Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 698 KiB  
Review
Dissecting the Environmental Consequences of Bacillus thuringiensis Application for Natural Ecosystems
by Maria E. Belousova, Yury V. Malovichko, Anton E. Shikov, Anton A. Nizhnikov and Kirill S. Antonets
Toxins 2021, 13(5), 355; https://doi.org/10.3390/toxins13050355 - 16 May 2021
Cited by 21 | Viewed by 6879
Abstract
Bacillus thuringiensis (Bt), a natural pathogen of different invertebrates, primarily insects, is widely used as a biological control agent. While Bt-based preparations are claimed to be safe for non-target organisms due to the immense host specificity of the bacterium, the [...] Read more.
Bacillus thuringiensis (Bt), a natural pathogen of different invertebrates, primarily insects, is widely used as a biological control agent. While Bt-based preparations are claimed to be safe for non-target organisms due to the immense host specificity of the bacterium, the growing evidence witnesses the distant consequences of their application for natural communities. For instance, upon introduction to soil habitats, Bt strains can affect indigenous microorganisms, such as bacteria and fungi, and further establish complex relationships with local plants, ranging from a mostly beneficial demeanor, to pathogenesis-like plant colonization. By exerting a direct effect on target insects, Bt can indirectly affect other organisms in the food chain. Furthermore, they can also exert an off-target activity on various soil and terrestrial invertebrates, and the frequent acquisition of virulence factors unrelated to major insecticidal toxins can extend the Bt host range to vertebrates, including humans. Even in the absence of direct detrimental effects, the exposure to Bt treatment may affect non-target organisms by reducing prey base and its nutritional value, resulting in delayed alleviation of their viability. The immense phenotypic plasticity of Bt strains, coupled with the complexity of ecological relationships they can engage in, indicates that further assessment of future Bt-based pesticides’ safety should consider multiple levels of ecosystem organization and extend to a wide variety of their inhabitants. Full article
(This article belongs to the Special Issue The Pivotal Role of Toxins in Insects-Bacteria Interactions)
Show Figures

Figure 1

15 pages, 1882 KiB  
Review
Shining a Light on Colibactin Biology
by Michael W. Dougherty and Christian Jobin
Toxins 2021, 13(5), 346; https://doi.org/10.3390/toxins13050346 - 12 May 2021
Cited by 33 | Viewed by 7489
Abstract
Colibactin is a secondary metabolite encoded by the pks gene island identified in several Enterobacteriaceae, including some pathogenic Escherichia coli (E. coli) commonly enriched in mucosal tissue collected from patients with inflammatory bowel disease and colorectal cancer. E. coli harboring this [...] Read more.
Colibactin is a secondary metabolite encoded by the pks gene island identified in several Enterobacteriaceae, including some pathogenic Escherichia coli (E. coli) commonly enriched in mucosal tissue collected from patients with inflammatory bowel disease and colorectal cancer. E. coli harboring this biosynthetic gene cluster cause DNA damage and tumorigenesis in cell lines and pre-clinical models, yet fundamental knowledge regarding colibactin function is lacking. To accurately assess the role of pks+ E. coli in cancer etiology, the biological mechanisms governing production and delivery of colibactin by these bacteria must be elucidated. In this review, we will focus on recent advances in our understanding of colibactin’s structural mode-of-action and mutagenic potential with consideration for how this activity may be regulated by physiologic conditions within the intestine. Full article
(This article belongs to the Special Issue Escherichia coli Toxins and Intestinal Diseases)
Show Figures

Figure 1

13 pages, 584 KiB  
Article
Duvernoy’s Gland Transcriptomics of the Plains Black-Headed Snake, Tantilla nigriceps (Squamata, Colubridae): Unearthing the Venom of Small Rear-Fanged Snakes
by Erich P. Hofmann, Rhett M. Rautsaw, Andrew J. Mason, Jason L. Strickland and Christopher L. Parkinson
Toxins 2021, 13(5), 336; https://doi.org/10.3390/toxins13050336 - 6 May 2021
Cited by 7 | Viewed by 4044
Abstract
The venoms of small rear-fanged snakes (RFS) remain largely unexplored, despite increased recognition of their importance in understanding venom evolution more broadly. Sequencing the transcriptome of venom-producing glands has greatly increased the ability of researchers to examine and characterize the toxin repertoire of [...] Read more.
The venoms of small rear-fanged snakes (RFS) remain largely unexplored, despite increased recognition of their importance in understanding venom evolution more broadly. Sequencing the transcriptome of venom-producing glands has greatly increased the ability of researchers to examine and characterize the toxin repertoire of small taxa with low venom yields. Here, we use RNA-seq to characterize the Duvernoy’s gland transcriptome of the Plains Black-headed Snake, Tantilla nigriceps, a small, semi-fossorial colubrid that feeds on a variety of potentially dangerous arthropods including centipedes and spiders. We generated transcriptomes of six individuals from three localities in order to both characterize the toxin expression of this species for the first time, and to look for initial evidence of venom variation in the species. Three toxin families—three-finger neurotoxins (3FTxs), cysteine-rich secretory proteins (CRISPs), and snake venom metalloproteinases (SVMPIIIs)—dominated the transcriptome of T. nigriceps; 3FTx themselves were the dominant toxin family in most individuals, accounting for as much as 86.4% of an individual’s toxin expression. Variation in toxin expression between individuals was also noted, with two specimens exhibiting higher relative expression of c-type lectins than any other sample (8.7–11.9% compared to <1%), and another expressed CRISPs higher than any other toxin. This study provides the first Duvernoy’s gland transcriptomes of any species of Tantilla, and one of the few transcriptomic studies of RFS not predicated on a single individual. This initial characterization demonstrates the need for further study of toxin expression variation in this species, as well as the need for further exploration of small RFS venoms. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

19 pages, 5267 KiB  
Article
Three-Finger Toxins from Brazilian Coral Snakes: From Molecular Framework to Insights in Biological Function
by Jessica Matos Kleiz-Ferreira, Nuria Cirauqui, Edson Araujo Trajano, Marcius da Silva Almeida and Russolina Benedeta Zingali
Toxins 2021, 13(5), 328; https://doi.org/10.3390/toxins13050328 - 30 Apr 2021
Cited by 3 | Viewed by 3291
Abstract
Studies on 3FTxs around the world are showing the amazing diversity in these proteins both in structure and function. In Brazil, we have not realized the broad variety of their amino acid sequences and probable diversified structures and targets. In this context, this [...] Read more.
Studies on 3FTxs around the world are showing the amazing diversity in these proteins both in structure and function. In Brazil, we have not realized the broad variety of their amino acid sequences and probable diversified structures and targets. In this context, this work aims to conduct an in silico systematic study on available 3FTxs found in Micrurus species from Brazil. We elaborated a specific guideline for this toxin family. First, we grouped them according to their structural homologue predicted by HHPred server and further curated manually. For each group, we selected one sequence and constructed a representative structural model. By looking at conserved features and comparing with the information available in the literature for this toxin family, we managed to point to potential biological functions. In parallel, the phylogenetic relationship was estimated for our database by maximum likelihood analyses and a phylogenetic tree was constructed including the homologous 3FTx previously characterized. Our results highlighted an astonishing diversity inside this family of toxins, showing some groups with expected functional similarities to known 3FTxs, and pointing out others with potential novel roles and perhaps structures. Moreover, this classification guideline may be useful to aid future studies on these abundant toxins. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

45 pages, 1100 KiB  
Review
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review
by Georg Gӓrtner, Maya Stoyneva-Gӓrtner and Blagoy Uzunov
Toxins 2021, 13(5), 322; https://doi.org/10.3390/toxins13050322 - 29 Apr 2021
Cited by 26 | Viewed by 6329
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. [...] Read more.
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life. Full article
Show Figures

Figure 1

23 pages, 2092 KiB  
Review
Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins
by Paul C. Turner and Jessica A. Snyder
Toxins 2021, 13(5), 314; https://doi.org/10.3390/toxins13050314 - 28 Apr 2021
Cited by 16 | Viewed by 3184
Abstract
Mycotoxins are toxic secondary fungal metabolites that frequently contaminate cereal crops globally, presenting exposure hazards to humans and livestock in many settings. The heterogeneous distribution of mycotoxins in food restricts the usefulness of food sampling and intake estimates for epidemiological studies, making validated [...] Read more.
Mycotoxins are toxic secondary fungal metabolites that frequently contaminate cereal crops globally, presenting exposure hazards to humans and livestock in many settings. The heterogeneous distribution of mycotoxins in food restricts the usefulness of food sampling and intake estimates for epidemiological studies, making validated exposure biomarkers better tools for informing epidemiological investigations. While biomarkers of exposure have served important roles for understanding the public health impact of mycotoxins such as aflatoxins (AF), the science of biomarkers must continue advancing to allow for better understanding of mycotoxins’ roles in the etiology of disease and the effectiveness of mitigation strategies. This review will discuss mycotoxin biomarker development approaches over several decades for four toxins of significant public health concerns, AFs, fumonisins (FB), deoxynivalenol (DON), and ochratoxin A (OTA). This review will also highlight some knowledge gaps, key needs and potential pitfalls in mycotoxin biomarker interpretation. Full article
(This article belongs to the Special Issue Biomonitoring of Mycotoxins)
Show Figures

Figure 1

14 pages, 1366 KiB  
Article
In-Host Emergence of Linezolid Resistance in a Complex Pattern of Toxic Shock Syndrome Toxin-1-Positive Methicillin-Resistant Staphylococcus aureus Colonization in Siblings with Cystic Fibrosis
by Agathe Boudet, Alexandre Jay, Catherine Dunyach-Remy, Raphaël Chiron, Jean-Philippe Lavigne and Hélène Marchandin
Toxins 2021, 13(5), 317; https://doi.org/10.3390/toxins13050317 - 28 Apr 2021
Cited by 5 | Viewed by 2297
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can cause chronic lung infections in patients with Cystic Fibrosis (CF). One option for managing them is the use of linezolid. We hereby report the in-host emergence of linezolid resistance (LR) in MRSA in CF siblings via a population [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) can cause chronic lung infections in patients with Cystic Fibrosis (CF). One option for managing them is the use of linezolid. We hereby report the in-host emergence of linezolid resistance (LR) in MRSA in CF siblings via a population analysis. A collection of 171 MRSA strains from 68 samples were characterized by determining their linezolid Minimal Inhibitory Concentrations (MICs), analyzing the locus of staphylococcal protein A (spa) and whole genome sequencing. Courses of linezolid were retraced. Strains belonged to three spa types (t002, t045, t127) and two sequence types (ST1, ST5). Emergence of LR occurred under treatment, one year apart in both siblings, in the CC5-MRSA-I Geraldine clone harboring the toxic shock syndrome toxin-1-encoding gene. Resistance was related to a G2576T substitution present in a variable number of 23S rRNA gene copies. Susceptible and resistant strains were co-isolated within samples. Single Nucleotide Polymorphism-based analysis revealed complex colonizations by highly diversified, clonally related populations. LR remains rare in MRSA and there are very few longitudinal analyses documenting its emergence. Analyzing a large MRSA collection revealed new aspects of LR emergence: it emerges in specific subclonal lineages resulting from adaptive diversification of MRSA in the CF lung and this heterogeneity of intra-sample resistance may contribute to compromising antibiotic management. Full article
(This article belongs to the Special Issue Resistance to Staphylococcus aureus Toxins)
Show Figures

