Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2350 KiB  
Article
Removal of Aflatoxin B1 by Edible Mushroom-Forming Fungi and Its Mechanism
by Min-Jung Choo, Sung-Yong Hong, Soo-Hyun Chung and Ae-Son Om
Toxins 2021, 13(9), 668; https://doi.org/10.3390/toxins13090668 - 18 Sep 2021
Cited by 10 | Viewed by 3799
Abstract
Aflatoxins (AFs) are biologically active toxic metabolites, which are produced by certain toxigenic Aspergillus sp. on agricultural crops. In this study, five edible mushroom-forming fungi were analyzed using high-performance liquid chromatography fluorescence detector (HPLC-FLD) for their ability to remove aflatoxin B1 (AFB [...] Read more.
Aflatoxins (AFs) are biologically active toxic metabolites, which are produced by certain toxigenic Aspergillus sp. on agricultural crops. In this study, five edible mushroom-forming fungi were analyzed using high-performance liquid chromatography fluorescence detector (HPLC-FLD) for their ability to remove aflatoxin B1 (AFB1), one of the most potent naturally occurring carcinogens known. Bjerkandera adusta and Auricularia auricular-judae showed the most significant AFB1 removal activities (96.3% and 100%, respectively) among five strains after 14-day incubation. The cell lysate from B. adusta exhibited higher AFB1 removal activity (35%) than the cell-free supernatant (13%) after 1-day incubation and the highest removal activity (80%) after 5-day incubation at 40 °C. In addition, AFB1 analyses using whole cells, cell lysates, and cell debris from B. adusta showed that cell debris had the highest AFB1 removal activity at 5th day (95%). Moreover, exopolysaccharides from B. adusta showed an increasing trend (24–48%) similar to whole cells and cell lysates after 5- day incubation. Our results strongly suggest that AFB1 removal activity by whole cells was mainly due to AFB1 binding onto cell debris during early incubation and partly due to binding onto cell lysates along with exopolysaccharides after saturation of AFB1 binding process onto cell wall components. Full article
(This article belongs to the Special Issue Determination and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

22 pages, 25705 KiB  
Article
Is Toxin-Producing Planktothrix sp. an Emerging Species in Lake Constance?
by Corentin Fournier, Eva Riehle, Daniel R. Dietrich and David Schleheck
Toxins 2021, 13(9), 666; https://doi.org/10.3390/toxins13090666 - 17 Sep 2021
Cited by 7 | Viewed by 3609
Abstract
Recurring blooms of filamentous, red-pigmented and toxin-producing cyanobacteria Planktothrix rubescens have been reported in numerous deep and stratified prealpine lakes, with the exception of Lake Constance. In a 2019 and 2020 Lake Constance field campaign, we collected samples from a distinct red-pigmented biomass [...] Read more.
Recurring blooms of filamentous, red-pigmented and toxin-producing cyanobacteria Planktothrix rubescens have been reported in numerous deep and stratified prealpine lakes, with the exception of Lake Constance. In a 2019 and 2020 Lake Constance field campaign, we collected samples from a distinct red-pigmented biomass maximum below the chlorophyll-a maximum, which was determined using fluorescence probe measurements at depths between 18 and 20 m. Here, we report the characterization of these deep water red pigment maxima (DRM) as cyanobacterial blooms. Using 16S rRNA gene-amplicon sequencing, we found evidence that the blooms were, indeed, contributed by Planktothrix spp., although phycoerythrin-rich Synechococcus taxa constituted most of the biomass (>96% relative read abundance) of the cyanobacterial DRM community. Through UPLC–MS/MS, we also detected toxic microcystins (MCs) in the DRM in the individual sampling days at concentrations of ≤1.5 ng/L. Subsequently, we reevaluated the fluorescence probe measurements collected over the past decade and found that, in the summer, DRM have been present in Lake Constance, at least since 2009. Our study highlights the need for a continuous monitoring program also targeting the cyanobacterial DRM in Lake Constance, and for future studies on the competition of the different cyanobacterial taxa. Future studies will address the potential community composition changes in response to the climate change driven physiochemical and biological parameters of the lake. Full article
Show Figures

