nutrients-logo

Journal Browser

Journal Browser

The Effects of Dietary Fat on Gut Microbiota and Metabolic Health

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Nutrition and Metabolism".

Deadline for manuscript submissions: closed (15 July 2024) | Viewed by 40313

Special Issue Editors


E-Mail Website
Guest Editor
Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
Interests: experimental nutrition; metabolism; food analysis; development of new products and food chemistry
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Biosciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79079-900, Brazil
Interests: medicinal plants; nuts; food; nutrition; technology

E-Mail Website
Guest Editor
Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
Interests: experimental nutrition; metabolism; nutraceutical compounds; food analysis; Brazilian nuts; food chemistry

Special Issue Information

Dear Colleagues,

Non-transmissible chronic diseases (NTCDs) are a big concern worldwide, primarily due to persistent inflammation and altered food ingestion. In recent years, a substantial piece of research addressed the impact of nutrition on several NTCDs, such as metabolic syndrome (MS), type II diabetes mellitus, obesity, dyslipidemia, cardiometabolic disease, and related disorders. Food lipids are fundamental in this aspect, especially in metabolic syndrome, mediating the gut microbiota. The characteristics of consumed fatty acids are crucial in such diseases, mainly when we highlight the essential polyunsaturated fatty acids (PUFAs). Nutraceutical foods are essential in the action mechanisms of comorbidities since healthy lifestyles and food chemical characteristics can attenuate them. Genetic predisposition is strongly related to metabolic changes. Several pre-clinical and clinical studies have been developed to show the importance of such alterations over life, demonstrating the importance of nutrigenomic studies.

Authors are invited to contribute original research in vitro and analytical studies on animals and humans with novel results. Narrative systematic reviews or meta-analyses will also be accepted.

Prof. Dr. Rita Guimarães
Prof. Dr. Arnildo Pott
Prof. Dr. Priscila Hiane
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • obesity
  • lipids
  • non-transmissible chronic diseases
  • gut microbiota
  • metabolic syndrome
  • nutraceutical and functional foods
  • inflammation
  • fatty acids
  • cytokines
  • medicinal plants

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 8430 KiB  
Article
Gut Dysbiosis Shaped by Cocoa Butter-Based Sucrose-Free HFD Leads to Steatohepatitis, and Insulin Resistance in Mice
by Shihab Kochumon, Md. Zubbair Malik, Sardar Sindhu, Hossein Arefanian, Texy Jacob, Fatemah Bahman, Rasheeba Nizam, Amal Hasan, Reeby Thomas, Fatema Al-Rashed, Steve Shenouda, Ajit Wilson, Shaima Albeloushi, Nourah Almansour, Ghadeer Alhamar, Ashraf Al Madhoun, Fawaz Alzaid, Thangavel Alphonse Thanaraj, Heikki A. Koistinen, Jaakko Tuomilehto, Fahd Al-Mulla and Rasheed Ahmadadd Show full author list remove Hide full author list
Nutrients 2024, 16(12), 1929; https://doi.org/10.3390/nu16121929 - 18 Jun 2024
Viewed by 1349
Abstract
Background: High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice [...] Read more.
Background: High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice fed high concentrations of these fats, in the absence of sucrose, remains to be elucidated. The aim of the study was to test whether the sucrose-free cocoa butter-based high-fat diet (C-HFD) feeding in mice leads to gut dysbiosis that associates with a pathologic phenotype marked by hepatic steatosis, low-grade inflammation, perturbed glucose homeostasis, and insulin resistance, compared with control mice fed the fish oil based high-fat diet (F-HFD). Results: C57BL/6 mice (5–6 mice/group) were fed two types of high fat diets (C-HFD and F-HFD) for 24 weeks. No significant difference was found in the liver weight or total body weight between the two groups. The 16S rRNA sequencing of gut bacterial samples displayed gut dysbiosis in C-HFD group, with differentially-altered microbial diversity or relative abundances. Bacteroidetes, Firmicutes, and Proteobacteria were highly abundant in C-HFD group, while the Verrucomicrobia, Saccharibacteria (TM7), Actinobacteria, and Tenericutes were more abundant in F-HFD group. Other taxa in C-HFD group included the Bacteroides, Odoribacter, Sutterella, Firmicutes bacterium (AF12), Anaeroplasma, Roseburia, and Parabacteroides distasonis. An increased Firmicutes/Bacteroidetes (F/B) ratio in C-HFD group, compared with F-HFD group, indicated the gut dysbiosis. These gut bacterial changes in C-HFD group had predicted associations with fatty liver disease and with lipogenic, inflammatory, glucose metabolic, and insulin signaling pathways. Consistent with its microbiome shift, the C-HFD group showed hepatic inflammation and steatosis, high fasting blood glucose, insulin resistance, increased hepatic de novo lipogenesis (Acetyl CoA carboxylases 1 (Acaca), Fatty acid synthase (Fasn), Stearoyl-CoA desaturase-1 (Scd1), Elongation of long-chain fatty acids family member 6 (Elovl6), Peroxisome proliferator-activated receptor-gamma (Pparg) and cholesterol synthesis (β-(hydroxy β-methylglutaryl-CoA reductase (Hmgcr). Non-significant differences were observed regarding fatty acid uptake (Cluster of differentiation 36 (CD36), Fatty acid binding protein-1 (Fabp1) and efflux (ATP-binding cassette G1 (Abcg1), Microsomal TG transfer protein (Mttp) in C-HFD group, compared with F-HFD group. The C-HFD group also displayed increased gene expression of inflammatory markers including Tumor necrosis factor alpha (Tnfa), C-C motif chemokine ligand 2 (Ccl2), and Interleukin-12 (Il12), as well as a tendency for liver fibrosis. Conclusion: These findings suggest that the sucrose-free C-HFD feeding in mice induces gut dysbiosis which associates with liver inflammation, steatosis, glucose intolerance and insulin resistance. Full article
(This article belongs to the Special Issue The Effects of Dietary Fat on Gut Microbiota and Metabolic Health)
Show Figures

