Anticancer Compounds in Medicinal Plants — In Honour of the 20th Anniversary of Pharmaceuticals

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Natural Products".

Deadline for manuscript submissions: 15 December 2024 | Viewed by 14060

Special Issue Editors

Department of Chemistry and Chemistry Center—Vila Real (CQ-VR), School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
Interests: organic synthesis; functional dyes; structural elucidation; natural products chemistry; medicinal plants; natural bioactive compounds
Special Issues, Collections and Topics in MDPI journals
Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
Interests: natural bioactive compounds; medicinal chemistry; bioactivity and toxicology; functional applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cancer, in its multiple forms, is presently one of the leading causes of death in both developing and developed countries and it has become a major health problem and a burden for most public health care systems worldwide. Although several decades of drug discovery and development have provided a number of useful chemotherapeutic agents, there is a continuous interest in the search for new chemical entities with improved anticancer effectiveness and safety.

Since ancient times, humankind has relied on herbal medicines for the treatment and prevention of a plethora of different ailments and their beneficial properties have been recognized both by traditional medicines and more contemporary herbalism practices. Medicinal plants, which have contributed to the collection of compounds that are now at our disposal for cancer therapy, constitute a reservoir of natural products that are able to provide new molecules with anticancer activity and new molecular frameworks that have inspired the design of derivatives with improved therapeutic ability. As plant-derived compounds are often devoid of cytotoxicity to normal human cells, the attention of scientific research has been increasingly driven towards natural compounds, as they may represent a source of anticancer molecules with less toxic side effects compared to current chemotherapeutic drugs.

This Special Issue “Anticancer Compounds in Medicinal Plants” invites researchers to contribute with original research or review articles related to natural compounds with anticancer properties isolated from medicinal plants. The contributions include the discovery of new compounds, the in vitro and in vivo assessment of the anticancer properties of medicinal plant-derived compounds, as well as the elucidation of their mechanisms of action and the design of derivatives with improved efficacy.

Dr. Paulo Santos
Dr. Lillian Barros
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • phytochemicals
  • cancer
  • secondary metabolites
  • medicinal plants

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 697 KiB  
Article
Antioxidant Activity, Antiproliferative Activity, Antiviral Activity, NO Production Inhibition, and Chemical Composition of Essential Oils and Crude Extracts of Leaves, Flower Buds, and Stems of Tetradenia riparia
by Jéssica da Silva Sena, Selma Alves Rodrigues, Karina Sakumoto, Rodrigo Sadao Inumaro, Pamela González-Maldonado, Emilio Mendez-Scolari, Ranulfo Piau, Jr., Daniela Dib Gonçalves, Filipa Mandim, Josiana Vaz, José Eduardo Gonçalves, Pablo Hernan Sotelo, Juliana Silveira do Valle and Zilda Cristiani Gazim
Pharmaceuticals 2024, 17(7), 888; https://doi.org/10.3390/ph17070888 - 4 Jul 2024
Viewed by 730
Abstract
The chemical composition of extracts (CEs) and essential oils (EOs) from Tetradenia riparia leaves, flower buds, and stems was analyzed. Antiproliferative activity against tumor cell lines, NO production inhibition, and antioxidant and antiviral activities were assessed. The CEs contained flavonoids, phenolic acids, coumarins, [...] Read more.
The chemical composition of extracts (CEs) and essential oils (EOs) from Tetradenia riparia leaves, flower buds, and stems was analyzed. Antiproliferative activity against tumor cell lines, NO production inhibition, and antioxidant and antiviral activities were assessed. The CEs contained flavonoids, phenolic acids, coumarins, and saturated fatty acids. The EOs included monoterpenes, oxygenated sesquiterpenes, and diterpenes. NO production inhibition ranged from 76 to 247 µg mL−1, and antiproliferative activity exhibited GI50 between 20 and >204 µg mL−1, with low cytotoxicity (SI: 1.08 to 4.75). Reactive oxygen species inhibition ranged from 45 to 82%. Antioxidant activity varied when determined by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay (IC50: 0.51 to 8.47 mg mL−1) and ferric reducing antioxidant power (0.35 to 0.81 µM ferrous sulfate per mg). The reduction in β-carotene–linoleic acid co-oxidation varied between 76.13 and 102.25%. The total phenolic content of CEs and EOs was 10.70 to 111.68 µg gallic acid mg−1. Antiviral activity against herpes simplex virus type 1 (HSV-1) showed an EC50 between 9.64 and 24.55 µg mL−1 and an SI between 8.67 and 15.04. Leaf EOs exhibited an EC50 of 9.64 µg mL−1 and an SI of 15.04. Our study unveils the diverse chemical composition and multifaceted pharmacological properties of T. riparia, demonstrating its potential as a valuable source of bioactive compounds for therapeutic applications. Full article
Show Figures