Figure 1

26 pages, 557 KiB  
Review
Shiga Toxin-Associated Hemolytic Uremic Syndrome: Specificities of Adult Patients and Implications for Critical Care Management
by Benoit Travert, Cédric Rafat, Patricia Mariani, Aurélie Cointe, Antoine Dossier, Paul Coppo and Adrien Joseph
Toxins 2021, 13(5), 306; https://doi.org/10.3390/toxins13050306 - 26 Apr 2021
Cited by 17 | Viewed by 3702
Abstract
Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (STEC-HUS) is a form of thrombotic microangiopathy secondary to an infection by an enterohemorrhagic E. coli. Historically considered a pediatric disease, its presentation has been described as typical, with bloody diarrhea at the forefront. [...] Read more.
Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (STEC-HUS) is a form of thrombotic microangiopathy secondary to an infection by an enterohemorrhagic E. coli. Historically considered a pediatric disease, its presentation has been described as typical, with bloody diarrhea at the forefront. However, in adults, the clinical presentation is more diverse and makes the early diagnosis hazardous. In this review, we review the epidemiology, most important outbreaks, physiopathology, clinical presentation and prognosis of STEC-HUS, focusing on the differential features between pediatric and adult disease. We show that the clinical presentation of STEC-HUS in adults is far from typical and marked by the prevalence of neurological symptoms and a poorer prognosis. Of note, we highlight knowledge gaps and the need for studies dedicated to adult patients. The differences between pediatric and adult patients have implications for the treatment of this disease, which remains a public health threat and lack a specific treatment. Full article
13 pages, 317 KiB  
Article
Mycotoxin Occurrence and Risk Assessment in Gluten-Free Pasta through UHPLC-Q-Exactive Orbitrap MS
by Josefa Tolosa, Yelko Rodríguez-Carrasco, Giulia Graziani, Anna Gaspari, Emilia Ferrer, Jordi Mañes and Alberto Ritieni
Toxins 2021, 13(5), 305; https://doi.org/10.3390/toxins13050305 - 25 Apr 2021
Cited by 13 | Viewed by 3030
Abstract
Celiac disease (CD) is a genetic-based autoimmune disorder which is characterized by inflammation in the small intestinal mucosa due to the intolerance to gluten. Celiac people should consume products without gluten, which are elaborated mainly with maize or other cereals. Contamination of cereals [...] Read more.
Celiac disease (CD) is a genetic-based autoimmune disorder which is characterized by inflammation in the small intestinal mucosa due to the intolerance to gluten. Celiac people should consume products without gluten, which are elaborated mainly with maize or other cereals. Contamination of cereals with mycotoxins, such as fumonisins (FBs) and aflatoxins (AFs) is frequently reported worldwide. Therefore, food ingestion is the main source of mycotoxin exposure. A new analytical method was developed and validated for simultaneous analysis of 21 mycotoxins in gluten-free pasta, commonly consumed by celiac population as an alternative to conventional pasta. Ultrahigh-performance liquid chromatography coupled to quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q-Exactive Orbitrap MS) was used for analyte separation and detection. The mycotoxins included in this work were those widely reported to occur in cereal samples, namely, ochratoxin-A (OTA), aflatoxins (AFB1, AFB2, AFG1 and AFG2), zearalenone (ZON), deoxynivalenol (DON), 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol (3-AcDON and 15-AcDON, respectively), nivalenol (NIV), neosolaniol (NEO), fusarenone-X, (FUS-X), T-2 toxin (T-2) and HT-2 toxin (HT-2), fumonisin B1 and B2 (FB1 and FB2, respectively), enniatins (ENN A, ENN A1, ENN B and ENN B1) and beauvericin (BEA). The validated method was successfully applied to 84 gluten-free pasta samples collected from several local markets of Campania region (Italy) during September to November 2020 to monitor the occurrence of mycotoxins and to assess the exposure to these food contaminants. A significant number of samples (95%) showed mycotoxin contamination, being Fusarium mycotoxins (FB1, ZON and DON) the most commonly detected ones. Regarding the risk assessment, the higher exposures were obtained for NIV, DON and FB1 for children and teenagers age group which can be explained due to their lower body weight. Full article
(This article belongs to the Special Issue Mycotoxins and Food)
20 pages, 3256 KiB  
Article
Anticoagulant Activity of Naja nigricollis Venom Is Mediated by Phospholipase A2 Toxins and Inhibited by Varespladib
by Taline D. Kazandjian, Arif Arrahman, Kristina B. M. Still, Govert W. Somsen, Freek J. Vonk, Nicholas R. Casewell, Mark C. Wilkinson and Jeroen Kool
Toxins 2021, 13(5), 302; https://doi.org/10.3390/toxins13050302 - 23 Apr 2021
Cited by 14 | Viewed by 3502
Abstract
Bites from elapid snakes typically result in neurotoxic symptoms in snakebite victims. Neurotoxins are, therefore, often the focus of research relating to understanding the pathogenesis of elapid bites. However, recent evidence suggests that some elapid snake venoms contain anticoagulant toxins which may help [...] Read more.
Bites from elapid snakes typically result in neurotoxic symptoms in snakebite victims. Neurotoxins are, therefore, often the focus of research relating to understanding the pathogenesis of elapid bites. However, recent evidence suggests that some elapid snake venoms contain anticoagulant toxins which may help neurotoxic components spread more rapidly. This study examines the effects of venom from the West African black-necked spitting cobra (Naja nigricollis) on blood coagulation and identifies potential coagulopathic toxins. An integrated RPLC-MS methodology, coupled with nanofractionation, was first used to separate venom components, followed by MS, proteomics and coagulopathic bioassays. Coagulation assays were performed on both crude and nanofractionated N. nigricollis venom toxins as well as PLA2s and 3FTx purified from the venom. Assays were then repeated with the addition of either the phospholipase A2 inhibitor varespladib or the snake venom metalloproteinase inhibitor marimastat to assess whether either toxin inhibitor is capable of neutralizing coagulopathic venom activity. Subsequent proteomic analysis was performed on nanofractionated bioactive venom toxins using tryptic digestion followed by nanoLC-MS/MS measurements, which were then identified using Swiss-Prot and species-specific database searches. Varespladib, but not marimastat, was found to significantly reduce the anticoagulant activity of N. nigricollis venom and MS and proteomics analyses confirmed that the anticoagulant venom components mostly consisted of PLA2 proteins. We, therefore, conclude that PLA2s are the most likely candidates responsible for anticoagulant effects stimulated by N. nigricollis venom. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

13 pages, 291 KiB  
Review
Electrical Stimulation of Injected Muscles to Boost Botulinum Toxin Effect on Spasticity: Rationale, Systematic Review and State of the Art
by Alessandro Picelli, Mirko Filippetti, Giorgio Sandrini, Cristina Tassorelli, Roberto De Icco, Nicola Smania and Stefano Tamburin
Toxins 2021, 13(5), 303; https://doi.org/10.3390/toxins13050303 - 23 Apr 2021
Cited by 7 | Viewed by 3292
Abstract
Botulinum toxin type A (BoNT-A) represents a first-line treatment for spasticity, a common disabling consequence of many neurological diseases. Electrical stimulation of motor nerve endings has been reported to boost the effect of BoNT-A. To date, a wide range of stimulation protocols has [...] Read more.
Botulinum toxin type A (BoNT-A) represents a first-line treatment for spasticity, a common disabling consequence of many neurological diseases. Electrical stimulation of motor nerve endings has been reported to boost the effect of BoNT-A. To date, a wide range of stimulation protocols has been proposed in the literature. We conducted a systematic review of current literature on the protocols of electrical stimulation to boost the effect of BoNT-A injection in patients with spasticity. A systematic search using the MeSH terms “electric stimulation”, “muscle spasticity” and “botulinum toxins” and strings “electric stimulation [mh] OR electrical stimulation AND muscle spasticity [mh] OR spasticity AND botulinum toxins [mh] OR botulinum toxin type A” was conducted on PubMed, Scopus, PEDro and Cochrane library electronic databases. Full-text articles written in English and published from database inception to March 2021 were included. Data on patient characteristics, electrical stimulation protocols and outcome measures were collected. This systematic review provides a complete overview of current literature on the role of electrical stimulation to boost the effect of BoNT-A injection for spasticity, together with a critical discussion on its rationale based on the neurobiology of BoNT-A uptake. Full article
9 pages, 8761 KiB  
Review
Two Gut Microbiota-Derived Toxins Are Closely Associated with Cardiovascular Diseases: A Review
by Tomoya Yamashita, Naofumi Yoshida, Takuo Emoto, Yoshihiro Saito and Ken-ichi Hirata
Toxins 2021, 13(5), 297; https://doi.org/10.3390/toxins13050297 - 22 Apr 2021
Cited by 13 | Viewed by 3108
Abstract
Cardiovascular diseases (CVDs) have become a major health problem because of the associated high morbidity and mortality rates observed in affected patients. Gut microbiota has recently been implicated as a novel endocrine organ that plays critical roles in the regulation of cardiometabolic and [...] Read more.
Cardiovascular diseases (CVDs) have become a major health problem because of the associated high morbidity and mortality rates observed in affected patients. Gut microbiota has recently been implicated as a novel endocrine organ that plays critical roles in the regulation of cardiometabolic and renal functions of the host via the production of bioactive metabolites. This review investigated the evidence from several clinical and experimental studies that indicated an association between the gut microbiota-derived toxins and CVDs. We mainly focused on the pro-inflammatory gut microbiota-derived toxins, namely lipopolysaccharides, derived from Gram-negative bacteria, and trimethylamine N-oxide and described the present status of research in association with these toxins, including our previous research findings. Several clinical studies aimed at exploring the effectiveness of reducing the levels of these toxins to inhibit cardiovascular events are currently under investigation or in the planning stages. We believe that some of the methods discussed in this review to eliminate or reduce the levels of such toxins in the body could be clinically applied to prevent CVDs in the near future. Full article
(This article belongs to the Special Issue Gut Microbiota Dynamics and Uremic Toxins)
Show Figures

Figure 1

22 pages, 4393 KiB  
Article
A Comprehensive Study Monitoring the Venom Composition and the Effects of the Venom of the Rare Ethiopian Endemic Snake Species Bitis parviocula
by Vladimír Petrilla, Magdaléna Polláková, Barbora Bekešová, Zuzana Andrejčáková, Radoslava Vlčková, Dana Marcinčáková, Monika Petrillová, Eva Petrovová, Drahomíra Sopková and Jaroslav Legáth
Toxins 2021, 13(5), 299; https://doi.org/10.3390/toxins13050299 - 22 Apr 2021
Cited by 2 | Viewed by 2891
Abstract
The Ethiopian endemic snake of the species Bitis parviocula, recognized for its colorful patterns, might be more interesting as we look deeper into the venom activity. We assayed the effects of venoms from the most widespread venomous African Bitis arietens and closely related [...] Read more.
The Ethiopian endemic snake of the species Bitis parviocula, recognized for its colorful patterns, might be more interesting as we look deeper into the venom activity. We assayed the effects of venoms from the most widespread venomous African Bitis arietens and closely related species Bitis parviocula using The Hen’s Egg Test—Chorioallantoic membrane test (HET-CAM) and Chicken embryotoxicity screening test (CHEST), acetylcholinesterase (AChE) analysis, cytotoxicity assay performed on cell lines and protein analysis of selected venoms. Our results indicated that B. parviocula venom contains vasoactive compounds that have a direct effect on blood vessels. The AChE analysis showed significant ability inhibiting AChE activity in embryonic tissue. Cytotoxicity observed on A549 ATCC® CCL-185™ cells indicates the possible presence of cytotoxic agents in B. parviocula venom. We proved previously described differences in the composition of venom obtained from B. arietans and B. parviocula by using electrophoresis and total protein concentration. Based on similarities in vasoactive effects observed after administration of venoms onto a chicken chorioallantoic membrane, we suggest that venom from B. arietans and B. parviocula might share certain venom proteins responsible for haemotoxicity. The main active components of B. parviocula venom are unknown. Our results suggest that it might be worth performing proteomic analysis of B. parviocula venom as it might contain medically valuable compounds. Full article
(This article belongs to the Special Issue Venom-Induced Tissue Damage)
Show Figures