Figure 1

17 pages, 6249 KiB  
Article
Time-Restricted Feeding Modifies the Fecal Lipidome and the Gut Microbiota
by Bret M. Rust, Matthew J. Picklo, Lin Yan, Aaron A. Mehus and Huawei Zeng
Nutrients 2023, 15(7), 1562; https://doi.org/10.3390/nu15071562 - 23 Mar 2023
Cited by 2 | Viewed by 3043
Abstract
Time-restricted feeding (TRF) has been identified as an approach to reduce the risk of obesity-related metabolic diseases. We hypothesize that TRF triggers a change in nutrient (e.g., dietary fat) absorption due to shortened feeding times, which subsequently alters the fecal microbiome and lipidome. [...] Read more.
Time-restricted feeding (TRF) has been identified as an approach to reduce the risk of obesity-related metabolic diseases. We hypothesize that TRF triggers a change in nutrient (e.g., dietary fat) absorption due to shortened feeding times, which subsequently alters the fecal microbiome and lipidome. In this report, three groups of C57BL/6 mice were fed either a control diet with ad libitum feeding (16% energy from fat) (CTRL-AL), a high-fat diet (48% energy from fat) with ad libitum feeding (HF-AL), or a high-fat diet with time-restricted feeding (HF-TRF) for 12 weeks. No changes in microbiota at the phylum level were detected, but eight taxonomic families were altered by either feeding timing or dietary fat content. The HF-AL diet doubled the total fecal fatty acid content of the CTRL-AL diet, while the HF-TRF doubled the total fecal fatty acid content of the HF-AL diet. Primary fecal bile acids were unaffected by diet. Total short-chain fatty acids were reduced by HF-AL, but this effect was diminished by HF-TRF. Each diet produced distinct relationships between the relative abundance of taxa and fecal lipids. The anti-obesogenic effects of TRF in HF diets are partly due to the increase in fat excretion in the feces. Furthermore, fat content and feeding timing differentially affect the fecal microbiota and the relationship between the microbiota and fecal lipids. Full article
(This article belongs to the Special Issue The Effects of Dietary Fat on Gut Microbiota and Metabolic Health)
Show Figures

Figure 1

Review

Jump to: Research

43 pages, 2593 KiB  
Review
Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review
by Vicente Javier Clemente-Suárez, Ana Isabel Beltrán-Velasco, Laura Redondo-Flórez, Alexandra Martín-Rodríguez and José Francisco Tornero-Aguilera
Nutrients 2023, 15(12), 2749; https://doi.org/10.3390/nu15122749 - 14 Jun 2023
Cited by 101 | Viewed by 35003
Abstract
The Western diet is a modern dietary pattern characterized by high intakes of pre-packaged foods, refined grains, red meat, processed meat, high-sugar drinks, candy, sweets, fried foods, conventionally raised animal products, high-fat dairy products, and high-fructose products. The present review aims to describe [...] Read more.
The Western diet is a modern dietary pattern characterized by high intakes of pre-packaged foods, refined grains, red meat, processed meat, high-sugar drinks, candy, sweets, fried foods, conventionally raised animal products, high-fat dairy products, and high-fructose products. The present review aims to describe the effect of the Western pattern diet on the metabolism, inflammation, and antioxidant status; the impact on gut microbiota and mitochondrial fitness; the effect of on cardiovascular health, mental health, and cancer; and the sanitary cost of the Western diet. To achieve this goal, a consensus critical review was conducted using primary sources, such as scientific articles, and secondary sources, including bibliographic indexes, databases, and web pages. Scopus, Embase, Science Direct, Sports Discuss, ResearchGate, and the Web of Science were used to complete the assignment. MeSH-compliant keywords such “Western diet”, “inflammation”, “metabolic health”, “metabolic fitness”, “heart disease”, “cancer”, “oxidative stress”, “mental health”, and “metabolism” were used. The following exclusion criteria were applied: (i) studies with inappropriate or irrelevant topics, not germane to the review’s primary focus; (ii) Ph.D. dissertations, proceedings of conferences, and unpublished studies. This information will allow for a better comprehension of this nutritional behavior and its effect on an individual’s metabolism and health, as well as the impact on national sanitary systems. Finally, practical applications derived from this information are made. Full article
(This article belongs to the Special Issue The Effects of Dietary Fat on Gut Microbiota and Metabolic Health)
Show Figures

Figure 1

Back to TopTop