Graphical abstract

17 pages, 3140 KiB  
Article
Phenolic Composition of Crataegus monogyna Jacq. Extract and Its Anti-Inflammatory, Hepatoprotective, and Antileukemia Effects
by Fatima Ez-Zahra Amrati, Ibrahim Mssillou, Smahane Boukhira, Mehdi Djiddi Bichara, Youness El Abdali, Renata Galvão de Azevedo, Chebaibi Mohamed, Meryem Slighoua, Raffaele Conte, Sotirios Kiokias, Gemilson Soares Pontes and Dalila Bousta
Pharmaceuticals 2024, 17(6), 786; https://doi.org/10.3390/ph17060786 - 15 Jun 2024
Viewed by 814
Abstract
Crataegus monogyna (C. monogyna) is a prominent plant used in Moroccan traditional medicine. This study investigated the phenolic composition and the anti-inflammatory, the hepatoprotective, and the anticancer activities of a hydroethanolic extract of C. monogyna leaves and stems. Ultra-high-performance liquid chromatography [...] Read more.
Crataegus monogyna (C. monogyna) is a prominent plant used in Moroccan traditional medicine. This study investigated the phenolic composition and the anti-inflammatory, the hepatoprotective, and the anticancer activities of a hydroethanolic extract of C. monogyna leaves and stems. Ultra-high-performance liquid chromatography identified the phenolic profile. The in vitro anticancer activity was evaluated using the MTT assay on HL-60 and K-562 myeloleukemia cells and liver (Huh-7) cell lines. The anti-inflammatory effect was assessed in vivo using carrageenan-induced paw edema in rats. The hepatoprotective effect at 300 and 1000 mg/kg doses against the acetaminophen-induced hepatotoxicity on rats was studied for seven days. Additionally, molecular docking simulations were performed to evaluate the extract’s inhibitory potential against key targets: lipoxygenase, cytochrome P450, tyrosine kinase, and TRADD. The extract exhibited significant cytotoxic activity against K-562 and HL-60 cells, but not against lung cancer cells (Huh-7 line). The 1000 mg/kg dose demonstrated the most potent anti-inflammatory effect, inhibiting edema by 99.10% after 6 h. C. monogyna extract displayed promising hepatoprotective properties. Procyanidin (−7.27 kcal/mol), quercetin (−8.102 kcal/mol), and catechin (−9.037 kcal/mol) were identified as the most active molecules against lipoxygenase, cytochrome P450, and tyrosine kinase, respectively. These findings highlight the untapped potential of C. monogyna for further exploration in treating liver damage, inflammation, and leukemia. Full article
Show Figures

