Pre-Breeding in Crops

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Genetics, Genomics and Biotechnology".

Deadline for manuscript submissions: closed (30 June 2024) | Viewed by 7294

Special Issue Editors

International Center for Agricultural Research in the Dry Areas (ICARDA), Av. Mohamed Belarbi Alaloui, Al Irfan, Rabat BP. 6299, Morocco
Interests: agrobiodiversity conservation; pre-breeding cereals and legumes; breeding cereals

E-Mail Website1 Website2
Guest Editor
South Asia and China Regional Program, International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi 110012, India
Interests: crop genetics; food legumes and rice; crop improvement; genetic enhancement; pre-breeding

Special Issue Information

Dear Colleagues,

The challenges imposed by climate change and by requirements for quality and nutritional attributes of crops call for broadening the genetic base available to breeders to develop climate resilient, diseases and insect resistant and high-quality germplasm. Genetic resources, mainly landraces and crop wild relatives are special germplasm which can serve to introgress useful traits into elite germplasm through strengthening of pre-breeding efforts. From the existing literature, few examples of success of transferring genes from different genepools of crops are cited in case of wheat, tomatoes, rice and few other crops. This special issue will allow to share other successful efforts of pre-breeding for major crops and others and to show the impacts on the release of new varieties.

Dr. Ahmed Amri
Dr. Shiv Kumar Agrawal
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • genetic resources
  • pre-breeding
  • tolerance to abiotic stresses
  • resistance to biotic stresses
  • quality and nutrition
  • interspecific crosses
  • released varieties

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2298 KiB  
Article
Breeding Rice to Increase Anthocyanin Yield Per Area through Small, Black Grain Size and Three Grains per Spikelet
by Thanarote Sricha, Tidarat Monkham, Jirawat Sanitchon, Myo San Aung Nan, Teerawat Suwannual and Sompong Chankaew
Plants 2024, 13(19), 2713; https://doi.org/10.3390/plants13192713 - 27 Sep 2024
Viewed by 558
Abstract
Rice varieties with high anthocyanin content are often recognized for their vibrant colors and health benefits. The demand for rice with high anthocyanin is increasing domestically and internationally due to consumers becoming more health-conscious. However, the current increase in yield might not raise [...] Read more.
Rice varieties with high anthocyanin content are often recognized for their vibrant colors and health benefits. The demand for rice with high anthocyanin is increasing domestically and internationally due to consumers becoming more health-conscious. However, the current increase in yield might not raise the anthocyanin content due to its location in the grain pericarp and seed coat, which are relative to the grain surface area. This study aims to develop rice lines to increase anthocyanin yield per production area by improving rice varieties with small, black, and three grains per spikelet. Accordingly, six rice recombinant inbred lines (RILs) were bred by crossing Niaw Dam Chaw Mai Pai 49 (NDCMP49) with Khao Nok (LLR059). The grain color, size, and number of grains per spikelet were selected from the F1 to the F4 population through the pedigree selection method. Six RILs and their parents were assigned in a randomized complete block design (RCBD) with three replications under field conditions during the rainy season of 2021 and 2022 in four locations. The results showed statistically significant differences in environmental conditions, affecting productivity and the yield components of rice lines. Consequently, the rice lines adapted to a specific environment, and there were significant differences in genotype. This study identified three RILs with higher yield performance (13-1 (3842 kg/ha), 374-1 (3699 kg/ha), and 903-3 (3550 kg/ha)) compared with the parent NDCMP49 (1996 kg/ha). However, the grain yields were unstable in the three top-yielding RILs due to varying environmental conditions, indicating that selective breeding requires a specific, narrow environment. Based on grain yield and grain size, the RILs performed better in the grain surface area than in the parent NDCMP49. Moreover, only two RILs (374-1 and 903-3) produced the highest anthocyanin content and yield, although this was lower than in the parent NDCMP49. However, the 374-1 and 903-3 RILs produced more grains, black grains, and three grains per spikelet with high yield and moderate anthocyanin content. They can, therefore, be backcrossed to the parent NDCMP49 to increase the accumulated anthocyanin content with a stable, high yield. This work provides a resource of small grains, black grains, and three grains per spikelet in the rice breeding line for breeding programs in the future. Full article
(This article belongs to the Special Issue Pre-Breeding in Crops)
Show Figures