Figure 1

21 pages, 2749 KiB  
Article
A Novel Microbial Zearalenone Transformation through Phosphorylation
by Yan Zhu, Pascal Drouin, Dion Lepp, Xiu-Zhen Li, Honghui Zhu, Mathieu Castex and Ting Zhou
Toxins 2021, 13(5), 294; https://doi.org/10.3390/toxins13050294 - 21 Apr 2021
Cited by 11 | Viewed by 2315
Abstract
Zearalenone (ZEA) is a mycotoxin widely occurring in many agricultural commodities. In this study, a purified bacterial isolate, Bacillus sp. S62-W, obtained from one of 104 corn silage samples from various silos located in the United States, exhibited activity to transform the mycotoxin [...] Read more.
Zearalenone (ZEA) is a mycotoxin widely occurring in many agricultural commodities. In this study, a purified bacterial isolate, Bacillus sp. S62-W, obtained from one of 104 corn silage samples from various silos located in the United States, exhibited activity to transform the mycotoxin ZEA. A novel microbial transformation product, ZEA-14-phosphate, was detected, purified, and identified by HPLC, LC-MS, and NMR analyses. The isolate has been identified as belonging to the genus Bacillus according to phylogenetic analysis of the 16S rRNA gene and whole genome alignments. The isolate showed high efficacy in transforming ZEA to ZEA-14-phosphate (100% transformation within 24 h) and possessed advantages of acid tolerance (work at pH = 4.0), working under a broad range of temperatures (22–42 °C), and a capability of transforming ZEA at high concentrations (up to 200 µg/mL). In addition, 23 Bacillus strains of various species were tested for their ZEA phosphorylation activity. Thirteen of the Bacillus strains showed phosphorylation functionality at an efficacy of between 20.3% and 99.4% after 24 h incubation, suggesting the metabolism pathway is widely conserved in Bacillus spp. This study established a new transformation system for potential application of controlling ZEA although the metabolism and toxicity of ZEA-14-phosphate requires further investigation. Full article
Show Figures

Figure 1

21 pages, 23036 KiB  
Review
Predicted Aflatoxin B1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level
by Marco Camardo Leggieri, Piero Toscano and Paola Battilani
Toxins 2021, 13(4), 292; https://doi.org/10.3390/toxins13040292 - 20 Apr 2021
Cited by 34 | Viewed by 5552
Abstract
Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive literature search using the Scopus search engine to extract peer-reviewed studies citing this study. [...] Read more.
Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive literature search using the Scopus search engine to extract peer-reviewed studies citing this study. A total of 224 papers were identified after step I filtering (187 + 37), while step II filtering identified 25 of these papers for quantitative analysis. The unselected papers (199) were categorized as “actions” because they provided a sounding board for the expected impact of CC on AFB1 contamination, without adding new data on the topic. The remaining papers were considered as “reactions” of the scientific community because they went a step further in their data and ideas. Interesting statements taken from the “reactions” could be summarized with the following keywords: Chain and multi-actor approach, intersectoral and multidisciplinary, resilience, human and animal health, and global vision. In addition, fields meriting increased research efforts were summarized as the improvement of predictive modeling; extension to different crops and geographic areas; and the impact of CC on fungi and mycotoxin co-occurrence, both in crops and their value chains, up to consumers. Full article
(This article belongs to the Special Issue Mycotoxins in Relation to Climate Change)
Show Figures

Figure 1

20 pages, 1068 KiB  
Review
Muscle Tone Physiology and Abnormalities
by Jacky Ganguly, Dinkar Kulshreshtha, Mohammed Almotiri and Mandar Jog
Toxins 2021, 13(4), 282; https://doi.org/10.3390/toxins13040282 - 16 Apr 2021
Cited by 43 | Viewed by 13774
Abstract
The simple definition of tone as the resistance to passive stretch is physiologically a complex interlaced network encompassing neural circuits in the brain, spinal cord, and muscle spindle. Disorders of muscle tone can arise from dysfunction in these pathways and manifest as hypertonia [...] Read more.
The simple definition of tone as the resistance to passive stretch is physiologically a complex interlaced network encompassing neural circuits in the brain, spinal cord, and muscle spindle. Disorders of muscle tone can arise from dysfunction in these pathways and manifest as hypertonia or hypotonia. The loss of supraspinal control mechanisms gives rise to hypertonia, resulting in spasticity or rigidity. On the other hand, dystonia and paratonia also manifest as abnormalities of muscle tone, but arise more due to the network dysfunction between the basal ganglia and the thalamo-cerebello-cortical connections. In this review, we have discussed the normal homeostatic mechanisms maintaining tone and the pathophysiology of spasticity and rigidity with its anatomical correlates. Thereafter, we have also highlighted the phenomenon of network dysfunction, cortical disinhibition, and neuroplastic alterations giving rise to dystonia and paratonia. Full article
Show Figures

Figure 1

16 pages, 6347 KiB  
Article
Morphological Analysis Reveals a Compartmentalized Duct in the Venom Apparatus of the Wasp Spider (Argiope bruennichi)
by Henrike Schmidtberg, Björn M. von Reumont, Sarah Lemke, Andreas Vilcinskas and Tim Lüddecke
Toxins 2021, 13(4), 270; https://doi.org/10.3390/toxins13040270 - 9 Apr 2021
Cited by 4 | Viewed by 4043
Abstract
Spiders are one of the most successful groups of venomous animals, but surprisingly few species have been examined in sufficient detail to determine the structure of their venom systems. To learn more about the venom system of the family Araneidae (orb-weavers), we selected [...] Read more.
Spiders are one of the most successful groups of venomous animals, but surprisingly few species have been examined in sufficient detail to determine the structure of their venom systems. To learn more about the venom system of the family Araneidae (orb-weavers), we selected the wasp spider (Argiope bruennichi) and examined the general structure and morphology of the venom apparatus by light microscopy. This revealed morphological features broadly similar to those reported in the small number of other spiders subject to similar investigations. However, detailed evaluation of the venom duct revealed the presence of four structurally distinct compartments. We propose that these subunits facilitate the expression and secretion of venom components, as previously reported for similar substructures in pit vipers and cone snails. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

14 pages, 1006 KiB  
Article
Susceptibility of Oocytes from Gilts and Sows to Beauvericin and Deoxynivalenol and Its Relationship with Oxidative Stress
by Eric J. Schoevers, Regiane R. Santos and Bernard A. J. Roelen
Toxins 2021, 13(4), 260; https://doi.org/10.3390/toxins13040260 - 6 Apr 2021
Cited by 3 | Viewed by 2452
Abstract
Beauvericin (BEA) and deoxynivalenol are toxins produced by Fusarium species that can contaminate food and feed. The aim of this study was to assess the effects of these mycotoxins on the maturation of oocytes from gilts and sows. Furthermore, the antioxidant profiles in [...] Read more.
Beauvericin (BEA) and deoxynivalenol are toxins produced by Fusarium species that can contaminate food and feed. The aim of this study was to assess the effects of these mycotoxins on the maturation of oocytes from gilts and sows. Furthermore, the antioxidant profiles in the oocytes’ environment were assessed. Cumulus-oocyte-complexes (COCs) from gilts and sows were exposed to beauvericin (BEA) or deoxynivalenol (DON) and matured in vitro. As an extra control, these COCs were also exposed to reactive oxygen species (ROS). The maturation was mostly impaired when oocytes from gilts were exposed to 0.02 μmol/L DON. Oocytes from sows were able to mature even in the presence of 5 μmol/L BEA. However, the maturation rate of gilt oocytes was already impaired by 0.5 μmol/L BEA. It was observed that superoxide dismutase (SOD) and glutathione (GSH) levels in the follicular fluid (FF) of gilt oocytes was higher than that from sows. However, the expression of SOD1 and glutathione synthetase (GSS) was higher in the oocytes from sows than in those from gilts. Although DON and BEA impair cell development by diverse mechanisms, this redox imbalance may partially explain the vulnerability of gilt oocytes to these mycotoxins. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

16 pages, 2264 KiB  
Article
Sphingomyelinase D Activity in Sicarius tropicus Venom: Toxic Potential and Clues to the Evolution of SMases D in the Sicariidae Family
by Priscila Hess Lopes, Caroline Sayuri Fukushima, Rosana Shoji, Rogério Bertani and Denise V. Tambourgi
Toxins 2021, 13(4), 256; https://doi.org/10.3390/toxins13040256 - 1 Apr 2021
Cited by 3 | Viewed by 3502
Abstract
The spider family Sicariidae includes three genera, Hexophthalma, Sicarius and Loxosceles. The three genera share a common characteristic in their venoms: the presence of Sphingomyelinases D (SMase D). SMases D are considered the toxins that cause the main pathological effects of [...] Read more.
The spider family Sicariidae includes three genera, Hexophthalma, Sicarius and Loxosceles. The three genera share a common characteristic in their venoms: the presence of Sphingomyelinases D (SMase D). SMases D are considered the toxins that cause the main pathological effects of the Loxosceles venom, that is, those responsible for the development of loxoscelism. Some studies have shown that Sicarius spiders have less or undetectable SMase D activity in their venoms, when compared to Hexophthalma. In contrast, our group has shown that Sicarius ornatus, a Brazilian species, has active SMase D and toxic potential to envenomation. However, few species of Sicarius have been characterized for their toxic potential. In order to contribute to a better understanding about the toxicity of Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from Sicarius tropicus and compare them with that from Loxosceles laeta, one of the most toxic Loxosceles venoms. We show here that S. tropicus venom presents active SMases D. However, regarding hemolysis development, it seems that these toxins in this species present different molecular mechanisms of action than that described for Loxosceles venoms, whereas it is similar to those present in bacteria containing SMase D. Besides, our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms’ composition may play a role in the toxic potential of venoms from Sicarius species. Full article
(This article belongs to the Special Issue Toxinologic and Pharmacological Investigation of Venomous Arthropods)
Show Figures

Figure 1

23 pages, 964 KiB  
Review
The Impact of CKD on Uremic Toxins and Gut Microbiota
by Jacek Rysz, Beata Franczyk, Janusz Ławiński, Robert Olszewski, Aleksanda Ciałkowska-Rysz and Anna Gluba-Brzózka
Toxins 2021, 13(4), 252; https://doi.org/10.3390/toxins13040252 - 31 Mar 2021
Cited by 118 | Viewed by 13276
Abstract
Numerous studies have indicated that the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD) is strictly associated with the accumulation of toxic metabolites in blood and other metabolic compartments. This accumulation was suggested to be related to enhanced generation of [...] Read more.
Numerous studies have indicated that the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD) is strictly associated with the accumulation of toxic metabolites in blood and other metabolic compartments. This accumulation was suggested to be related to enhanced generation of toxins from the dysbiotic microbiome accompanied by their reduced elimination by impaired kidneys. Intestinal microbiota play a key role in the accumulation of uremic toxins due to the fact that numerous uremic solutes are generated in the process of protein fermentation by colonic microbiota. Some disease states, including CKD, are associated with the presence of dysbiosis, which can be defined as an “imbalanced intestinal microbial community with quantitative and qualitative changes in the composition and metabolic activities of the gut microbiota”. The results of studies have confirmed the altered composition and functions of gut microbial community in chronic kidney disease. In the course of CKD protein-bound uremic toxins, including indoxyl sulfate, p-cresyl glucuronide, p-cresyl sulfate and indole-3-acetic acid are progressively accumulated. The presence of chronic kidney disease may be accompanied by the development of intestinal inflammation and epithelial barrier impairment leading to hastened systemic translocation of bacterial-derived uremic toxins and consequent oxidative stress injury to the kidney, cardiovascular and endocrine systems. These findings offer new therapeutic possibilities for the management of uremia, inflammation and kidney disease progression and the prevention of adverse outcomes in CKD patients. It seems that dietary interventions comprising prebiotics, probiotics, and synbiotics could pose a promising strategy in the management of uremic toxins in CKD. Full article
(This article belongs to the Special Issue Gut Microbiota Dynamics and Uremic Toxins)
Show Figures

