce anti-inflammatory, neuroprotective, immunomodulatory, hepatoprotective, cardioprotective, anti-diabetic, adaptogenic, anti-arthritic, anti-stress, and antimicrobial effects. This review examines the impact of Ashwagandha extract on the vascular endothelium, inflammation, lipid metabolism, and cardiovascular outcomes. Studies have shown that Ashwagandha extracts exhibit an anti-angiogenic effect by inhibiting vascular endothelial growth factor (VEGF)-induced capillary sprouting and formation by lowering the mean density of microvessels. Furthermore, the results of numerous studies highlight the anti-inflammatory role of Ashwagandha extract, as the action of this plant causes a decrease in the expression of pro-inflammatory cytokines. Interestingly, withanolides, present in Ashwagandha root, have shown the ability to inhibit the differentiation of preadipocytes into adipocytes. Research results have also proved that W. somnifera demonstrates cardioprotective effects due to its antioxidant properties and reduces ischemia/reperfusion-induced apoptosis. It seems that this plant can be successfully used as a potential treatment for several conditions, mainly those with increased inflammation. More research is needed to elucidate the exact mechanisms by which the substances contained in W. somnifera extracts can act in the human body. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Back to TopTop