Figure 1

11 pages, 628 KiB  
Review
Wickerhamomyces Yeast Killer Toxins’ Medical Applications
by Laura Giovati, Tecla Ciociola, Tiziano De Simone, Stefania Conti and Walter Magliani
Toxins 2021, 13(9), 655; https://doi.org/10.3390/toxins13090655 - 15 Sep 2021
Cited by 10 | Viewed by 3016
Abstract
Possible implications and applications of the yeast killer phenomenon in the fight against infectious diseases are reviewed, with particular reference to some wide-spectrum killer toxins (KTs) produced by Wickerhamomyces anomalus and other related species. A perspective on the applications of these KTs in [...] Read more.
Possible implications and applications of the yeast killer phenomenon in the fight against infectious diseases are reviewed, with particular reference to some wide-spectrum killer toxins (KTs) produced by Wickerhamomyces anomalus and other related species. A perspective on the applications of these KTs in the medical field is provided considering (1) a direct use of killer strains, in particular in the symbiotic control of arthropod-borne diseases; (2) a direct use of KTs as experimental therapeutic agents; (3) the production, through the idiotypic network, of immunological derivatives of KTs and their use as potential anti-infective therapeutics. Studies on immunological derivatives of KTs in the context of vaccine development are also described. Full article
(This article belongs to the Special Issue Yeast Killer Toxin)
Show Figures

Figure 1

16 pages, 2468 KiB  
Article
Validation and Application of a Low-Cost Sorting Device for Fumonisin Reduction in Maize
by William Stafstrom, Julie Wushensky, John Fuchs, Wenwei Xu, Nnenna Ezera and Rebecca J. Nelson
Toxins 2021, 13(9), 652; https://doi.org/10.3390/toxins13090652 - 14 Sep 2021
Cited by 7 | Viewed by 2473
Abstract
Fumonisin mycotoxins are a persistent challenge to human and livestock health in tropical and sub-tropical maize cropping systems, and more efficient methods are needed to reduce their presence in food systems. We constructed a novel, low-cost device for sorting grain, the “DropSort”, and [...] Read more.
Fumonisin mycotoxins are a persistent challenge to human and livestock health in tropical and sub-tropical maize cropping systems, and more efficient methods are needed to reduce their presence in food systems. We constructed a novel, low-cost device for sorting grain, the “DropSort”, and tested its effectiveness on both plastic kernel models and fumonisin-contaminated maize. Sorting plastic kernels of known size and shape enabled us to optimize the sorting performance of the DropSort. The device sorted maize into three distinct fractions as measured by bulk density and 100-kernel weight. The level of fumonisin was lower in the heaviest fractions of maize compared to the unsorted samples. Based on correlations among fumonisin and bulk characteristics of each fraction, we found that light fraction 100-kernel weight could be an inexpensive proxy for unsorted fumonisin concentration. Single kernel analysis revealed significant relationships among kernel fumonisin content and physical characteristics that could prove useful for future sorting efforts. The availability of a low-cost device (materials~USD 300) that can be used to reduce fumonisin in maize could improve food safety in resource-limited contexts in which fumonisin contamination remains a pressing challenge. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

15 pages, 594 KiB  
Article
Diversity of Mycobiota in Spanish Grape Berries and Selection of Hanseniaspora uvarum U1 to Prevent Mycotoxin Contamination
by Carolina Gómez-Albarrán, Clara Melguizo, Belén Patiño, Covadonga Vázquez and Jéssica Gil-Serna
Toxins 2021, 13(9), 649; https://doi.org/10.3390/toxins13090649 - 13 Sep 2021
Cited by 14 | Viewed by 3756
Abstract
The occurrence of mycotoxins on grapes poses a high risk for food safety; thus, it is necessary to implement effective prevention methods. In this work, a metagenomic approach revealed the presence of important mycotoxigenic fungi in grape berries, including Aspergillus flavus, Aspergillus [...] Read more.
The occurrence of mycotoxins on grapes poses a high risk for food safety; thus, it is necessary to implement effective prevention methods. In this work, a metagenomic approach revealed the presence of important mycotoxigenic fungi in grape berries, including Aspergillus flavus, Aspergillus niger aggregate species, or Aspergillus section Circumdati. However, A. carbonarius was not detected in any sample. One of the samples was not contaminated by any mycotoxigenic species, and, therefore, it was selected for the isolation of potential biocontrol agents. In this context, Hanseniaspora uvarum U1 was selected for biocontrol in vitro assays. The results showed that this yeast is able to reduce the growth rate of the main ochratoxigenic and aflatoxigenic Aspergillus spp. occurring on grapes. Moreover, H. uvarum U1 seems to be an effective detoxifying agent for aflatoxin B1 and ochratoxin A, probably mediated by the mechanisms of adsorption to the cell wall and other active mechanisms. Therefore, H. uvarum U1 should be considered in an integrated approach to preventing AFB1 and OTA in grapes due to its potential as a biocontrol and detoxifying agent. Full article
Show Figures