Figure 1

14 pages, 2834 KiB  
Article
Citrinin Determination in Food and Food Supplements by LC-MS/MS: Development and Use of Reference Materials in an International Collaborative Study
by Emmanuel K. Tangni, François Van Hove, Bart Huybrechts, Julien Masquelier, Karine Vandermeiren and Els Van Hoeck
Toxins 2021, 13(4), 245; https://doi.org/10.3390/toxins13040245 - 30 Mar 2021
Cited by 6 | Viewed by 2178
Abstract
The development of incurred reference materials containing citrinin (CIT) and their successful application in a method validation study (MVS) in order to harmonize CIT determination in food and food supplements are demonstrated. CIT-contaminated materials made of red yeast rice (RYR), wheat flour, and [...] Read more.
The development of incurred reference materials containing citrinin (CIT) and their successful application in a method validation study (MVS) in order to harmonize CIT determination in food and food supplements are demonstrated. CIT-contaminated materials made of red yeast rice (RYR), wheat flour, and Ginkgo biloba leaves (GBL), as well as food supplements made of red yeast rice (FS-RYR) and Ginkgo biloba leaves (FS-GBL), were manufactured in-house via fungal cultivation on collected raw materials. The homogeneity and stability from randomly selected containers were verified according to the ISO 13528. CIT was found to be homogenously distributed and stable in all contaminated materials, with no significant degradation during the timescale of the MVS when storage was performed up to +4 °C. Next, an MVS was organized with eighteen international laboratories using the provided standard operating procedure and 12 test materials, including three RYRs (blank, <50 µg/kg, <2000 µg/kg), two wheat flours (blank, <50 µg/kg), two GBL powders (blank, <50 µg/kg), three FS-RYRs (blank, <50 µg/kg, <2000 µg/kg), and two FS-GBLs (blank, <50 µg/kg). The results of seven CIT-incurred materials showed acceptable within-laboratory precision (RSDr) varying from 6.4% to 14.6% and between-laboratory precision (RSDR) varying from 10.2% to 37.3%. Evidenced by HorRat values < 2.0, the results of the collaborative trial demonstrated that the applied analytical method could be standardized. Furthermore, the appropriateness of producing CIT reference materials is an important step towards food and feed quality control systems and the organization of proficiency tests. Full article
(This article belongs to the Special Issue Mycotoxins, Food Safety and Metrology)
Show Figures

Figure 1

10 pages, 10209 KiB  
Review
Uremic Toxins and Blood Purification: A Review of Current Evidence and Future Perspectives
by Stefania Magnani and Mauro Atti
Toxins 2021, 13(4), 246; https://doi.org/10.3390/toxins13040246 - 30 Mar 2021
Cited by 30 | Viewed by 3411
Abstract
Accumulation of uremic toxins represents one of the major contributors to the rapid progression of chronic kidney disease (CKD), especially in patients with end-stage renal disease that are undergoing dialysis treatment. In particular, protein-bound uremic toxins (PBUTs) seem to have an important key [...] Read more.
Accumulation of uremic toxins represents one of the major contributors to the rapid progression of chronic kidney disease (CKD), especially in patients with end-stage renal disease that are undergoing dialysis treatment. In particular, protein-bound uremic toxins (PBUTs) seem to have an important key pathophysiologic role in CKD, inducing various cardiovascular complications. The removal of uremic toxins from the blood with dialytic techniques represents a proved approach to limit the CKD-related complications. However, conventional dialysis mainly focuses on the removal of water-soluble compounds of low and middle molecular weight, whereas PBTUs are strongly protein-bound, thus not efficiently eliminated. Therefore, over the years, dialysis techniques have been adapted by improving membranes structures or using combined strategies to maximize PBTUs removal and eventually prevent CKD-related complications. Recent findings showed that adsorption-based extracorporeal techniques, in addition to conventional dialysis treatment, may effectively adsorb a significant amount of PBTUs during the course of the sessions. This review is focused on the analysis of the current state of the art for blood purification strategies in order to highlight their potentialities and limits and identify the most feasible solution to improve toxins removal effectiveness, exploring possible future strategies and applications, such as the study of a synergic approach by reducing PBTUs production and increasing their blood clearance. Full article
(This article belongs to the Special Issue New Strategies for the Reduction of Uremic Toxins)
Show Figures

Figure 1

25 pages, 3609 KiB  
Article
Co-Occurrence of Regulated and Emerging Mycotoxins in Corn Silage: Relationships with Fermentation Quality and Bacterial Communities
by Antonio Gallo, Francesca Ghilardelli, Alberto Stanislao Atzori, Severino Zara, Barbara Novak, Johannes Faas and Francesco Fancello
Toxins 2021, 13(3), 232; https://doi.org/10.3390/toxins13030232 - 23 Mar 2021
Cited by 24 | Viewed by 4220
Abstract
Sixty-four corn silages were characterized for chemicals, bacterial community, and concentrations of several fungal metabolites. Silages were grouped in five clusters, based on detected mycotoxins, and they were characterized for being contaminated by (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) [...] Read more.
Sixty-four corn silages were characterized for chemicals, bacterial community, and concentrations of several fungal metabolites. Silages were grouped in five clusters, based on detected mycotoxins, and they were characterized for being contaminated by (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites. Altersetin was detected in clusters 1, 3, and 5. Rugulusovin or brevianamide F were detected in several samples, with the highest concentration in cluster 3. Emodin was detected in more than 50.0% of samples of clusters 1, 3 and 5, respectively. Kojic acid occurred mainly in clusters 1 and 2 at very low concentrations. Regarding Fusarium mycotoxins, high occurrences were observed for FB3, FB4, FA1, whereas the average concentrations of FB6 and FA2 were lower than 12.4 µg/kg dry matter. Emerging Fusarium-produced mycotoxins, such as siccanol, moniliformin, equisetin, epiequisetin and bikaverin were detected in the majority of analyzed corn silages. Pestalotin, oxaline, phenopirrozin and questiomycin A were detected at high incidences. Concluding, this work highlighted that corn silages could be contaminated by a high number of regulated and emerging mycotoxins. Full article
Show Figures

Figure 1

13 pages, 890 KiB  
Review
Therapeutic Applications of Botulinum Neurotoxin for Autonomic Symptoms in Parkinson’s Disease: An Updated Review
by Steven D. Mitchell and Christos Sidiropoulos
Toxins 2021, 13(3), 226; https://doi.org/10.3390/toxins13030226 - 19 Mar 2021
Cited by 7 | Viewed by 3277
Abstract
Parkinson’s disease is the most common age-related motoric neurodegenerative disease. In addition to the cardinal motor symptoms of tremor, rigidity, bradykinesia, and postural instability, there are numerous non-motor symptoms as well. Among the non-motor symptoms, autonomic nervous system dysfunction is common. Autonomic symptoms [...] Read more.
Parkinson’s disease is the most common age-related motoric neurodegenerative disease. In addition to the cardinal motor symptoms of tremor, rigidity, bradykinesia, and postural instability, there are numerous non-motor symptoms as well. Among the non-motor symptoms, autonomic nervous system dysfunction is common. Autonomic symptoms associated with Parkinson’s disease include sialorrhea, hyperhidrosis, gastrointestinal dysfunction, and urinary dysfunction. Botulinum neurotoxin has been shown to potentially improve these autonomic symptoms. In this review, the varied uses of botulinum neurotoxin for autonomic dysfunction in Parkinson’s disease are discussed. This review also includes discussion of some additional indications for the use of botulinum neurotoxin in Parkinson’s disease, including pain. Full article
(This article belongs to the Special Issue Botulinum Neurotoxin and Parkinson’s Disease)
Show Figures

Figure 1

13 pages, 481 KiB  
Review
Botulinum Toxin A and Osteosarcopenia in Experimental Animals: A Scoping Review
by Min Jia Tang, H. Kerr Graham and Kelsey E. Davidson
Toxins 2021, 13(3), 213; https://doi.org/10.3390/toxins13030213 - 14 Mar 2021
Cited by 6 | Viewed by 2559
Abstract
We conducted a scoping review to investigate the effects of intramuscular injection of Botulinum Toxin A (BoNT-A) on bone morphology. We investigated if the muscle atrophy associated with Injection of BoNT-A had effects on the neighboring bone. We used the search terms: osteopenia, [...] Read more.
We conducted a scoping review to investigate the effects of intramuscular injection of Botulinum Toxin A (BoNT-A) on bone morphology. We investigated if the muscle atrophy associated with Injection of BoNT-A had effects on the neighboring bone. We used the search terms: osteopenia, bone atrophy, Botulinum Toxin A, Micro-CT, mice or rat. The following databases were searched: Medline, Embase, PubMed and the Cochrane Library, between 1990 and 2020. After removal of duplicates, 228 abstracts were identified of which 49 studies satisfied our inclusion and exclusion criteria. The majority of studies (41/49) reported a quantitative reduction in at least one measure of bone architecture based on Micro-CT. The reduction in the ratio of bone volume to tissue volume varied from 11% to 81% (mean 43%) according to the experimental set up and study time points. While longer term studies showed muscle recovery, no study showed complete recovery of all bone properties at the termination of the study. In experimental animals, intramuscular injection of BoNT-A resulted in acute muscle atrophy and acute degradation of the neighboring bone segment. These findings may have implications for clinical protocols in the use of Botulinum Toxin in children with cerebral palsy, with restraint recommended in injection protocols and consideration for monitoring bone density. Clinical studies in children with cerebral palsy receiving injections of Botulinum are indicated. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

20 pages, 2496 KiB  
Article
Saccharomyces cerevisiae Cell Wall-Based Adsorbent Reduces Aflatoxin B1 Absorption in Rats
by Alexandros Yiannikouris, Juha Apajalahti, Osmo Siikanen, Gerald Patrick Dillon and Colm Anthony Moran
Toxins 2021, 13(3), 209; https://doi.org/10.3390/toxins13030209 - 13 Mar 2021
Cited by 17 | Viewed by 3489
Abstract
Mycotoxins are naturally occurring toxins that can affect livestock health and performance upon consumption of contaminated feedstuffs. To mitigate the negative effects of mycotoxins, sequestering agents, adsorbents, or binders can be included to feed to interact with toxins, aiding their passage through the [...] Read more.
Mycotoxins are naturally occurring toxins that can affect livestock health and performance upon consumption of contaminated feedstuffs. To mitigate the negative effects of mycotoxins, sequestering agents, adsorbents, or binders can be included to feed to interact with toxins, aiding their passage through the gastrointestinal tract (GI) and reducing their bioavailability. The parietal cell wall components of Saccharomyces cerevisiae have been found to interact in vitro with mycotoxins, such as, but not limited to, aflatoxin B1 (AFB1), and to improve animal performance when added to contaminated diets in vivo. The present study aimed to examine the pharmacokinetics of the absorption of radiolabeled AFB1 in rats in the presence of a yeast cell wall-based adsorbent (YCW) compared with that in the presence of the clay-based binder hydrated sodium calcium aluminosilicate (HSCAS). The results of the initial pharmacokinetic analysis showed that the absorption process across the GI tract was relatively slow, occurring over a matter of hours rather than minutes. The inclusion of mycotoxin binders increased the recovery of radiolabeled AFB1 in the small intestine, cecum, and colon at 5 and 10 h, revealing that they prevented AFB1 absorption compared with a control diet. Additionally, the accumulation of radiolabeled AFB1 was more significant in the blood plasma, kidney, and liver of animals fed the control diet, again showing the ability of the binders to reduce the assimilation of AFB1 into the body. The results showed the potential of YCW in reducing the absorption of AFB1 in vivo, and in protecting against the damaging effects of AFB1 contamination. Full article
(This article belongs to the Collection Aflatoxins)
Show Figures