Figure 1

15 pages, 3488 KiB  
Article
Multi-Population Analysis for Leaf and Neck Blast Reveals Novel Source of Neck Blast Resistance in Rice
by Ashim Debnath, Hage Sumpi, Bharati Lap, Karma L. Bhutia, Abhilash Behera, Wricha Tyagi and Mayank Rai
Plants 2024, 13(17), 2475; https://doi.org/10.3390/plants13172475 - 4 Sep 2024
Viewed by 644
Abstract
Rice blast is one of the most devastating biotic stresses that limits rice productivity. The North Eastern Hill (NEH) region of India is considered to be one of the primary centres of diversity for both rice and pathotypes of Magnaporthe grisea. Therefore, [...] Read more.
Rice blast is one of the most devastating biotic stresses that limits rice productivity. The North Eastern Hill (NEH) region of India is considered to be one of the primary centres of diversity for both rice and pathotypes of Magnaporthe grisea. Therefore, the present study was carried out to elucidate the genetic basis of leaf and neck blast resistance under Meghalaya conditions. A set of 80 diverse genotypes (natural population) and 2 F2 populations involving resistant parent, a wildtype landrace, LR 5 (Lal Jangali) and susceptible genotypes Sambha Mahsuri SUB 1 (SMS) and LR 26 (Chakhao Poireiton) were used for association analysis of reported major gene-linked markers with leaf and neck blast resistance to identify major effective genes under local conditions. Genotyping using twenty-five gene-specific markers across diverse genotypes and F2 progenies revealed genes Pi5 and Pi54 to be associated with leaf blast resistance in all three populations. Genes Pib and qPbm showed an association with neck blast resistance in both natural and LR 5 × SMS populations. Additionally, a set of 184 genome-wide polymorphic markers (SSRs and SNPs), when applied to F2-resistant and F2-susceptible DNA bulks derived from LR 5 × LR 26, suggested that Pi20(t) on chromosome 12 is one of the major genes imparting disease resistance. Markers snpOS318, RM1337 and RM7102 and RM247 and snpOS316 were associated with leaf blast and neck blast resistance, respectively. The genotypes, markers and genes will help in marker-assisted selection and development of varieties with durable resistance. Full article
(This article belongs to the Special Issue Pre-Breeding in Crops)
Show Figures

Figure 1

13 pages, 2799 KiB  
Article
Development of Apomictic 56-Chromosomal Maize–Tripsacum Hybrids: A Potential Breakthrough in Heterosis Fixation
by Viktor Andreevich Sokolov, Pavel Alexandrovich Panikhin, Kirill Olegovich Plotnikov, Grigory Yurievich Chepurnov and Alexander Genadievich Blinov
Plants 2024, 13(15), 2138; https://doi.org/10.3390/plants13152138 - 1 Aug 2024
Viewed by 706
Abstract
Maize (Zea mays L.) is one of the most demanded grain crops in the world. Currently, production has exceeded one billion tons and is increasing by 3–5% annually. Such growth is due to the genetic potential of the crop and the use [...] Read more.
Maize (Zea mays L.) is one of the most demanded grain crops in the world. Currently, production has exceeded one billion tons and is increasing by 3–5% annually. Such growth is due to the genetic potential of the crop and the use of heterosis F1 hybrids in production. However, the need to produce first-generation seed annually poses significant challenges and is an economically costly technology. A solution to this problem may be the transfer of the asexual (apomictic) mode of reproduction to maize from its wild relative, eastern gamagrass (Tripsacum dactyloides L.). In this work, we report the production of 56-chromosome apomictic hybrids of maize (Zea mays L.) with eastern gamagrass (T. dactyloides L.) with restored anther fertility. The mode of reproduction of the plant was confirmed by counting chromosomes and sequencing the nuclear gene (Pox3) and chloroplast tRNA-Leu (trnL) gene. These apomictic hybrids had karyotypes of 2n = 56 = [(10Zm(573MB) + 36Td) + 10Zm(611CB)] and 2n = 56 = [(10Zm(611CB) + 36Td) + 10Zm(611CB)]. The resulting hybrids can be widely used as a fodder crop. Full article
(This article belongs to the Special Issue Pre-Breeding in Crops)
Show Figures