Figure 1

15 pages, 2353 KiB  
Article
A Validation System for Selection of Bacteriophages against Shiga Toxin-Producing Escherichia coli Contamination
by Agnieszka Necel, Sylwia Bloch, Bożena Nejman-Faleńczyk, Aleksandra Dydecka, Gracja Topka-Bielecka, Alicja Węgrzyn and Grzegorz Węgrzyn
Toxins 2021, 13(9), 644; https://doi.org/10.3390/toxins13090644 - 11 Sep 2021
Cited by 4 | Viewed by 2811
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe infections in humans, leading to serious diseases and dangerous complications, such as hemolytic-uremic syndrome. Although cattle are a major reservoir of STEC, the most commonly occurring source of human infections are food products (e.g., vegetables) [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) can cause severe infections in humans, leading to serious diseases and dangerous complications, such as hemolytic-uremic syndrome. Although cattle are a major reservoir of STEC, the most commonly occurring source of human infections are food products (e.g., vegetables) contaminated with cow feces (often due to the use of natural fertilizers in agriculture). Since the use of antibiotics against STEC is controversial, other methods for protection of food against contaminations by these bacteria are required. Here, we propose a validation system for selection of bacteriophages against STEC contamination. As a model system, we have employed a STEC-specific bacteriophage vB_Eco4M-7 and the E. coli O157:H7 strain no. 86-24, bearing Shiga toxin-converting prophage ST2-8624 (Δstx2::cat gfp). When these bacteria were administered on the surface of sliced cucumber (as a model vegetable), significant decrease in number viable E. coli cells was observed after 6 h of incubation. No toxicity of vB_Eco4M-7 against mammalian cells (using the Balb/3T3 cell line as a model) was detected. A rapid decrease of optical density of STEC culture was demonstrated following addition of a vB_Eco4M-7 lysate. However, longer incubation of susceptible bacteria with this bacteriophage resulted in the appearance of phage-resistant cells which predominated in the culture after 24 h incubation. Interestingly, efficiency of selection of bacteria resistant to vB_Eco4M-7 was higher at higher multiplicity of infection (MOI); the highest efficiency was evident at MOI 10, while the lowest occurred at MOI 0.001. A similar phenomenon of selection of the phage-resistant bacteria was also observed in the experiment with the STEC-contaminated cucumber after 24 h incubation with phage lysate. On the other hand, bacteriophage vB_Eco4M-7 could efficiently develop in host bacterial cells, giving plaques at similar efficiency of plating at 37, 25 and 12 °C, indicating that it can destroy STEC cells at the range of temperatures commonly used for vegetable short-term storage. These results indicate that bacteriophage vB_Eco4M-7 may be considered for its use in food protection against STEC contamination; however, caution should be taken due to the phenomenon of the appearance of phage-resistant bacteria. Full article
Show Figures

Figure 1

16 pages, 2538 KiB  
Article
A Four-Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotypes C and D
by Consuelo Garcia-Rodriguez, Shude Yan, Isin N. Geren, Kristeene A. Knopp, Jianbo Dong, Zhengda Sun, Jianlong Lou, Fraser Conrad, Wei-Hua Wen, Shauna Farr-Jones, Theresa J. Smith, Jennifer L. Brown, Janet C. Skerry, Leonard A. Smith and James D. Marks
Toxins 2021, 13(9), 641; https://doi.org/10.3390/toxins13090641 - 10 Sep 2021
Cited by 7 | Viewed by 2897
Abstract
Human botulism can be caused by botulinum neurotoxin (BoNT) serotypes A to G. Here, we present an antibody-based antitoxin composed of four human monoclonal antibodies (mAbs) against BoNT/C, BoNT/D, and their mosaic toxins. This work built on our success in generating protective mAbs [...] Read more.
Human botulism can be caused by botulinum neurotoxin (BoNT) serotypes A to G. Here, we present an antibody-based antitoxin composed of four human monoclonal antibodies (mAbs) against BoNT/C, BoNT/D, and their mosaic toxins. This work built on our success in generating protective mAbs to BoNT /A, B and E serotypes. We generated mAbs from human immune single-chain Fv (scFv) yeast-display libraries and isolated scFvs with high affinity for BoNT/C, BoNT/CD, BoNT/DC and BoNT/D serotypes. We identified four mAbs that bound non-overlapping epitopes on multiple serotypes and mosaic BoNTs. Three of the mAbs underwent molecular evolution to increase affinity. A four-mAb combination provided high-affinity binding and BoNT neutralization of both serotypes and their mosaic toxins. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing and neutralizing BoNT/C and BoNT/D serotypes and their mosaic toxins. A derivative of the four-antibody combination (NTM-1634) completed a Phase 1 clinical trial (Snow et al., Antimicrobial Agents and Chemotherapy, 2019) with no drug-related serious adverse events. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