Figure 1

16 pages, 2583 KiB  
Article
Natural Co-Occurrence of Multiple Mycotoxins in Unprocessed Oats Grown in Ireland with Various Production Systems
by Lorenzo De Colli, Karl De Ruyck, Mohamed F. Abdallah, John Finnan, Ewen Mullins, Steven Kildea, John Spink, Christopher Elliott and Martin Danaher
Toxins 2021, 13(3), 188; https://doi.org/10.3390/toxins13030188 - 4 Mar 2021
Cited by 21 | Viewed by 4202
Abstract
The natural co-occurrence of 42 mycotoxins was investigated in unprocessed oat grains grown in Ireland. The sample set included a total of 208 oat crops harvested during 2015–2016 and produced using conventional, organic, or gluten free farming systems. A range of different toxins [...] Read more.
The natural co-occurrence of 42 mycotoxins was investigated in unprocessed oat grains grown in Ireland. The sample set included a total of 208 oat crops harvested during 2015–2016 and produced using conventional, organic, or gluten free farming systems. A range of different toxins was identified, including the major type A (neosolaniol, HT-2 and T-2 toxins, T-2 triol, and T-2-glucoside, co-occurring in 21 samples) and B trichothecenes (deoxynivalenol, nivalenol, and deoxynivalenol-3-glucoside), enniatins (B1, B, and A1, co-occurring in 12 samples), as well as beauvericin, alternariol, mycophenolic acid, and sterigmatocystin. The influences of sowing season, year, and production system were investigated, eventually indicating that the latter factor may have a higher impact than others on the production of certain mycotoxins in oats. The most frequently quantified compounds were HT-2 (51%) and T-2 (41%) toxins, with gluten free oats containing significantly lower concentrations of HT-2 compared to conventionally produced oats. Although the prevalence and concentrations of mycotoxin found in oat samples in this study should be substantially reduced by processing. However, as mycotoxin occurrence is clearly influenced by multiple factors, controlled field trials should be carried out to define optimal agronomic practices and mitigate mycotoxin production. Furthermore, this work highlights the need for regularly testing cereal-based foods with multi-residue analytical methods with wider specificities than the traditionally screened and regulated toxins, to generate knowledge on the occurrence of several mycotoxins that are, to date, rarely investigated. Full article
(This article belongs to the Collection Understanding Mycotoxin Occurrence in Food and Feed Chains)
Show Figures

Figure 1

16 pages, 1897 KiB  
Article
Population Genetic Structure and Chemotype Diversity of Fusarium graminearum Populations from Wheat in Canada and North Eastern United States
by Abbot O. Oghenekaro, Maria A. Oviedo-Ludena, Mitra Serajazari, Xiben Wang, Maria A. Henriquez, Nancy G. Wenner, Gretchen A. Kuldau, Alireza Navabi, Hadley R. Kutcher and W. G. Dilantha Fernando
Toxins 2021, 13(3), 180; https://doi.org/10.3390/toxins13030180 - 1 Mar 2021
Cited by 13 | Viewed by 4375
Abstract
Fusarium head blight (FHB) is a major disease in wheat causing severe economic losses globally by reducing yield and contaminating grain with mycotoxins. In Canada, Fusarium graminearum is the principal etiological agent of FHB in wheat, producing mainly the trichothecene mycotoxin, deoxynivalenol (DON) [...] Read more.
Fusarium head blight (FHB) is a major disease in wheat causing severe economic losses globally by reducing yield and contaminating grain with mycotoxins. In Canada, Fusarium graminearum is the principal etiological agent of FHB in wheat, producing mainly the trichothecene mycotoxin, deoxynivalenol (DON) and its acetyl derivatives (15-acetyl deoxynivalenol (15ADON) and 3-acetyl deoxynivalenol (3ADON)). Understanding the population biology of F. graminearum such as the genetic variability, as well as mycotoxin chemotype diversity among isolates is important in developing sustainable disease management tools. In this study, 570 F. graminearum isolates collected from commercial wheat crops in five geographic regions in three provinces in Canada in 2018 and 2019 were analyzed for population diversity and structure using 10 variable number of tandem repeats (VNTR) markers. A subset of isolates collected from the north-eastern United States was also included for comparative analysis. About 75% of the isolates collected in the Canadian provinces of Saskatchewan and Manitoba were 3ADON indicating a 6-fold increase in Saskatchewan and a 2.5-fold increase in Manitoba within the past 15 years. All isolates from Ontario and those collected from the United States were 15ADON and isolates had a similar population structure. There was high gene diversity (H = 0.803–0.893) in the F. graminearum populations in all regions. Gene flow was high between Saskatchewan and Manitoba (Nm = 4.971–21.750), indicating no genetic differentiation between these regions. In contrast, less gene flow was observed among the western provinces and Ontario (Nm = 3.829–9.756) and USA isolates ((Nm = 2.803–6.150). However, Bayesian clustering model analyses of trichothecene chemotype subpopulations divided the populations into two clusters, which was correlated with trichothecene types. Additionally, population cluster analysis revealed there was more admixture of isolates among isolates of the 3ADON chemotypes than among the 15ADON chemotype, an observation that could play a role in the increased virulence of F. graminearum. Understanding the population genetic structure and mycotoxin chemotype variations of the pathogen will assist in developing FHB resistant wheat cultivars and in mycotoxin risk assessment in Canada. Full article
(This article belongs to the Special Issue New Insight into Fusarium Toxins and Aflatoxins)
Show Figures

Figure 1

12 pages, 5230 KiB  
Article
Primary Impacts of the Fungal Toxin Sporidesmin on HepG2 Cells: Altered Cell Adhesion without Oxidative Stress or Cell Death
by Magalie Boucher and T. William Jordan
Toxins 2021, 13(3), 179; https://doi.org/10.3390/toxins13030179 - 28 Feb 2021
Cited by 1 | Viewed by 2162
Abstract
The fungal metabolite sporidesmin is responsible for severe necrotizing inflammation of biliary tract and liver of livestock grazing on pasture containing spores of Pithomyces chartarum that synthesizes the toxin. The toxin is secreted into bile causing the erosion of the biliary epithelium accompanied [...] Read more.
The fungal metabolite sporidesmin is responsible for severe necrotizing inflammation of biliary tract and liver of livestock grazing on pasture containing spores of Pithomyces chartarum that synthesizes the toxin. The toxin is secreted into bile causing the erosion of the biliary epithelium accompanied by inflammation and damage to surrounding tissues. Toxicity has been suggested to be due to cycles of reduction and oxidation of sporidesmin leading to oxidative damage from the formation of reactive oxygen species. The current work is the first test of the oxidative stress hypothesis using cultured cells. Oxidative stress could not be detected in HepG2 cells incubated with sporidesmin using a dichlorodihydrofluorescein diacetate assay or by use of two-dimensional electrophoresis to search for oxidized peroxiredoxins. There was also no evidence for necrosis or apoptosis, although there was a loss of cell adhesion that was accompanied by the disruption of intracellular actin microfilaments that have known roles in cell adhesion. The results are consistent with a model in which altered contact between cells in situ leads to altered permeability and subsequent inflammation and necrosis, potentially from the leakage of toxic bile into surrounding tissues. There is now a need for the further characterization of the damage processes in vivo, including the investigation of altered permeability and mechanisms of cell death in the biliary tract and other affected organs. Full article
Show Figures

Figure 1

38 pages, 2392 KiB  
Review
Non-Digestible Oligosaccharides and Short Chain Fatty Acids as Therapeutic Targets against Enterotoxin-Producing Bacteria and Their Toxins
by Mostafa Asadpoor, Georgia-Nefeli Ithakisiou, Paul A. J. Henricks, Roland Pieters, Gert Folkerts and Saskia Braber
Toxins 2021, 13(3), 175; https://doi.org/10.3390/toxins13030175 - 25 Feb 2021
Cited by 28 | Viewed by 4455
Abstract
Enterotoxin-producing bacteria (EPB) have developed multiple mechanisms to disrupt gut homeostasis, and provoke various pathologies. A major part of bacterial cytotoxicity is attributed to the secretion of virulence factors, including enterotoxins. Depending on their structure and mode of action, enterotoxins intrude the intestinal [...] Read more.
Enterotoxin-producing bacteria (EPB) have developed multiple mechanisms to disrupt gut homeostasis, and provoke various pathologies. A major part of bacterial cytotoxicity is attributed to the secretion of virulence factors, including enterotoxins. Depending on their structure and mode of action, enterotoxins intrude the intestinal epithelium causing long-term consequences such as hemorrhagic colitis. Multiple non-digestible oligosaccharides (NDOs), and short chain fatty acids (SCFA), as their metabolites produced by the gut microbiota, interact with enteropathogens and their toxins, which may result in the inhibition of the bacterial pathogenicity. NDOs characterized by diverse structural characteristics, block the pathogenicity of EPB either directly, by inhibiting bacterial adherence and growth, or biofilm formation or indirectly, by promoting gut microbiota. Apart from these abilities, NDOs and SCFA can interact with enterotoxins and reduce their cytotoxicity. These anti-virulent effects mostly rely on their ability to mimic the structure of toxin receptors and thus inhibiting toxin adherence to host cells. This review focuses on the strategies of EPB and related enterotoxins to impair host cell immunity, discusses the anti-pathogenic properties of NDOs and SCFA on EPB functions and provides insight into the potential use of NDOs and SCFA as effective agents to fight against enterotoxins. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

22 pages, 753 KiB  
Review
Mycotoxin Occurrence, Toxicity, and Detoxifying Agents in Pig Production with an Emphasis on Deoxynivalenol
by Debora Muratori Holanda and Sung Woo Kim
Toxins 2021, 13(2), 171; https://doi.org/10.3390/toxins13020171 - 23 Feb 2021
Cited by 72 | Viewed by 5901
Abstract
This review aimed to investigate the occurrence of mycotoxins, their toxic effects, and the detoxifying agents discussed in scientific publications that are related to pig production. Mycotoxins that are of major interest are aflatoxins and Fusarium toxins, such as deoxynivalenol and fumonisins, because [...] Read more.
This review aimed to investigate the occurrence of mycotoxins, their toxic effects, and the detoxifying agents discussed in scientific publications that are related to pig production. Mycotoxins that are of major interest are aflatoxins and Fusarium toxins, such as deoxynivalenol and fumonisins, because of their elevated frequency at a global scale and high occurrence in corn, which is the main feedstuff in pig diets. The toxic effects of aflatoxins, deoxynivalenol, and fumonisins include immune modulation, disruption of intestinal barrier function, and cytotoxicity leading to cell death, which all result in impaired pig performance. Feed additives, such as mycotoxin-detoxifying agents, that are currently available often combine organic and inorganic sources to enhance their adsorbability, immune stimulation, or ability to render mycotoxins less toxic. In summary, mycotoxins present challenges to pig production globally because of their increasing occurrences in recent years and their toxic effects impairing the health and growth of pigs. Effective mycotoxin-detoxifying agents must be used to boost pig health and performance and to improve the sustainable use of crops. Full article
Show Figures