Figure 1

18 pages, 2176 KiB  
Article
Heat Stress-Tolerant Quantitative Trait Loci Identified Using Backcrossed Recombinant Inbred Lines Derived from Intra-Specifically Diverse Aegilops tauschii Accessions
by Monir Idres Yahya Ahmed, Nasrein Mohamed Kamal, Yasir Serag Alnor Gorafi, Modather Galal Abdeldaim Abdalla, Izzat Sidahmed Ali Tahir and Hisashi Tsujimoto
Plants 2024, 13(3), 347; https://doi.org/10.3390/plants13030347 - 24 Jan 2024
Viewed by 1228
Abstract
In the face of climate change, bringing more useful alleles and genes from wild relatives of wheat is crucial to develop climate-resilient varieties. We used two populations of backcrossed recombinant inbred lines (BIL1 and BIL2), developed by crossing and backcrossing two intra-specifically diverse [...] Read more.
In the face of climate change, bringing more useful alleles and genes from wild relatives of wheat is crucial to develop climate-resilient varieties. We used two populations of backcrossed recombinant inbred lines (BIL1 and BIL2), developed by crossing and backcrossing two intra-specifically diverse Aegilops tauschii accessions from lineage 1 and lineage 2, respectively, with the common wheat cultivar ‘Norin 61′. This study aimed to identify quantitative trait loci (QTLs) associated with heat stress (HS) tolerance. The two BILs were evaluated under heat stress environments in Sudan for phenology, plant height (PH), grain yield (GY), biomass (BIO), harvest index (HI), and thousand-kernel weight (TKW). Grain yield was significantly correlated with BIO and TKW under HS; therefore, the stress tolerance index (STI) was calculated for these traits as well as for GY. A total of 16 heat-tolerant lines were identified based on GY and STI-GY. The QTL analysis performed using inclusive composite interval mapping identified a total of 40 QTLs in BIL1 and 153 QTLs in BIL2 across all environments. We detected 39 QTLs associated with GY-STI, BIO-STI, and TKW-STI in both populations (14 in BIL1 and 25 in BIL2). The QTLs associated with STI were detected on chromosomes 1A, 3A, 5A, 2B, 4B, and all the D-subgenomes. We found that QTLs were detected only under HS for GY on chromosome 5A, TKW on 3B and 5B, PH on 3B and 4B, and grain filling duration on 2B. The higher number of QTLs identified in BIL2 for heat stress tolerance suggests the importance of assessing the effects of intraspecific variation of Ae. tauschii in wheat breeding as it could modulate the heat stress responses/adaptation. Our study provides useful genetic resources for uncovering heat-tolerant QTLs for wheat improvement for heat stress environments. Full article
(This article belongs to the Special Issue Pre-Breeding in Crops)
Show Figures

