Occurrence and Control of Plant Bacterial Diseases

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Protection and Biotic Interactions".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 3953

Special Issue Editors


E-Mail Website
Guest Editor
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
Interests: the development and utilization of new targets for green prevention and control of plant bacterial diseases
Special Issues, Collections and Topics in MDPI journals
Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
Interests: pathogenic and resistance mechanisms of bacteria

Special Issue Information

Dear Colleagues,

Plant bacterial diseases pose significant threats to agricultural productivity worldwide. These diseases are caused by various pathogenic bacteria that can infect different parts of the plant, leading to symptoms such as wilting, leaf spots, necrosis, and reduced yield. Managing and controlling plant bacterial diseases is crucial to ensuring food security and sustaining agricultural economies. This Special Issue will cover a wide variety of areas, aiming to contribute to the overall knowledge of plant bacterial diseases from several aspects, such as:

Development of Novel Biocontrol Agents: Investigate and develop new biocontrol agents, such as beneficial bacteria or bacteriophages, for the management of specific plant bacterial diseases.

Epidemiological Studies and Disease Forecasting: Conduct epidemiological studies to understand the spread and dynamics of bacterial diseases in different agricultural systems and develop models for predicting disease outbreaks to enhance early detection and management.

Antibiotic Alternatives for Disease Control: Investigate alternative compounds and substances that can replace or reduce the reliance on antibiotics for controlling bacterial diseases in plants, considering concerns related to antibiotic resistance.

Understanding Host–Pathogen Interactions: Investigate the molecular and cellular mechanisms underlying plant–pathogen interactions to identify potential targets for disease control and to gain insights into the development of resistant crops.

Climate Change Impact on Disease Dynamics: Study the impact of climate change on the occurrence and severity of bacterial diseases in plants and develop adaptation strategies for agriculture to mitigate climate-related disease risks.

Effectiveness of Plant Extracts and Essential Oils: Evaluate the efficacy of plant extracts and essential oils with antimicrobial properties as potential alternatives for controlling bacterial diseases in crops, considering their environmental and economic sustainability.

Dr. Xiaolong Shao
Dr. Zeling Xu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant bacterial diseases
  • bacterial pathogens
  • epidemiology
  • disease control strategies
  • biological agents
  • host–pathogen interaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3368 KiB  
Article
Botanical-Based Strategies for Controlling Xanthomonas spp. in Cotton and Citrus: In Vitro and In Vivo Evaluation
by Roxana Andrea Roeschlin, María Alejandra Favaro, Bruno Bertinat, Fernando Gabriel Lorenzini, Marcelo Javier Paytas, Laura Noemí Fernandez, María Rosa Marano and Marcos Gabriel Derita
Plants 2025, 14(6), 957; https://doi.org/10.3390/plants14060957 - 19 Mar 2025
Viewed by 209
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri, and bacterial blight, caused by Xanthomonas citri subsp. malvacearum, results in substantial economic losses worldwide, and searching for new antibacterial agents is a critical challenge. In this study, regional isolates AE28 and RQ3 [...] Read more.
Citrus canker, caused by Xanthomonas citri subsp. citri, and bacterial blight, caused by Xanthomonas citri subsp. malvacearum, results in substantial economic losses worldwide, and searching for new antibacterial agents is a critical challenge. In this study, regional isolates AE28 and RQ3 were obtained from characteristic lesions on Citrus limon and Gossypium hirsutum, respectively. Essential oils extracted by steam distillation from the fresh aerial parts of Pelargonium graveolens and Schinus molle exhibited complete (100%) inhibition of bacterial growth in vitro at a concentration of 1000 ppm, as determined by diffusion tests. To evaluate the potential of these essential oils for controlling Xanthomonas-induced diseases, in vivo assays were conducted on lemon leaves and cotton cotyledons inoculated with the regional AE28 and RQ3 strains. Two treatment approaches were tested: preventive application (24 h before inoculation) and curative application (24 h after inoculation). Preventive and curative treatments with P. graveolens essential oil significantly reduced citrus canker severity, whereas S. molle essential oil did not show a significant reduction compared to the control. In contrast, regardless of the treatment’s timing, both essential oils effectively reduced bacterial blight severity in cotton cotyledons by approximately 1.5-fold. Gas chromatography–mass spectrometry (GC-MS) analysis identified geraniol and citronellol as the major components of P. graveolens essential oil, while limonene and t-cadinol were predominant in S. molle. These findings highlight the promising potential of botanical products as bactericidal agents, warranting further research to optimize their application and efficacy. Full article
(This article belongs to the Special Issue Occurrence and Control of Plant Bacterial Diseases)
Show Figures