Figure 1

16 pages, 1184 KiB  
Article
Toxic Effects of Fumonisins, Deoxynivalenol and Zearalenone Alone and in Combination in Ducks Fed the Maximum EUTolerated Level
by Céline Peillod, Marie Laborde, Angélique Travel, Amandine Mika, Jean Denis Bailly, Didier Cleva, Cyril Boissieu, Jean Le Guennec, Olivier Albaric, Sophie Labrut, Pascal Froment, Didier Tardieu and Philippe Guerre
Toxins 2021, 13(2), 152; https://doi.org/10.3390/toxins13020152 - 16 Feb 2021
Cited by 12 | Viewed by 2627
Abstract
Toxic effects among fumonisins B (FB), deoxynivalenol (DON) and zearalenone (ZEN) administered alone and combined were investigated in 84-day-old ducks during force-feeding. 75 male ducks, divided into five groups of 15 animals, received daily during the meal a capsule containing the desired among [...] Read more.
Toxic effects among fumonisins B (FB), deoxynivalenol (DON) and zearalenone (ZEN) administered alone and combined were investigated in 84-day-old ducks during force-feeding. 75 male ducks, divided into five groups of 15 animals, received daily during the meal a capsule containing the desired among of toxin. Treated animals received dietary levels of toxins equivalent to 20 mg FB1+FB2/kg (FB), 5 mg DON/kg (DON), 0.5 mg ZEN/kg (ZEN) and 20, 5 and 0.5 mg/kg of FB, DON and ZEN (FBDONZEN), respectively. Control birds received capsules with no toxin. After 12 days, a decrease in body weight gain accompanied by an increase in the feed conversion ratio was observed in ducks exposed to FBDONZEN, whereas there was no effect on performances in ducks exposed to FB, DON and ZEN separately. No difference among groups was observed in relative organ weight, biochemistry, histopathology and several variables used to measure oxidative damage and testicular function. A sphinganine to sphingosine ratio of 0.32, 1.19 and 1.04, was measured in liver in controls and in ducks exposed to FB and FBDONZEN, respectively. Concentrations of FB1 in liver were 13.34 and 15.4 ng/g in ducks exposed to FB and FBDONZEN, respectively. Together ZEN and its metabolites were measured after enzymatic hydrolysis of the conjugated forms. Mean concentrations of α-zearalenol in liver were 0.82 and 0.54 ng/g in ducks exposed to ZEN and FBDONZEN, respectively. β-zearalenol was 2.3-fold less abundant than α-zearalenol, whereas ZEN was only found in trace amounts. In conclusion, this study suggests that decreased performance may occur in ducks exposed to a combination of FB, DON and ZEN, but does not reveal any other interaction between mycotoxins in any of the other variables measured. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on Health and Performance in Animals)
Show Figures

Figure 1

16 pages, 1667 KiB  
Article
Non-Transgenic CRISPR-Mediated Knockout of Entire Ergot Alkaloid Gene Clusters in Slow-Growing Asexual Polyploid Fungi
by Simona Florea, Jolanta Jaromczyk and Christopher L. Schardl
Toxins 2021, 13(2), 153; https://doi.org/10.3390/toxins13020153 - 16 Feb 2021
Cited by 11 | Viewed by 2777
Abstract
The Epichloë species of fungi include seed-borne symbionts (endophytes) of cool-season grasses that enhance plant fitness, although some also produce alkaloids that are toxic to livestock. Selected or mutated toxin-free endophytes can be introduced into forage cultivars for improved livestock performance. Long-read genome [...] Read more.
The Epichloë species of fungi include seed-borne symbionts (endophytes) of cool-season grasses that enhance plant fitness, although some also produce alkaloids that are toxic to livestock. Selected or mutated toxin-free endophytes can be introduced into forage cultivars for improved livestock performance. Long-read genome sequencing revealed clusters of ergot alkaloid biosynthesis (EAS) genes in Epichloë coenophiala strain e19 from tall fescue (Lolium arundinaceum) and Epichloë hybrida Lp1 from perennial ryegrass (Lolium perenne). The two homeologous clusters in E. coenophiala—a triploid hybrid species—were 196 kb (EAS1) and 75 kb (EAS2), and the E. hybrida EAS cluster was 83 kb. As a CRISPR-based approach to target these clusters, the fungi were transformed with ribonucleoprotein (RNP) complexes of modified Cas9 nuclease (Cas9-2NLS) and pairs of single guide RNAs (sgRNAs), plus a transiently selected plasmid. In E. coenophiala, the procedure generated deletions of EAS1 and EAS2 separately, as well as both clusters simultaneously. The technique also gave deletions of the EAS cluster in E. hybrida and of individual alkaloid biosynthesis genes (dmaW and lolC) that had previously proved difficult to delete in E. coenophiala. Thus, this facile CRISPR RNP approach readily generates non-transgenic endophytes without toxin genes for use in research and forage cultivar improvement. Full article
(This article belongs to the Special Issue Global Impact of Ergot Alkaloids)
Show Figures

Graphical abstract

16 pages, 2766 KiB  
Review
The Buzz about ADP-Ribosylation Toxins from Paenibacillus larvae, the Causative Agent of American Foulbrood in Honey Bees
by Julia Ebeling, Anne Fünfhaus and Elke Genersch
Toxins 2021, 13(2), 151; https://doi.org/10.3390/toxins13020151 - 16 Feb 2021
Cited by 7 | Viewed by 2867
Abstract
The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood, a highly contagious and often fatal honey bee brood disease. The species P. larvae comprises five so-called ERIC-genotypes which differ in virulence and pathogenesis strategies. In the past two decades, [...] Read more.
The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood, a highly contagious and often fatal honey bee brood disease. The species P. larvae comprises five so-called ERIC-genotypes which differ in virulence and pathogenesis strategies. In the past two decades, the identification and characterization of several P. larvae virulence factors have led to considerable progress in understanding the molecular basis of pathogen-host-interactions during P. larvae infections. Among these virulence factors are three ADP-ribosylating AB-toxins, Plx1, Plx2, and C3larvin. Plx1 is a phage-born toxin highly homologous to the pierisin-like AB-toxins expressed by the whites-and-yellows family Pieridae (Lepidoptera, Insecta) and to scabin expressed by the plant pathogen Streptomyces scabiei. These toxins ADP-ribosylate DNA and thus induce apoptosis. While the presumed cellular target of Plx1 still awaits final experimental proof, the classification of the A subunits of the binary AB-toxins Plx2 and C3larvin as typical C3-like toxins, which ADP-ribosylate Rho-proteins, has been confirmed experimentally. Normally, C3-exoenzymes do not occur together with a B subunit partner, but as single domain toxins. Interestingly, the B subunits of the two P. larvae C3-like toxins are homologous to the B-subunits of C2-like toxins with striking structural similarity to the PA-63 protomer of Bacillus anthracis. Full article
(This article belongs to the Special Issue Structure and Function of Bacterial ADP-Ribosylation Toxins)
Show Figures

Figure 1

26 pages, 2482 KiB  
Article
Incentives to Stimulate European Wheat Farmers to Adapt Their Fusarium Species Mycotoxin Management
by Esmée M. Janssen, Monique C. M. Mourits, Alfons G. J. M. Oude Lansink and H. J. van der Fels-Klerx
Toxins 2021, 13(2), 144; https://doi.org/10.3390/toxins13020144 - 14 Feb 2021
Cited by 1 | Viewed by 2171
Abstract
Fusarium species infection in wheat can lead to Fusarium Head Blight (FHB) and contamination with mycotoxins. To fully exploit more recent insights into FHB and mycotoxin management, farmers might need to adapt their agronomic management, which can be stimulated through incentives. This study [...] Read more.
Fusarium species infection in wheat can lead to Fusarium Head Blight (FHB) and contamination with mycotoxins. To fully exploit more recent insights into FHB and mycotoxin management, farmers might need to adapt their agronomic management, which can be stimulated through incentives. This study aimed to identify incentives to stimulate European farmers to adapt their agronomic management to reduce FHB and related mycotoxins in wheat. A questionnaire was distributed among 224 wheat farmers from Italy, the Netherlands, Serbia, and the United Kingdom. Using the respondents’ data, Bayesian Network modelling was applied to estimate the probability that farmers would adapt their current agronomic management under eight different incentives given the conditions set by their farm and farmer characteristics. Results show that most farmers would adapt their current agronomic management under the incentives “paid extra when wheat contains low levels of mycotoxins” and “wheat is tested for the presence of mycotoxins for free”. The most effective incentive depended on farm and farmer characteristics, such as country, crop type, size of arable land, soil type, education, and mycotoxin knowledge. Insights into the farmer characteristics related to incentives can help stakeholders in the wheat supply chain, such as farmer cooperatives and the government, to design tailor-made incentive plans. Full article
(This article belongs to the Special Issue Occurrence and Integrated Management of Mycotoxins)
Show Figures

Figure 1

9 pages, 3463 KiB  
Article
Botulinum Neurotoxin Injections in Childhood Opisthotonus
by Mariam Hull, Mered Parnes and Joseph Jankovic
Toxins 2021, 13(2), 137; https://doi.org/10.3390/toxins13020137 - 12 Feb 2021
Cited by 5 | Viewed by 5916
Abstract
Opisthotonus refers to abnormal axial extension and arching of the trunk produced by excessive contractions of the paraspinal muscles. In childhood, the abnormal posture is most often related to dystonia in the setting of hypoxic injury or a number of other acquired and [...] Read more.
Opisthotonus refers to abnormal axial extension and arching of the trunk produced by excessive contractions of the paraspinal muscles. In childhood, the abnormal posture is most often related to dystonia in the setting of hypoxic injury or a number of other acquired and genetic etiologies. The condition is often painful, interferes with ambulation and quality of life, and is challenging to treat. Therapeutic options include oral benzodiazepines, oral and intrathecal baclofen, botulinum neurotoxin injections, and deep brain stimulation. Management of opisthotonus within the pediatric population has not been systematically reviewed. Here, we describe a series of seven children who presented to our institution with opisthotonus in whom symptom relief was achieved following administration of botulinum neurotoxin injections. Full article
(This article belongs to the Special Issue Botulinum Toxins: An Application in Humans and Animals)
Show Figures

Figure 1

15 pages, 4025 KiB  
Article
Extracts Prepared from a Canadian Toxic Plant Induce Light-Dependent Perinuclear Vacuoles in Human Cells
by Jan M. Tuescher, Chad R. Beck, Locke Spencer, Benjamin Yeremy, Yutong Shi, Raymond J. Andersen and Roy M. Golsteyn
Toxins 2021, 13(2), 138; https://doi.org/10.3390/toxins13020138 - 12 Feb 2021
Viewed by 2793
Abstract
We are investigating plant species from the Canadian prairie ecological zone by phenotypic cell assays to discover toxins of biological interest. We provide the first report of the effects of extracts prepared from the shrub Symphoricarpos occidentalis in several human cell lines. S. [...] Read more.
We are investigating plant species from the Canadian prairie ecological zone by phenotypic cell assays to discover toxins of biological interest. We provide the first report of the effects of extracts prepared from the shrub Symphoricarpos occidentalis in several human cell lines. S. occidentalis (Caprifoliaceae) extracts are cytotoxic, and, strikingly, treated cells undergo light-dependent vacuolation near the nucleus. The range of irradiation is present in standard ambient light and lies in the visible range (400-700 nm). Vacuolization in treated cells can be induced with specific wavelengths of 408 or 660 nm at 1 J/cm2 energies. Vacuolated cells show a striking phenotype of a large perinuclear vacuole (nuclear associated vacuole, NAV) that is distinct from vesicles observed by treatment with an autophagy-inducing agent. Treatment with S. occidentalis extracts and light induces an intense lamin A/C signal at the junction of a nuclear vacuole and the nucleus. Further study of S. occidentalis extracts and vacuolation provide chemical tools that may contribute to the understanding of nuclear envelope organization and human cell biology. Full article
(This article belongs to the Special Issue Basic Research for the Potential Use of Plant Toxins)
Show Figures