Figure 1

14 pages, 1845 KiB  
Article
The Role of Ayahuasca in Colorectal Adenocarcinoma Cell Survival, Proliferation and Oxidative Stress
by Joana Gonçalves, Mariana Feijó, Sílvia Socorro, Ângelo Luís, Eugenia Gallardo and Ana Paula Duarte
Pharmaceuticals 2024, 17(6), 719; https://doi.org/10.3390/ph17060719 - 2 Jun 2024
Viewed by 1008
Abstract
The psychedelic beverage ayahuasca is originally obtained by Banisteriopsis caapi (B. caapi) (BC) and Psychotria viridis (P. viridis) (PV). However, sometimes these plant species are replaced by others that mimic the original effects, such as Mimosa hostilis (M. [...] Read more.
The psychedelic beverage ayahuasca is originally obtained by Banisteriopsis caapi (B. caapi) (BC) and Psychotria viridis (P. viridis) (PV). However, sometimes these plant species are replaced by others that mimic the original effects, such as Mimosa hostilis (M. hostilis) (MH) and Peganum harmala (P. harmala) (PH). Its worldwide consumption and the number of studies on its potential therapeutic effects has increased. This study aimed to evaluate the anticancer properties of ayahuasca in human colorectal adenocarcinoma cells. Thus, the maximum inhibitory concentration (IC50) of decoctions of MH, PH, and a mixture of these (MHPH) was determined. The activities of caspases 3 and 9 were evaluated, and the cell proliferation index was determined through immunocytochemical analysis (Ki-67). Two fluorescent probes were used to evaluate the production of oxidative stress and the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) was also evaluated. It was demonstrated that exposure to the extracts significantly induced apoptosis in Caco-2 cells, while decreasing cell proliferation. MH and MHPH samples significantly reduced oxidative stress and significantly increased glutathione peroxidase activity. No significant differences were found in SOD activity. Overall, it was demonstrated that the decoctions have a potential anticancer activity in Caco-2 cells. Full article
Show Figures

Figure 1

21 pages, 4514 KiB  
Article
Promising Effects of Casearins in Tumor-Bearing Mice and Antinociceptive Action against Oncologic Pain: Molecular Docking and In Vivo Findings
by Jurandy do Nascimento Silva, José Ivo Araújo Beserra Filho, Boris Timah Acha, Fernanda Regina de Castro Almeida, Emanuelle Karine Frota Batista, Valdenizia Rodrigues Silva, Larissa Mendes Bomfim, Milena Botelho Pereira Soares, Daniel Pereira Bezerra, André Gonzaga dos Santos, Francisco das Chagas Pereira de Andrade, Anderson Nogueira Mendes, Daniel Dias Rufino Arcanjo and Paulo Michel Pinheiro Ferreira
Pharmaceuticals 2024, 17(5), 633; https://doi.org/10.3390/ph17050633 - 14 May 2024
Viewed by 973
Abstract
Safer analgesic drugs remain a hard challenge because of cardiovascular and/or gastrointestinal toxicity, mainly. So, this study evaluated in vivo the antiproliferative actions of a fraction with casearins (FC) from Casearia sylvestris leaves against human colorectal carcinomas and antihyperalgesic effects on inflammatory- or [...] Read more.
Safer analgesic drugs remain a hard challenge because of cardiovascular and/or gastrointestinal toxicity, mainly. So, this study evaluated in vivo the antiproliferative actions of a fraction with casearins (FC) from Casearia sylvestris leaves against human colorectal carcinomas and antihyperalgesic effects on inflammatory- or opiate-based pain relief and oncologic pain in Sarcoma 180 (S180)-bearing mice. Moreover, docking investigations evaluated the binding among Casearin X and NMDA(N-methyl-D-aspartate)-type glutamate receptors. HCT-116 colorectal carcinoma-xenografted mice were treated with FC for 15 days. Antinociceptive assays included chemically induced algesia and investigated mechanisms by pharmacological blockade. Intraplantar region S180-bearing animals received a single dose of FC and were examined for mechanical allodynia and behavior alterations. AutoDock Vina determined molecular interactions among Cas X and NMDA receptor subunits. FC reduced tumor growth at i.p. (5 and 10 mg/kg) and oral (25 mg/kg/day) doses (31.12–39.27%). FC reduced abdominal pain, as confirmed by formalin and glutamate protocols, whose antinociception activity was blocked by naloxone and L-NAME (neurogenic phase) and naloxone, atropine, and flumazenil (inflammatory phase). Meanwhile, glibenclamide potentiated the FC analgesic effects. FC increased the paw withdrawal threshold without producing changes in exploratory parameters or motor coordination. Cas X generated a more stable complex with active sites of the NMDA receptor GluN2B subunits. FC is a promising antitumor agent against colorectal carcinomas, has peripheral analgesic effects by desensitizing secondary afferent neurons, and inhibits glutamate release from presynaptic neurons and/or their action on cognate receptors. These findings emphasize the use of clerodane diterpenes against cancer-related pain conditions. Full article
Show Figures