18 pages, 1766 KiB  
Article
A Combined Transcriptomics and Proteomics Approach Reveals the Differences in the Predatory and Defensive Venoms of the Molluscivorous Cone Snail Cylinder ammiralis (Caenogastropoda: Conidae)
by Samuel Abalde, Sébastien Dutertre and Rafael Zardoya
Toxins 2021, 13(9), 642; https://doi.org/10.3390/toxins13090642 - 10 Sep 2021
Cited by 8 | Viewed by 3013
Abstract
Venoms are complex mixtures of proteins that have evolved repeatedly in the animal kingdom. Cone snail venoms represent one of the best studied venom systems. In nature, this venom can be dynamically adjusted depending on its final purpose, whether to deter predators or [...] Read more.
Venoms are complex mixtures of proteins that have evolved repeatedly in the animal kingdom. Cone snail venoms represent one of the best studied venom systems. In nature, this venom can be dynamically adjusted depending on its final purpose, whether to deter predators or hunt prey. Here, the transcriptome of the venom gland and the proteomes of the predation-evoked and defensive venoms of the molluscivorous cone snail Cylinder ammiralis were catalogued. A total of 242 venom-related transcripts were annotated. The conotoxin superfamilies presenting more different peptides were O1, O2, T, and M, which also showed high expression levels (except T). The three precursors of the J superfamily were also highly expressed. The predation-evoked and defensive venoms showed a markedly distinct profile. A total of 217 different peptides were identified, with half of them being unique to one venom. A total of 59 peptides ascribed to 23 different protein families were found to be exclusive to the predatory venom, including the cono-insulin, which was, for the first time, identified in an injected venom. A total of 43 peptides from 20 protein families were exclusive to the defensive venom. Finally, comparisons of the relative abundance (in terms of number of peptides) of the different conotoxin precursor superfamilies showed that most of them present similar abundance regardless of the diet. Full article
(This article belongs to the Special Issue Predatory and Defensive Venom Peptides)
Show Figures

Figure 1

16 pages, 2653 KiB  
Article
New Trends in the Occurrence of Yessotoxins in the Northwestern Adriatic Sea
by Silva Rubini, Sabrina Albonetti, Simonetta Menotta, Antonio Cervo, Emanuele Callegari, Monica Cangini, Sonia Dall’Ara, Erika Baldini, Silvia Vertuani and Stefano Manfredini
Toxins 2021, 13(9), 634; https://doi.org/10.3390/toxins13090634 - 9 Sep 2021
Cited by 11 | Viewed by 3140
Abstract
Yessotoxins (YTXs) are polycyclic toxic ether compounds produced by phytoplanktonic dinoflagellates which accumulate in filter-feeding organisms. We know that the water temperature in our areas Northwestern Adriatic Sea is optimal for the growth of potentially toxic algae (around 20 °C). In recent years, [...] Read more.
Yessotoxins (YTXs) are polycyclic toxic ether compounds produced by phytoplanktonic dinoflagellates which accumulate in filter-feeding organisms. We know that the water temperature in our areas Northwestern Adriatic Sea is optimal for the growth of potentially toxic algae (around 20 °C). In recent years, these temperatures have remained at these levels for longer and longer periods, probably due to global warming, which has led to an excessive increase in toxin levels. The interruption of mussel harvesting caused by algae negatively affects farmers’ revenues and the availability of local fish, causing a major economic loss in Italy’s main shellfish sector. Methods: In the nine years considered, 3359 samples were examined: 1715 marine waters, 73 common clams; 732 mussels; 66 oysters; and 773 veracious clams. Bivalve molluscs were examined for the presence of marine biotoxins, including YTXs, while potentially toxic algae, including those producing YTXs, were searched for and counted in marine waters. The method adopted for the quantification of lipophilic toxins involves the use of an LC-MS/MS system. The enumeration of phytoplankton cells was performed according to the Utermhöl method. Results: Between 2012 and 2020, 706 molluscs were tested for YTXs. In total, 246 samples tested positive, i.e., 34.84%. Of the positive samples, 30 exceeded the legal limit. Conclusion: In this regard, it is essential to develop and activate, as soon as possible, an “early warning” system that allows a better control of the production areas of live bivalve molluscs, thus allowing an optimal management of the plants in these critical situations. Full article
Show Figures