Figure 1

17 pages, 3803 KiB  
Article
Protective Role of Native Rhizospheric Soil Microbiota Against the Exposure to Microcystins Introduced into Soil-Plant System via Contaminated Irrigation Water and Health Risk Assessment
by El Mahdi Redouane, Majida Lahrouni, José Carlos Martins, Soukaina El Amrani Zerrifi, Loubna Benidire, Mountassir Douma, Faissal Aziz, Khalid Oufdou, Laila Mandi, Alexandre Campos, Vitor Vasconcelos and Brahim Oudra
Toxins 2021, 13(2), 118; https://doi.org/10.3390/toxins13020118 - 5 Feb 2021
Cited by 10 | Viewed by 2339
Abstract
Microcystins (MCs) produced in eutrophic waters may decrease crop yield, enter food chains and threaten human and animal health. The main objective of this research was to highlight the role of rhizospheric soil microbiota to protect faba bean plants from MCs toxicity after [...] Read more.
Microcystins (MCs) produced in eutrophic waters may decrease crop yield, enter food chains and threaten human and animal health. The main objective of this research was to highlight the role of rhizospheric soil microbiota to protect faba bean plants from MCs toxicity after chronic exposure. Faba bean seedlings were grown in pots containing agricultural soil, during 1 month under natural environmental conditions of Marrakech city in Morocco (March–April 2018) and exposed to cyanobacterial extracts containing up to 2.5 mg·L−1 of total MCs. Three independent exposure experiments were performed (a) agricultural soil was maintained intact “exposure experiment 1”; (b) agricultural soil was sterilized “exposure experiment 2”; (c) agricultural soil was sterilized and inoculated with the rhizobia strain Rhizobium leguminosarum RhOF34 “exposure experiment 3”. Overall, data showed evidence of an increased sensitivity of faba bean plants, grown in sterilized soil, to MCs in comparison to those grown in intact and inoculated soils. The study revealed the growth inhibition of plant shoots in both exposure experiments 2 and 3 when treated with 2.5 mg·L−1 of MCs. The results also showed that the estimated daily intake (EDI) of MCs, in sterilized soil, exceeded 2.18 and 1.16 times the reference concentrations (0.04 and 0.45 µg of microcysin-leucine arginine (MC-LR). Kg−1 DW) established for humans and cattle respectively, which raises concerns about human food chain contamination. Full article
(This article belongs to the Special Issue Health Risk Assessment Related to Cyanotoxins Exposure)
Show Figures

Figure 1

9 pages, 1516 KiB  
Article
pH-Dependent Protein Binding Properties of Uremic Toxins In Vitro
by Suguru Yamamoto, Kenichi Sasahara, Mio Domon, Keiichi Yamaguchi, Toru Ito, Shin Goto, Yuji Goto and Ichiei Narita
Toxins 2021, 13(2), 116; https://doi.org/10.3390/toxins13020116 - 4 Feb 2021
Cited by 7 | Viewed by 2015
Abstract
Protein-bound uremic toxins (PBUTs) are difficult to remove using conventional dialysis treatment owing to their high protein-binding affinity. As pH changes the conformation of proteins, it may be associated with the binding of uremic toxins. Albumin conformation at pH 2 to 13 was [...] Read more.
Protein-bound uremic toxins (PBUTs) are difficult to remove using conventional dialysis treatment owing to their high protein-binding affinity. As pH changes the conformation of proteins, it may be associated with the binding of uremic toxins. Albumin conformation at pH 2 to 13 was analyzed using circular dichroism. The protein binding behavior between indoxyl sulfate (IS) and albumin was examined using isothermal titration calorimetry. Albumin with IS, and serum with IS, p-cresyl sulfate, indole acetic acid or phenyl sulfate, as well as serum from hemodialysis patients, were adjusted pH of 3 to 11, and the concentration of the free PBUTs was measured using mass spectrometry. Albumin was unfolded at pH < 4 or >12, and weakened interaction with IS occurred at pH < 5 or >10. The concentration of free IS in the albumin solution was increased at pH 4.0 and pH 11.0. Addition of human serum to each toxin resulted in increased free forms at acidic and alkaline pH. The pH values of serums from patients undergoing hemodialysis adjusted to 3.4 and 11.3 resulted in increased concentrations of the free forms of PBUTs. In conclusion, acidic and alkaline pH conditions changed the albumin conformation and weakened the protein binding property of PBUTs in vitro. Full article
(This article belongs to the Special Issue New Strategies for the Reduction of Uremic Toxins)
Show Figures

Figure 1

20 pages, 2299 KiB  
Article
Occurrence of Fusarium Mycotoxins and Their Modified Forms in Forage Maize Cultivars
by Tim Birr, Tolke Jensen, Nils Preußke, Frank D. Sönnichsen, Marthe De Boevre, Sarah De Saeger, Mario Hasler, Joseph-Alexander Verreet and Holger Klink
Toxins 2021, 13(2), 110; https://doi.org/10.3390/toxins13020110 - 2 Feb 2021
Cited by 30 | Viewed by 6410
Abstract
Forage maize is often infected by mycotoxin-producing Fusarium fungi during plant growth, which represent a serious health risk to exposed animals. Deoxynivalenol (DON) and zearalenone (ZEN) are among the most important Fusarium mycotoxins, but little is known about the occurrence of their modified [...] Read more.
Forage maize is often infected by mycotoxin-producing Fusarium fungi during plant growth, which represent a serious health risk to exposed animals. Deoxynivalenol (DON) and zearalenone (ZEN) are among the most important Fusarium mycotoxins, but little is known about the occurrence of their modified forms in forage maize. To assess the mycotoxin contamination in Northern Germany, 120 natural contaminated forage maize samples of four cultivars from several locations were analysed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) for DON and ZEN and their modified forms deoxynivalenol-3-glucoside (DON3G), the sum of 3- and 15-acetyl-deoxynivalenol (3+15-AcDON), α- and β-zearalenol (α-ZEL, β-ZEL). DON and ZEN occurred with high incidences (100 and 96%) and a wide range of concentrations, reaching levels up to 10,972 and 3910 µg/kg, respectively. Almost half of the samples (46%) exceeded the guidance value in complementary and complete feeding stuffs for ZEN (500 µg/kg), and 9% for DON (5000 µg/kg). The DON related mycotoxins DON3G and 3+15-AcDON were also present in almost all samples (100 and 97%) with amounts of up to 3038 and 2237 µg/kg and a wide range of concentrations. For the ZEN metabolites α- and β-ZEL lower incidences were detected (59 and 32%) with concentrations of up to 423 and 203 µg/kg, respectively. Forage maize samples were contaminated with at least three co-occurring mycotoxins, whereby 95% of all samples contained four or more mycotoxins with DON, DON3G, 3+15-AcDON, and ZEN co-occurring in 93%, together with α-ZEL in 57% of all samples. Positive correlations were established between concentrations of the co-occurring mycotoxins, especially between DON and its modified forms. Averaged over all samples, ratios of DON3G/DON and 3+15-AcDON/DON were similar, 20.2 and 20.5 mol%; cultivar-specific mean ratios ranged from 14.6 to 24.3 mol% and 15.8 to 24.0 mol%, respectively. In total, 40.7 mol% of the measured DON concentration was present in the modified forms DON3G and 3+15-AcDON. The α-ZEL/ZEN ratio was 6.2 mol%, ranging from 5.2 to 8.6 mol% between cultivars. These results demonstrate that modified mycotoxins contribute substantially to the overall mycotoxin contamination in forage maize. To avoid a considerable underestimation, it is necessary to analyse modified mycotoxins in future mycotoxin monitoring programs together with their parent forms. Full article
(This article belongs to the Special Issue Occurrence and Risk Assessment of Mycotoxins)
Show Figures

Figure 1

21 pages, 5427 KiB  
Article
Extensive Variation in the Activities of Pseudocerastes and Eristicophis Viper Venoms Suggests Divergent Envenoming Strategies Are Used for Prey Capture
by Bianca op den Brouw, Francisco C. P. Coimbra, Lachlan A. Bourke, Tam Minh Huynh, Danielle H. W. Vlecken, Parviz Ghezellou, Jeroen C. Visser, James S. Dobson, Manuel A. Fernandez-Rojo, Maria P. Ikonomopoulou, Nicholas R. Casewell, Syed A. Ali, Behzad Fathinia, Wayne C. Hodgson and Bryan G. Fry
Toxins 2021, 13(2), 112; https://doi.org/10.3390/toxins13020112 - 2 Feb 2021
Cited by 10 | Viewed by 5538
Abstract
Snakes of the genera Pseudocerastes and Eristicophis (Viperidae: Viperinae) are known as the desert vipers due to their association with the arid environments of the Middle East. These species have received limited research attention and little is known about their venom or ecology. [...] Read more.
Snakes of the genera Pseudocerastes and Eristicophis (Viperidae: Viperinae) are known as the desert vipers due to their association with the arid environments of the Middle East. These species have received limited research attention and little is known about their venom or ecology. In this study, a comprehensive analysis of desert viper venoms was conducted by visualising the venom proteomes via gel electrophoresis and assessing the crude venoms for their cytotoxic, haemotoxic, and neurotoxic properties. Plasmas sourced from human, toad, and chicken were used as models to assess possible prey-linked venom activity. The venoms demonstrated substantial divergence in composition and bioactivity across all experiments. Pseudocerastes urarachnoides venom activated human coagulation factors X and prothrombin and demonstrated potent procoagulant activity in human, toad, and chicken plasmas, in stark contrast to the potent neurotoxic venom of P. fieldi. The venom of E. macmahonii also induced coagulation, though this did not appear to be via the activation of factor X or prothrombin. The coagulant properties of P. fieldi and P. persicus venoms varied among plasmas, demonstrating strong anticoagulant activity in the amphibian and human plasmas but no significant effect in that of bird. This is conjectured to reflect prey-specific toxin activity, though further ecological studies are required to confirm any dietary associations. This study reinforces the notion that phylogenetic relatedness of snakes cannot readily predict venom protein composition or function. The significant venom variation between these species raises serious concerns regarding antivenom paraspecificity. Future assessment of antivenom is crucial. Full article
(This article belongs to the Special Issue Toxinology and Pharmacology of Snake Venoms)
Show Figures

Figure 1

15 pages, 2047 KiB  
Article
Oral Sub-Chronic Ochratoxin a Exposure Induces Gut Microbiota Alterations in Mice
by María Izco, Ariane Vettorazzi, Maria de Toro, Yolanda Sáenz and Lydia Alvarez-Erviti
Toxins 2021, 13(2), 106; https://doi.org/10.3390/toxins13020106 - 1 Feb 2021
Cited by 15 | Viewed by 2714
Abstract
Gut microbiota plays crucial roles in maintaining host health. External factors, such as diet, medicines, and environmental toxins, influence the composition of gut microbiota. Ochratoxin A (OTA) is one of the most prevalent and relevant mycotoxins and is a highly abundant food and [...] Read more.
Gut microbiota plays crucial roles in maintaining host health. External factors, such as diet, medicines, and environmental toxins, influence the composition of gut microbiota. Ochratoxin A (OTA) is one of the most prevalent and relevant mycotoxins and is a highly abundant food and animal feed contaminant. In the present study, we aimed to investigate OTA gut microbiome toxicity in mice sub-chronically exposed to low doses of OTA (0.21, 0.5, and 1.5 mg/kg body weight) by daily oral gavage for 28 days. Fecal microbiota from control and OTA-treated mice was analyzed using 16S ribosomal RNA (rRNA) gene sequencing followed by metagenomics. OTA exposure caused marked changes in gut microbial community structure, including the decrease in the diversity of fecal microbiota and the relative abundance of Firmicutes, as well as the increase in the relative abundance of Bacteroidetes at the phylum level. At the family level, six bacterial families (unclassified Bacteroidales, Porphyromonadaceae, unclassified Cyanobacteria, Streptococcaceae, Enterobacteriaceae, Ruminococcaceae) were significantly altered by OTA exposure. Interestingly, OTA-induced changes were observed in the lower-dose OTA groups, while high-dose OTA group microbiota was similar to control group. Our results demonstrated that sub-chronic exposure at low doses of OTA alters the structure and diversity of the gut microbial community. Full article
(This article belongs to the Special Issue Mycotoxins and Food)
Show Figures

Graphical abstract

48 pages, 3370 KiB  
Review
The Food Poisoning Toxins of Bacillus cereus
by Richard Dietrich, Nadja Jessberger, Monika Ehling-Schulz, Erwin Märtlbauer and Per Einar Granum
Toxins 2021, 13(2), 98; https://doi.org/10.3390/toxins13020098 - 28 Jan 2021
Cited by 125 | Viewed by 19311
Abstract
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide [...] Read more.
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease. Full article
(This article belongs to the Special Issue Bacillus cereus Toxins)
Show Figures