Figure 1

21 pages, 12762 KiB  
Article
β-Elemene Reverses Gefitinib Resistance in NSCLC Cells by Inhibiting lncRNA H19-Mediated Autophagy
by Ruonan Zhang, Yintao Zheng, Qianru Zhu, Xiaoqing Gu, Bo Xiang, Xidong Gu, Tian Xie and Xinbing Sui
Pharmaceuticals 2024, 17(5), 626; https://doi.org/10.3390/ph17050626 - 14 May 2024
Viewed by 1143
Abstract
Lung cancer is a leading cause of mortality worldwide, especially among Asian patients with non-small cell lung cancer (NSCLC) who have epidermal growth factor receptor (EGFR) mutations. Initially, first-generation EGFR tyrosine kinase inhibitors (TKIs) are commonly administered as the primary treatment option; however, [...] Read more.
Lung cancer is a leading cause of mortality worldwide, especially among Asian patients with non-small cell lung cancer (NSCLC) who have epidermal growth factor receptor (EGFR) mutations. Initially, first-generation EGFR tyrosine kinase inhibitors (TKIs) are commonly administered as the primary treatment option; however, encountering resistance to these medications poses a significant obstacle. Hence, it has become crucial to address initial resistance and ensure continued effectiveness. Recent research has focused on the role of long noncoding RNAs (lncRNAs) in tumor drug resistance, especially lncRNA H19. β-elemene, derived from Curcuma aromatic Salisb., has shown strong anti-tumor effects. However, the relationship between β-elemene, lncRNA H19, and gefitinib resistance in NSCLC is unclear. This study aims to investigate whether β-elemene can enhance the sensitivity of gefitinib-resistant NSCLC cells to gefitinib and to elucidate its mechanism of action. The impact of gefitinib and β-elemene on cell viability was evaluated using the cell counting kit-8 (CCK8) assay. Furthermore, western blotting and qRT-PCR analysis were employed to determine the expression levels of autophagy-related proteins and genes, respectively. The influence on cellular proliferation was gauged through a colony-formation assay, and apoptosis induction was quantified via flow cytometry. Additionally, the tumorigenic potential in vivo was assessed using a xenograft model in nude mice. The expression levels of LC3B, EGFR, and Rab7 proteins were examined through immunofluorescence. Our findings elucidate that the resistance to gefitinib is intricately linked with the dysregulation of autophagy and the overexpression of lncRNA H19. The synergistic administration of β-elemene and gefitinib markedly attenuated the proliferative capacity of resistant cells, expedited apoptotic processes, and inhibited the in vivo proliferation of lung cancer. Notably, β-elemene profoundly diminished the expression of lncRNA H19 and curtailed autophagic activity in resistant cells, thereby bolstering their responsiveness to gefitinib. Moreover, β-elemene disrupted the Rab7-facilitated degradation pathway of EGFR, facilitating its repositioning to the plasma membrane. β-elemene emerges as a promising auxiliary therapeutic for circumventing gefitinib resistance in NSCLC, potentially through the regulation of lncRNA H19-mediated autophagy. The participation of Rab7 in this dynamic unveils novel insights into the resistance mechanisms operative in lung cancer, paving the way for future therapeutic innovations. Full article
Show Figures