Figure 1

20 pages, 6492 KiB  
Article
Bacteriostatic Activity and Resistance Mechanism of Artemisia annua Extract Against Ralstonia solanacearum in Pepper
by Tiantian Du, Weiping Zhu, Chenning Zhang, Xiaomin Liang, Yinghua Shu, Jingyun Zhou, Mengyu Zhang, Yuxuan He, Jincai Tu and Yuanjiao Feng
Plants 2025, 14(5), 651; https://doi.org/10.3390/plants14050651 - 20 Feb 2025
Viewed by 402
Abstract
The destructive bacterial wilt disease caused by Ralstonia solanacearum leads to substantial losses in pepper production worldwide. Plant-derived pesticides exhibit advantages of high efficiency and broad spectrum when compared to traditional chemical pesticides. Artemisia annua and ‘Tai Jiao’ No. 1 were used as [...] Read more.
The destructive bacterial wilt disease caused by Ralstonia solanacearum leads to substantial losses in pepper production worldwide. Plant-derived pesticides exhibit advantages of high efficiency and broad spectrum when compared to traditional chemical pesticides. Artemisia annua and ‘Tai Jiao’ No. 1 were used as the experimental materials, and treated with 0.75 g·mL−1, 1.5 g·mL−1, and 3 g·mL−1 of A. annua extract and inoculated with R. solanacearum at a concentration of OD600 = 0.1 for 14 days. The inhibitory activity of A. annua extracts against R. solanacearum, as well as the disease index, defense enzyme activities, and defense-related substances contents of pepper seedlings were determined. The results showed that the Minimum Inhibitory Concentration (MIC) of the A. annua extract was 3 g·mL−1. As the concentration of A. annua extract increased, the extent of R. solanacearum cell crumpling intensified, accompanied by a gradual decline in its biofilm-forming ability. On the 14th day after treatment, the disease severity index and incidence rate were significantly reduced when the A. annua extract was applied at concentrations of 0.75 g·mL−1 and 3 g·mL−1. At both the 7th and 14th days after treatment, the application of A. annua extract at concentrations of 0.75 g·mL−1 and 3 g·mL−1 led to enhanced activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in peppers at different stages. Simultaneously, it reduced the levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2), effectively scavenging reactive oxygen species and alleviating cellular lipid peroxidation. Furthermore, the extract increased the activities of polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL), as well as elevated the contents of soluble protein, flavonoids, and total phenols, ultimately enhancing the disease resistance of peppers. Considering the development costs, the application of A. annua extract at a concentration of 0.75 g·mL−1 demonstrates great potential for green control measures against bacterial wilt in peppers. Full article
(This article belongs to the Special Issue Occurrence and Control of Plant Bacterial Diseases)
Show Figures

Figure 1

20 pages, 3337 KiB  
Article
Bacteria Pseudomonas sp. and Pantoea sp. Are the New Etiological Agents of Diseases on Forest Trees
by Elena Porotikova, Natalia Brusnova, Andrei Sushchenko, Galina Kolganikhina and Svetlana Vinogradova
Plants 2025, 14(4), 563; https://doi.org/10.3390/plants14040563 - 12 Feb 2025
Viewed by 586
Abstract
Forest trees significantly affect human life. The spread of pathogens, including bacterial ones, poses a serious threat to their health. Despite this, however, the species composition and distribution of pathogenic bacteria, as well as the etiology of common diseases affecting forest trees, remain [...] Read more.
Forest trees significantly affect human life. The spread of pathogens, including bacterial ones, poses a serious threat to their health. Despite this, however, the species composition and distribution of pathogenic bacteria, as well as the etiology of common diseases affecting forest trees, remain virtually unstudied. In this study, we, for the first time, describe different species of Pseudomonas and Pantoea as new etiological agents associated with the symptoms of leaf spotting and wood darkening on Acer tataricum L., Fraxinus pennsylvanica L., Ulmus minor Mill. Ulmus laevis Pallas. and Populus tremula L. For the identification of bacteria species, we used an integrated approach based on the characterization of their morphology, biochemistry, physiology and genetics. Phylogenetic analysis was performed using multilocus typing for five genes for Pseudomonas and six genes for Pantoea. Leaf spotting on A. tataricum, F. pennsylvanica, U. minor and U. laevis was shown to be caused by Pseudomonas cerasi, Pseudomonas congelans, Pseudomonas graminis, Pseudomonas syringae and Pantoea agglomerans both in monoinfection and coinfection. Wood darkening in U. minor U. laevis and P. tremula was found to be associated with the presence of Pantoea sp. and P. agglomerans. The coinfection of forest trees with bacteria of the genera Pseudomonas and Pantoea indicates a complex mechanism of interaction between the two populations, which will be the subject of future studies. Full article
(This article belongs to the Special Issue Occurrence and Control of Plant Bacterial Diseases)
Show Figures