Figure 1

13 pages, 352 KiB  
Review
Intestinal Chelators, Sorbants, and Gut-Derived Uremic Toxins
by Solène M. Laville, Ziad A. Massy, Said Kamel, Jean Marc Chillon, Gabriel Choukroun and Sophie Liabeuf
Toxins 2021, 13(2), 91; https://doi.org/10.3390/toxins13020091 - 26 Jan 2021
Cited by 11 | Viewed by 3061
Abstract
Chronic kidney disease (CKD) is a highly prevalent condition and is associated with a high comorbidity burden, polymedication, and a high mortality rate. A number of conventional and nonconventional risk factors for comorbidities and mortality in CKD have been identified. Among the nonconventional [...] Read more.
Chronic kidney disease (CKD) is a highly prevalent condition and is associated with a high comorbidity burden, polymedication, and a high mortality rate. A number of conventional and nonconventional risk factors for comorbidities and mortality in CKD have been identified. Among the nonconventional risk factors, uremic toxins are valuable therapeutic targets. The fact that some uremic toxins are gut-derived suggests that intestinal chelators might have a therapeutic effect. The phosphate binders used to prevent hyperphosphatemia in hemodialysis patients act by complexing inorganic phosphate in the gastrointestinal tract but might conceivably have a nonspecific action on gut-derived uremic toxins. Since phosphorous is a major nutrient for the survival and reproduction of bacteria, changes in its intestinal concentration may impact the gut microbiota’s activity and composition. Furthermore, AST-120 is an orally administered activated charcoal adsorbent that is widely used in Asian countries to specifically decrease uremic toxin levels. In this narrative review, we examine the latest data on the use of oral nonspecific and specific intestinal chelators to reduce levels of gut-derived uremic toxins. Full article
(This article belongs to the Special Issue New Strategies for the Reduction of Uremic Toxins)
10 pages, 690 KiB  
Article
Genetic Manipulation of the Ergot Alkaloid Pathway in Epichloë festucae var. lolii and Its Effect on Black Beetle Feeding Deterrence
by Debbie Hudson, Wade Mace, Alison Popay, Joanne Jensen, Catherine McKenzie, Catherine Cameron and Richard Johnson
Toxins 2021, 13(2), 76; https://doi.org/10.3390/toxins13020076 - 20 Jan 2021
Cited by 7 | Viewed by 1834
Abstract
Epichloë endophytes are filamentous fungi (family Clavicipitaceae) that live in symbiotic associations with grasses in the sub family Poöideae. In New Zealand, E. festucae var. lolii confers significant resistance to perennial ryegrass (Lolium perenne) against insect and animal herbivory and is [...] Read more.
Epichloë endophytes are filamentous fungi (family Clavicipitaceae) that live in symbiotic associations with grasses in the sub family Poöideae. In New Zealand, E. festucae var. lolii confers significant resistance to perennial ryegrass (Lolium perenne) against insect and animal herbivory and is an essential component of pastoral agriculture, where ryegrass is a major forage species. The fungus produces in planta a range of bioactive secondary metabolites, including ergovaline, which has demonstrated bioactivity against the important pasture pest black beetle, but can also cause mammalian toxicosis. We genetically modified E. festucae var. lolii strain AR5 to eliminate key enzymatic steps in the ergovaline pathway to determine if intermediate ergot alkaloid compounds can still provide insecticidal benefits in the absence of the toxic end product ergovaline. Four genes (dmaW, easG, cloA, and lpsB) spanning the pathway were deleted and each deletion mutant was inoculated into five different plant genotypes of perennial ryegrass, which were later harvested for a full chemical analysis of the ergot alkaloid compounds produced. These associations were also used in a black beetle feeding deterrence study. Deterrence was seen with just chanoclavine present, but was cumulative as more intermediate compounds in the pathway were made available. Ergovaline was not detected in any of the deletion associations, indicating that bioactivity towards black beetle can be obtained in the absence of this mammalian toxin. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

18 pages, 340 KiB  
Article
Investigating Multi-Mycotoxin Exposure in Occupational Settings: A Biomonitoring and Airborne Measurement Approach
by Sophie Ndaw, Daniele Jargot, Guillaume Antoine, Flavien Denis, Sandrine Melin and Alain Robert
Toxins 2021, 13(1), 54; https://doi.org/10.3390/toxins13010054 - 13 Jan 2021
Cited by 15 | Viewed by 2894
Abstract
Investigating workplace exposure to mycotoxins is of the utmost importance in supporting the implementation of preventive measures for workers. The aim of this study was to provide tools for measuring mycotoxins in urine and airborne samples. A multi-class mycotoxin method was developed in [...] Read more.
Investigating workplace exposure to mycotoxins is of the utmost importance in supporting the implementation of preventive measures for workers. The aim of this study was to provide tools for measuring mycotoxins in urine and airborne samples. A multi-class mycotoxin method was developed in urine for the determination of aflatoxin B1, aflatoxin M1, ochratoxin A, ochratoxin α, deoxynivalenol, zearalenone, α-zearalenol, β-zearalenol, fumonisin B1, HT2-toxin and T2-toxin. Analysis was based on liquid chromatography–high resolution mass spectrometry. Sample pre-treatments included enzymatic digestion and an online or offline sample clean-up step. The method was validated according to the European Medicines Agency guidance procedures. In order to estimate external exposure, air samples collected with a CIP 10 (Capteur Individuel de Particules 10) personal dust sampler were analyzed for the quantification of up to ten mycotoxins, including aflatoxins, ochratoxin A, deoxynivalenol, zearalenone, fumonisin B1 and HT-2 toxin and T-2 toxin. The method was validated according to standards for workplace exposure to chemical and biological agents EN 482. Both methods, biomonitoring and airborne mycotoxin measurement, showed good analytical performances. They were successfully applied in a small pilot study to assess mycotoxin contamination in workers during cleaning of a grain elevator. We demonstrated that this approach was suitable for investigating occupational exposure to mycotoxins. Full article
(This article belongs to the Special Issue Occupational Exposure to Mycotoxins—Challenges and Ways Forward)
21 pages, 4770 KiB  
Article
Roles of Nutrient Limitation on Western Lake Erie CyanoHAB Toxin Production
by Malcolm A. Barnard, Justin D. Chaffin, Haley E. Plaas, Gregory L. Boyer, Bofan Wei, Steven W. Wilhelm, Karen L. Rossignol, Jeremy S. Braddy, George S. Bullerjahn, Thomas B. Bridgeman, Timothy W. Davis, Jin Wei, Minsheng Bu and Hans W. Paerl
Toxins 2021, 13(1), 47; https://doi.org/10.3390/toxins13010047 - 9 Jan 2021
Cited by 20 | Viewed by 6622
Abstract
Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix [...] Read more.
Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed. Full article
Show Figures

Figure 1

12 pages, 2589 KiB  
Review
Common Mechanism for Target Specificity of Protein- and DNA-Targeting ADP-Ribosyltransferases
by Toru Yoshida and Hideaki Tsuge
Toxins 2021, 13(1), 40; https://doi.org/10.3390/toxins13010040 - 7 Jan 2021
Cited by 8 | Viewed by 2307
Abstract
Many bacterial pathogens utilize ADP-ribosyltransferases (ARTs) as virulence factors. The critical aspect of ARTs is their target specificity. Each individual ART modifies a specific residue of its substrates, which could be proteins, DNA, or antibiotics. However, the mechanism underlying this specificity is poorly [...] Read more.
Many bacterial pathogens utilize ADP-ribosyltransferases (ARTs) as virulence factors. The critical aspect of ARTs is their target specificity. Each individual ART modifies a specific residue of its substrates, which could be proteins, DNA, or antibiotics. However, the mechanism underlying this specificity is poorly understood. Here, we review the substrate recognition mechanism and target residue specificity based on the available complex structures of ARTs and their substrates. We show that there are common mechanisms of target residue specificity among protein- and DNA-targeting ARTs. Full article
(This article belongs to the Special Issue Structure and Function of Bacterial ADP-Ribosylation Toxins)
Show Figures

Figure 1

12 pages, 525 KiB  
Review
Zearalenone and Its Metabolites—General Overview, Occurrence, and Toxicity
by Karolina Ropejko and Magdalena Twarużek
Toxins 2021, 13(1), 35; https://doi.org/10.3390/toxins13010035 - 6 Jan 2021
Cited by 159 | Viewed by 10493
Abstract
Mycotoxins are secondary metabolites of filamentous fungi and represent one of the most common groups of food contaminants with low molecular weight. These toxins are considered common and can affect the food chain at various stages of production, harvesting, storage and processing. Zearalenone [...] Read more.
Mycotoxins are secondary metabolites of filamentous fungi and represent one of the most common groups of food contaminants with low molecular weight. These toxins are considered common and can affect the food chain at various stages of production, harvesting, storage and processing. Zearalenone is one of over 400 detected mycotoxins and produced by fungi of the genus Fusarium; it mainly has estrogenic effects on various organisms. Contaminated products can lead to huge economic losses and pose risks to animals and humans. In this review, we systemize information on zearalenone and its major metabolites. Full article
(This article belongs to the Special Issue Occurrence and Risk Assessment of Mycotoxins)
Show Figures

Figure 1

20 pages, 2506 KiB  
Article
Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal In-Vitro and Ex-Vivo Methodology
by Alexandros Yiannikouris, Juha Apajalahti, Hannele Kettunen, Suvi Ojanperä, Andrew N. W. Bell, Jason D. Keegan and Colm A. Moran
Toxins 2021, 13(1), 24; https://doi.org/10.3390/toxins13010024 - 1 Jan 2021
Cited by 10 | Viewed by 3160
Abstract
In this work, adsorption of the carcinogenic mycotoxin aflatoxin B1 (AFB1) by two sequestrants—a yeast cell wall-based adsorbent (YCW) and a hydrated sodium calcium aluminosilicate (HSCAS)—was studied across four laboratory models: (1) an in vitro model from a reference method was employed to [...] Read more.
In this work, adsorption of the carcinogenic mycotoxin aflatoxin B1 (AFB1) by two sequestrants—a yeast cell wall-based adsorbent (YCW) and a hydrated sodium calcium aluminosilicate (HSCAS)—was studied across four laboratory models: (1) an in vitro model from a reference method was employed to quantify the sorption capabilities of both sequestrants under buffer conditions at two pH values using liquid chromatography with fluorescence detection (LC-FLD); (2) in a second in vitro model, the influence of the upper gastrointestinal environment on the mycotoxin sorption capacity of the same two sequestrants was studied using a chronic AFB1 level commonly encountered in the field (10 µg/L and in the presence of feed); (3) the third model used a novel ex vivo approach to measure the absorption of 3H-labelled AFB1 in the intestinal tissue and the ability of the sequestrants to offset this process; and (4) a second previously developed ex vivo model readapted to AFB1 was used to measure the transfer of 3H-labelled AFB1 through live intestinal tissue, and the influence of sequestrants on its bioavailability by means of an Ussing chamber system. Despite some sorption effects caused by the feed itself studied in the second model, both in vitro models established that the adsorption capacity of both YCW and HSCAS is promoted at a low acidic pH. Ex vivo Models 3 and 4 showed that the same tested material formed a protective barrier on the epithelial mucosa and that they significantly reduced the transfer of AFB1 through live intestinal tissue. The results indicate that, by reducing the transmembrane transfer rate and reducing over 60% of the concentration of free AFB1, both products are able to significantly limit the bioavailability of AFB1. Moreover, there were limited differences between YCW and HSCAS in their sorption capacities. The inclusion of YCW in the dietary ration could have a positive influence in reducing AFB1′s physiological bioavailability. Full article
(This article belongs to the Collection Aflatoxins)
Show Figures

Figure 1

Back to TopTop