Figure 1

13 pages, 2355 KiB  
Article
Comprehensive Chemical Profiling and Mechanistic Insight into Anticancer Activity of Annona muricata Leaves Extract
by Rehab H. Abdallah, Al-sayed R. Al-Attar, Youssef M. Shehata, Doaa M. Abdel-Fattah, Rahnaa M. Atta, Omer I. Fantoukh and Ahmed M. Mustafa
Pharmaceuticals 2024, 17(5), 614; https://doi.org/10.3390/ph17050614 - 10 May 2024
Viewed by 1027
Abstract
The aqueous extract of Annona muricata L. leaves was thoroughly analyzed using the UPLC-MS/MS, in addition to a new approach of examination of the extract’s impact on cancer of EAC(Ehrlich ascites carcinoma) in albino male mice. The aim was to investigate the diversity [...] Read more.
The aqueous extract of Annona muricata L. leaves was thoroughly analyzed using the UPLC-MS/MS, in addition to a new approach of examination of the extract’s impact on cancer of EAC(Ehrlich ascites carcinoma) in albino male mice. The aim was to investigate the diversity of the phytochemical constituents of the aqueous leaf capsule extract and their impacts on EAC as anticancer agents. The UPLC-ESI-MS/MS screening resulted in 410 tentatively identified metabolites. Among them, 384 compounds were tentatively identified in a previous study, besides a number of 26 compounds belonging to acetogenins, phenolics, flavonoids, alkaloids, and other miscellaneous compounds, which were exclusively identified in the aqueous extract of the leaf capsule. Interestingly, a new compound was tentatively characterized as galloyl-quinic acid-rutinoside. This study also demonstrated that treating EAC mice with an extract from A. muricata leaves significantly improved the abnormalities in the expression of pro-apoptotic (Bax and caspase-3) and anti-apoptotic (Bcl-2) genes. Furthermore, the extract showed good protection against induced Ehrlich hepatocarcinoma, according to the microscopical, histological, and immune-histochemical analyses of the liver tissues and tumor mass. Full article
Show Figures

Graphical abstract

13 pages, 3026 KiB  
Article
Torenia sp. Extracts Contain Multiple Potent Antitumor Compounds with Nematocidal Activity, Triggering an Activated DNA Damage Checkpoint and Defective Meiotic Progression
by Qinghao Meng, Robert P. Borris and Hyun-Min Kim
Pharmaceuticals 2024, 17(5), 611; https://doi.org/10.3390/ph17050611 - 10 May 2024
Viewed by 743
Abstract
Previously, we analyzed 316 herbal extracts to evaluate their potential nematocidal properties in Caenorhabditis elegans. In this study, our attention was directed towards Torenia sp., resulting in reduced survival and heightened larval arrest/lethality, alongside a noticeable decrease in DAPI-stained bivalent structures and [...] Read more.
Previously, we analyzed 316 herbal extracts to evaluate their potential nematocidal properties in Caenorhabditis elegans. In this study, our attention was directed towards Torenia sp., resulting in reduced survival and heightened larval arrest/lethality, alongside a noticeable decrease in DAPI-stained bivalent structures and disrupted meiotic progression, thus disrupting developmental processes. Notably, Torenia sp. extracts activated a DNA damage checkpoint response via the ATM/ATR and CHK-1 pathways, hindering germline development. LC–MS analysis revealed 13 compounds in the Torenia sp. extracts, including flavonoids, terpenoids, tanshinones, an analog of resveratrol, iridoids, carotenoids, fatty acids, and alkaloids. Of these, 10 are known for their antitumor activity, suggesting the potential of Torenia species beyond traditional gardening, extending into pharmaceutical and therapeutic applications. Full article
Show Figures

Figure 1

13 pages, 1851 KiB  
Article
Static Magnetic Field Reduces the Anticancer Effect of Hinokitiol on Melanoma Malignant Cells—Gene Expression and Redox Homeostasis Studies
by Agnieszka Synowiec-Wojtarowicz, Agata Krawczyk and Magdalena Kimsa-Dudek
Pharmaceuticals 2024, 17(4), 430; https://doi.org/10.3390/ph17040430 - 27 Mar 2024
Viewed by 974
Abstract
Background: Melanoma malignant is characterized by a high mortality rate, accounting for as much as 65% of deaths caused by skin cancer. A potential strategy in cancer treatment may be the use of natural compounds, which include hinokitiol (β-Thujaplicin), a phenolic component of [...] Read more.
Background: Melanoma malignant is characterized by a high mortality rate, accounting for as much as 65% of deaths caused by skin cancer. A potential strategy in cancer treatment may be the use of natural compounds, which include hinokitiol (β-Thujaplicin), a phenolic component of essential oils extracted from cypress trees. Many studies confirm that a high-induction SMF (static magnetic field) has anticancer effects and can be used as a non-invasive anticancer therapy in combination with or without drugs. Aim: The aim of this experiment was to evaluate the effect of a static magnetic field on melanoma cell cultures (C32 and COLO 829) treated with hinokitiol. Methods and Results: Melanoma cells were exposed to a static magnetic field of moderate induction and hinokitiol. The research included determining the activity of the antioxidant enzymes (SOD, GPx, and CAT) and MDA concentration as well as the gene expression profile. Conclusion: Hinokitiol disturbs the redox homeostasis of C32 and COLO 829 melanoma malignant cells. Moreover, a static magnetic field has a protective effect on melanoma malignant cells and abolishes the anticancer effect of hinokitiol. Full article
Show Figures