Figure 1

18 pages, 3527 KiB  
Article
Bacillus cabrialesii subsp. cabrialesii Strain TE5: A Promising Biological Control Bacterium Against the Causal Agent of Spot Blotch in Wheat
by Ixchel Campos-Avelar, Michelle Fabiela García Jaime, Pamela Helué Morales Sandoval, Fannie Isela Parra-Cota and Sergio de los Santos Villalobos
Plants 2025, 14(2), 209; https://doi.org/10.3390/plants14020209 - 13 Jan 2025
Viewed by 951
Abstract
Strain TE5 was isolated from a wheat (Triticum turgidum L. subsp. durum) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico. In this work, we present strain TE5 as a promising biological control agent against Bipolaris [...] Read more.
Strain TE5 was isolated from a wheat (Triticum turgidum L. subsp. durum) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico. In this work, we present strain TE5 as a promising biological control agent against Bipolaris sorokiniana. First, after its genome sequencing through Illumina NovaSeq, this strain showed a genome size of 4,262,927 bp, with a 43.74% G + C content, an N50 value of 397,059 bp, an L50 value of 4 bp, and 41 contigs (>500 bp). Taxonomical affiliation was carried out by using overall genome relatedness indexes (OGRIs) and the construction of a phylogenomic tree based on the whole genome. The results indicated that strain TE5 identifies with Bacillus cabrialesii subsp. cabrialesii. Genomic annotation using Rapid Annotation Using Subsystems Technology (RAST) and Rapid Prokaryotic Genome Annotation (Prokka) indicated the presence of 4615 coding DNA sequences (CDSs) distributed across 330 subsystems, which included gene families associated with biocontrol, stress response, and iron competition. Furthermore, when the antiSMASH 7.1 platform was used for genome mining, the results indicated the presence of seven putative biosynthetic gene clusters related to the production of biocontrol metabolites, namely subtilosin A, bacillibactin, fengycin, bacillaene, bacilysin, surfactin, and rhizocticin A. Moreover, the antifungal activity of strain TE5 and its cell-free extract (CFE) was evaluated against Bipolaris sorokiniana, an emergent wheat pathogen. The results of in vitro dual confrontation showed fungal growth inhibition of 67% by strain TE5. Additionally, its CFE almost completely inhibited (93%) the growth of the studied phytopathogenic fungus on liquid media. Further observations of the impact of these bacterial metabolites on fungal spore germination exhibited inhibition of fungal spores through degrading the germinative hypha, avoiding mycelium development. Finally, the protective effect of strain TE5 against Bipolaris sorokiniana was evaluated for wheat seedlings. The results showed a significant decrease (83%) in disease severity in comparison with the plant infection without inoculation of the biological control agent. Thus, this work proposes Bacillus cabrialesii subsp. cabrialesii strain TE5 as a promising biological control agent against the wheat pathogen Bipolaris sorokiniana while suggesting lipopeptides as the potential mode of action, together with plant growth and defense stimulation. Full article
(This article belongs to the Special Issue Occurrence and Control of Plant Bacterial Diseases)
Show Figures

Figure 1

13 pages, 3444 KiB  
Article
A Mitogen-Activated Protein Kinase Pathway Is Required for Bacillus amyloliquefaciens PMB05 to Enhance Disease Resistance to Bacterial Soft Rot in Arabidopsis thaliana
by Ai-Ting Li, Shang-Kai Liu, Jia-Rong Li, Sabrina Diana Blanco, Hsin-Wei Tsai, Jia-Xin Xie, Yun-Chen Tsai, Yuh Tzean and Yi-Hsien Lin
Plants 2024, 13(18), 2591; https://doi.org/10.3390/plants13182591 - 16 Sep 2024
Viewed by 1112
Abstract
When a plant is infected by a pathogen, endogenous immune responses are initiated. When the initiation of these defense responses is induced by a pathogen-associated molecular pattern (PAMP) of a pathogen, it is called PAMP-triggered immunity (PTI). Previous studies have shown that Bacillus [...] Read more.
When a plant is infected by a pathogen, endogenous immune responses are initiated. When the initiation of these defense responses is induced by a pathogen-associated molecular pattern (PAMP) of a pathogen, it is called PAMP-triggered immunity (PTI). Previous studies have shown that Bacillus amyloliquefaciens PMB05 can enhance PTI signals and improve disease control of bacterial soft rot and wilt in Arabidopsis thaliana. In the context of controlling bacterial wilt disease, the involvement of a mitogen-activated protein kinase (MAPK) signaling pathway has been established. Nevertheless, it remains unclear whether this pathway is also required for B. amyloliquefaciens PMB05 in controlling bacterial soft rot. In this study, A. thaliana ecotype Columbia (Col-0) and its mutants on a MAPK pathway-related pathway were used as a model and established that the ability of B. amyloliquefaciens PMB05 to control soft rot requires the participation of the MAPK pathway. Moreover, the enhancement of disease resistance by PMB05 is highly correlated with the activation of reactive oxygen species generation and stomata closure, rather than callose deposition. The spray inoculation method was used to illustrate that PMB05 can enhance stomatal closure, thereby restricting invasion by the soft rot bacterium. This control mechanism has also been demonstrated to require the activation of the MAPK pathway. This study demonstrates that B. amyloliquefaciens PMB05 can accelerate stomata closure via the activation of the MAPK pathway during PTI, thereby reducing pathogen invasion and achieving disease resistance against bacterial soft rot. Full article
(This article belongs to the Special Issue Occurrence and Control of Plant Bacterial Diseases)
Show Figures

Figure 1

Back to TopTop