Figure 1

17 pages, 986 KiB  
Article
Sub-Acute Feeding Study of Saxitoxin to Mice Confirms the Effectiveness of Current Regulatory Limits for Paralytic Shellfish Toxins
by Sarah C. Finch, Nicola G. Webb, Michael J. Boundy, D. Tim Harwood, John S. Munday, Jan M. Sprosen, Vanessa M. Cave, Ric B. Broadhurst and Jeane Nicolas
Toxins 2021, 13(9), 627; https://doi.org/10.3390/toxins13090627 - 7 Sep 2021
Cited by 6 | Viewed by 2965
Abstract
Regulatory limits for shellfish toxins are required to protect human health. Often these limits are set using only acute toxicity data, which is significant, as in some communities, shellfish makes up a large proportion of their daily diet and can be contaminated with [...] Read more.
Regulatory limits for shellfish toxins are required to protect human health. Often these limits are set using only acute toxicity data, which is significant, as in some communities, shellfish makes up a large proportion of their daily diet and can be contaminated with paralytic shellfish toxins (PSTs) for several months. In the current study, feeding protocols were developed to mimic human feeding behaviour and diets containing three dose rates of saxitoxin dihydrochloride (STX.2HCl) were fed to mice for 21 days. This yielded STX.2HCl dose rates of up to 730 µg/kg bw/day with no effects on food consumption, growth, blood pressure, heart rate, motor coordination, grip strength, blood chemistry, haematology, organ weights or tissue histology. Using the 100-fold safety factor to extrapolate from animals to humans yields a dose rate of 7.3 µg/kg bw/day, which is well above the current acute reference dose (ARfD) of 0.5 µg STX.2HCl eq/kg bw proposed by the European Food Safety Authority. Furthermore, to reach the dose rate of 7.3 µg/kg bw, a 60 or 70 kg human would have to consume 540 or 630 g of shellfish contaminated with PSTs at the current regulatory limit (800 µg/kg shellfish flesh), respectively. The current regulatory limit for PSTs therefore seems appropriate. Full article
(This article belongs to the Special Issue Marine Toxins from Harmful Algae and Seafood Safety)
Show Figures

Figure 1

11 pages, 862 KiB  
Review
The History of Pertussis Toxin
by Camille Locht and Rudy Antoine
Toxins 2021, 13(9), 623; https://doi.org/10.3390/toxins13090623 - 5 Sep 2021
Cited by 18 | Viewed by 6156
Abstract
Besides the typical whooping cough syndrome, infection with Bordetella pertussis or immunization with whole-cell vaccines can result in a wide variety of physiological manifestations, including leukocytosis, hyper-insulinemia, and histamine sensitization, as well as protection against disease. Initially believed to be associated with different [...] Read more.
Besides the typical whooping cough syndrome, infection with Bordetella pertussis or immunization with whole-cell vaccines can result in a wide variety of physiological manifestations, including leukocytosis, hyper-insulinemia, and histamine sensitization, as well as protection against disease. Initially believed to be associated with different molecular entities, decades of research have provided the demonstration that these activities are all due to a single molecule today referred to as pertussis toxin. The three-dimensional structure and molecular mechanisms of pertussis toxin action, as well as its role in protective immunity have been uncovered in the last 50 years. In this article, we review the history of pertussis toxin, including the paradigm shift that occurred in the 1980s which established the pertussis toxin as a single molecule. We describe the role molecular biology played in the understanding of pertussis toxin action, its role as a molecular tool in cell biology and as a protective antigen in acellular pertussis vaccines and possibly new-generation vaccines, as well as potential therapeutical applications. Full article
(This article belongs to the Special Issue Pertussis Toxin and Research on Pertussis Vaccine)
Show Figures