Figure 1

20 pages, 4816 KiB  
Article
Imperatorin Restores Chemosensitivity of Multidrug-Resistant Cancer Cells by Antagonizing ABCG2-Mediated Drug Transport
by Chung-Pu Wu, Megumi Murakami, Yen-Ching Li, Yang-Hui Huang, Yu-Tzu Chang, Tai-Ho Hung, Yu-Shan Wu and Suresh V. Ambudkar
Pharmaceuticals 2023, 16(11), 1595; https://doi.org/10.3390/ph16111595 - 12 Nov 2023
Cited by 1 | Viewed by 1346
Abstract
The high expression of the ATP-binding cassette (ABC) drug transporter ABCG2 in cancer cells contributes to the emergence of multidrug resistance (MDR) in individuals afflicted with either solid tumors or blood cancers. MDR poses a major impediment in the realm of clinical cancer [...] Read more.
The high expression of the ATP-binding cassette (ABC) drug transporter ABCG2 in cancer cells contributes to the emergence of multidrug resistance (MDR) in individuals afflicted with either solid tumors or blood cancers. MDR poses a major impediment in the realm of clinical cancer chemotherapy. Recently, substantial endeavors have been dedicated to identifying bioactive compounds isolated from nature capable of counteracting ABCG2-mediated MDR in cancer cells. Imperatorin, a natural coumarin derivative renowned for its diverse pharmacological properties, has not previously been explored for its impact on cancer drug resistance. This study investigates the chemosensitizing potential of imperatorin in ABCG2-overexpressing cancer cells. Experimental results reveal that at sub-toxic concentrations, imperatorin significantly antagonizes the activity of ABCG2 and reverses ABCG2-mediated MDR in a concentration-dependent manner. Furthermore, biochemical data and in silico analysis of imperatorin docking to the inward-open conformation of human ABCG2 indicate that imperatorin directly interacts with multiple residues situated within the transmembrane substrate-binding pocket of ABCG2. Taken together, these results furnish substantiation that imperatorin holds promise for further evaluation as a potent inhibitor of ABCG2, warranting exploration in combination drug therapy to enhance the effectiveness of therapeutic agents for patients afflicted with tumors that exhibit high levels of ABCG2. Full article
Show Figures

Figure 1

Review

Jump to: Research

13 pages, 763 KiB  
Review
Biflavonoids: Preliminary Reports on Their Role in Prostate and Breast Cancer Therapy
by Carolina Afonso de Lima, Larissa Kaori Maquedano, Luiza Sertek Jaalouk, Dina Cardoso dos Santos and Giovanna Barbarini Longato
Pharmaceuticals 2024, 17(7), 874; https://doi.org/10.3390/ph17070874 - 2 Jul 2024
Viewed by 679
Abstract
Dimeric flavonoids, also called biflavonoids, are bioactive compounds that exhibit various activities described in the literature, including antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antioxidant, vasorelaxant, and anticancer properties. This work focuses on the anticancer action of naturally occurring dimeric flavonoids against prostate and breast [...] Read more.
Dimeric flavonoids, also called biflavonoids, are bioactive compounds that exhibit various activities described in the literature, including antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antioxidant, vasorelaxant, and anticancer properties. This work focuses on the anticancer action of naturally occurring dimeric flavonoids against prostate and breast cancer, as well as on the mechanisms of action involved in their activity and presents the most current information on this subject in the literature. In the present review, we summarize the latest findings on the antiproliferative activity of 33 dimeric flavonoid-based compounds selected from recently published studies. The tests conducted were in silico and in vitro and demonstrated the cytotoxic activity potential of biflavonoids against prostate and breast tumor cells. Biflavonoids were capable of interfering with the migration and replication of cancer cells and their mechanism of action is related to cell death pathways, especially apoptosis, necrosis, and ferroptosis. These compounds decreased mitochondrial membrane potential and significantly increased intracellular levels of reactive oxygen species (ROS). Additionally, they significantly upregulated the expression of p21, Bax, and cleaved caspase-3, while downregulating Bcl-2 and caspase-3 levels, indicating their cell death mechanism of action is through the Bcl-2/Bax/cleaved caspase-3 pathway and cell cycle arrest. The biflavonoids here related have shown promising anticancer activity and are considered potential drug candidates for prostate and breast cancer treatment. Full article
Show Figures