Figure 1

20 pages, 2244 KiB  
Article
Impact of Heat and Drought Stress on Grasspea and Its Wild Relatives
by Khawla Aloui, Hasnae Choukri, Noureddine El Haddad, Priyanka Gupta, Keltoum El Bouhmadi, Peter M. F. Emmrich, Akanksha Singh, Anne Edwards, Fouad Maalouf, Outmane Bouhlal, Jasmine Staples and Shiv Kumar
Plants 2023, 12(19), 3501; https://doi.org/10.3390/plants12193501 - 8 Oct 2023
Cited by 2 | Viewed by 2234
Abstract
Grasspea (Lathyrus sativus L.) is recognized as a highly drought-tolerant legume. However, excessive consumption of its seeds and green tissues causes neurolathyrism, a condition characterized by an irreversible paralysis of the legs induced by a neurotoxin amino acid called β-N-oxalyl-L-α, β- diaminopropionic [...] Read more.
Grasspea (Lathyrus sativus L.) is recognized as a highly drought-tolerant legume. However, excessive consumption of its seeds and green tissues causes neurolathyrism, a condition characterized by an irreversible paralysis of the legs induced by a neurotoxin amino acid called β-N-oxalyl-L-α, β- diaminopropionic acid (β-ODAP). The present study investigated the effects of heat, and combined heat + drought during the reproductive phase on physiological and phenological parameters, yield-related factors, ODAP content, and seed protein of 24 genotypes representing 11 Lathyrus species under controlled conditions. Analysis of variance revealed a highly significant effect (p < 0.001) of stress treatments and genotypes for all the traits. In general, heat stress individually or in combination with drought expedited phenology, reduced relative leaf water content, stimulated proline synthesis, and influenced chlorophyll concentration; the effects were more severe under the combined heat + drought stress. ODAP content in seeds ranged from 0.06 to 0.30% under no-stress conditions. However, under heat stress, there was a significant increase of 33% in ODAP content, and under combined stress (heat + drought), the increase reached 83%. Crude protein content ranged from 15.64 to 28.67% among no stress plants and decreased significantly by 23% under heat stress and by 36% under combined stress. The findings of this study also indicated substantial reductions in growth and grain yield traits under both heat stress and combined heat + drought stress. Six accessions namely IG 66026, IG 65018, IG 65687, IG 118511, IG 64931, and IG65273 were identified as having the most favorable combination of yield, protein content, and seed ODAP levels across all conditions. ODAP content in these six accessions varied from 0.07 to 0.11% under no stress and remained at moderate levels during both heat stress (0.09–0.14%) and combined stress (0.11–0.17%). IG 66026 was identified as the most stable genotype under drought and heat stress conditions with high protein content, and low ODAP content. By identifying those promising accessions, our results have established a basis for forthcoming grasspea breeding initiatives while paving the way for future research exploration into the fundamental mechanisms driving ODAP variation in the presence of both heat and drought stress conditions. Full article
(This article belongs to the Special Issue Pre-Breeding in Crops)
Show Figures

Figure 1

21 pages, 10098 KiB  
Article
Phenotypic Diversity in Domesticated and Wild Timothy Grass, and Closely Related Species for Forage Breeding
by Yousef Rahimi, Girma Bedada, Silvana Moreno, Anne-Maj Gustavsson, Pär K. Ingvarsson and Anna Westerbergh
Plants 2023, 12(19), 3494; https://doi.org/10.3390/plants12193494 - 7 Oct 2023
Cited by 1 | Viewed by 1347
Abstract
Timothy grass (Phleum pratense L.) is one of the most important forage crops in temperate regions. Forage production, however, faces many challenges, and new cultivars adapted to a changing climate are needed. Wild populations and relatives of timothy may serve as valuable [...] Read more.
Timothy grass (Phleum pratense L.) is one of the most important forage crops in temperate regions. Forage production, however, faces many challenges, and new cultivars adapted to a changing climate are needed. Wild populations and relatives of timothy may serve as valuable genetic resources in the breeding of improved cultivars. The aim of our study is to provide knowledge about the phenotypic diversity in domesticated (cultivars, breeding lines and landraces) and wild timothy and two closely related species, P. nodosum (lowland species) and P. alpinum, (high altitude species) to identify potential genetic resources. A total of 244 accessions of timothy and the two related species were studied for growth (plant height, fresh and dry weight) and plant development (days to stem elongation, days to booting and days to heading) in the field and in a greenhouse. We found a large diversity in development and growth between the three Phleum species, as well as between the accessions within each species. Timothy showed the highest growth, but no significant difference was found between wild accessions and cultivars of timothy in fresh and dry weight. However, these two groups of accessions showed significant differences in plant development, where timothy cultivars as a group reached flowering earlier than the wild accessions. This suggests that there has not been a strong directional selection towards increased yield during the domestication and breeding of timothy; rather, timothy has been changed for other traits such as earlier heading. Principal component analysis and cluster analysis based on all traits revealed distinct clusters. Accessions falling within the same cluster showed similarities in the development and growth rather than the type of accession. The large diversity found in this study shows the potential of using timothy accessions as genetic resources in crosses with existing cultivars. Also, accessions of P. nodosum with favorable traits can be candidates for the domestication of a novel forage crop, and the high-altitude relative P. alpinum may be a source of genes for the development of more cold and stresstolerant cultivars. Full article
(This article belongs to the Special Issue Pre-Breeding in Crops)
Show Figures

Figure 1

Back to TopTop