Figure 1

16 pages, 10011 KiB  
Review
Antiviral, Antibacterial, Antifungal, and Anticancer Activity of Plant Materials Derived from Cymbopogon citratus (DC.) Stapf Species
by Anna Kiełtyka-Dadasiewicz, Javier Esteban and Agata Jabłońska-Trypuć
Pharmaceuticals 2024, 17(6), 705; https://doi.org/10.3390/ph17060705 - 29 May 2024
Viewed by 1007
Abstract
The importance of natural plant materials in modern medicine is considerable, and raw materials with antiviral, antibacterial, antifungal, and anticancer properties are still sought because of microbe resistance and difficulties in anticancer therapy. This review focuses on the lemongrass Cymbopogon citratus (DC.) Stapf. [...] Read more.
The importance of natural plant materials in modern medicine is considerable, and raw materials with antiviral, antibacterial, antifungal, and anticancer properties are still sought because of microbe resistance and difficulties in anticancer therapy. This review focuses on the lemongrass Cymbopogon citratus (DC.) Stapf. and on the lemongrass oil properties and applications. Multiple applications of this plant were described in different latitudes and cultures, including cases of digestive disorders and anti-inflammatory, antipyretic, diaphoretic, stimulating, and antispasmodic conditions. Data from the literature on the composition of essential oil and extracts from C. citratus were analyzed, and the results of research on the antifungal, antibacterial, and antiviral effects were quoted. Essential oil inhibits the growth of fungi (Aspergillus niger, A. fumigatus, Candida spp.) and has an antibacterial effect (Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa). It also shows antiviral activity and deters insects. Lemongrass contains active substances with potential anticancer effects. This plant has apoptosis-stimulating properties, mainly through the activity of apigenin, which is the main active flavonoid in this plant. This active substance helps inhibit cell proliferation by stopping the cell cycle and directing cancer cells toward apoptosis. Full article
Show Figures

Graphical abstract

36 pages, 7182 KiB  
Review
Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer
by Mihaela Boța, Lavinia Vlaia, Alex-Robert Jîjie, Iasmina Marcovici, Flavia Crişan, Cristian Oancea, Cristina Adriana Dehelean, Tudor Mateescu and Elena-Alina Moacă
Pharmaceuticals 2024, 17(5), 598; https://doi.org/10.3390/ph17050598 - 8 May 2024
Cited by 2 | Viewed by 2551
Abstract
In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds [...] Read more.
In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds in combination with conventional chemotherapeutic drugs has gained significant attention as a potential novel approach in the treatment of lung cancer. The present work highlights the importance of finding more effective therapies to increase survival rates. Chemotherapy is a primary treatment option for lung cancer but it has limitations such as reduced effectiveness because cancer cells become resistant. Natural compounds isolated from medicinal plants have shown promising anticancer or chemopreventive properties and their synergistic effect has been observed when combined with conventional therapies. The combined use of an anti-cancer drug and a natural compound exhibits synergistic effects, enhancing overall therapeutic actions against cancer cells. In conclusion, this work provides an overview of the latest preclinical research on medicinal plants and plant-derived compounds as alternative or complementary treatment options for lung cancer chemotherapy and discusses the potential of natural compounds in treating lung cancer with minimal side effects. Full article
Show Figures

Figure 1

Back to TopTop