Figure 1

13 pages, 2751 KiB  
Article
Stability and Safety of Inhibitor Cystine Knot Peptide, GTx1-15, from the Tarantula Spider Grammostola rosea
by Tadashi Kimura
Toxins 2021, 13(9), 621; https://doi.org/10.3390/toxins13090621 - 3 Sep 2021
Cited by 7 | Viewed by 3215
Abstract
Inhibitor cystine knot (ICK) peptides are knotted peptides with three intramolecular disulfide bonds that affect several types of ion channels. Some are proteolytically stable and are promising scaffolds for drug development. GTx1-15 is an ICK peptide that inhibits the voltage-dependent calcium channel Ca [...] Read more.
Inhibitor cystine knot (ICK) peptides are knotted peptides with three intramolecular disulfide bonds that affect several types of ion channels. Some are proteolytically stable and are promising scaffolds for drug development. GTx1-15 is an ICK peptide that inhibits the voltage-dependent calcium channel Cav3.1 and the voltage-dependent sodium channels Nav1.3 and Nav1.7. As a model molecule to develop an ICK peptide drug, we investigated several important pharmaceutical characteristics of GTx1-15. The stability of GTx1-15 in rat and human blood plasma was examined, and no GTx1-15 degradation was observed in either rat or human blood plasma for 24 h in vitro. GTx1-15 in blood circulation was detected for several hours after intravenous and intramuscular administration, indicating high stability in plasma. The thermal stability of GTx1-15 as examined by high thermal incubation and protein thermal shift assays indicated that GTx1-15 possesses high heat stability. The cytotoxicity and immunogenicity of GTx1-15 were examined using the human monocytic leukemia cell line THP-1. GTx1-15 showed no cytotoxicity or immunogenicity even at high concentrations. These results indicate that GTx1-15 itself is suitable for peptide drug development and as a peptide library scaffold. Full article
(This article belongs to the Special Issue Toxinologic and Pharmacological Investigation of Venomous Arthropods)
Show Figures

Figure 1

16 pages, 705 KiB  
Article
Early Warning of Resistance to Bt Toxin Vip3Aa in Helicoverpa zea
by Fei Yang, David L. Kerns, Nathan S. Little, José C. Santiago González and Bruce E. Tabashnik
Toxins 2021, 13(9), 618; https://doi.org/10.3390/toxins13090618 - 2 Sep 2021
Cited by 32 | Viewed by 4041
Abstract
Evolution of resistance by pests can reduce the benefits of crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt). Because of the widespread resistance of Helicoverpa zea to crystalline (Cry) Bt toxins in the United States, the vegetative insecticidal protein Vip3Aa [...] Read more.
Evolution of resistance by pests can reduce the benefits of crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt). Because of the widespread resistance of Helicoverpa zea to crystalline (Cry) Bt toxins in the United States, the vegetative insecticidal protein Vip3Aa is the only Bt toxin produced by Bt corn and cotton that remains effective against some populations of this polyphagous lepidopteran pest. Here we evaluated H. zea resistance to Vip3Aa using diet bioassays to test 42,218 larvae from three lab strains and 71 strains derived from the field during 2016 to 2020 in Arkansas, Louisiana, Mississippi, Tennessee, and Texas. Relative to the least susceptible of the three lab strains tested (BZ), susceptibility to Vip3Aa of the field-derived strains decreased significantly from 2016 to 2020. Relative to another lab strain (TM), 7 of 16 strains derived from the field in 2019 were significantly resistant to Vip3Aa, with up to 13-fold resistance. Susceptibility to Vip3Aa was significantly lower for strains derived from Vip3Aa plants than non-Vip3Aa plants, providing direct evidence of resistance evolving in response to selection by Vip3Aa plants in the field. Together with previously reported data, the results here convey an early warning of field-evolved resistance to Vip3Aa in H. zea that supports calls for urgent action to preserve the efficacy of this toxin. Full article
(This article belongs to the Special Issue Insect Resistance to Bacillus thuringiensis Toxins)
Show Figures

Figure 1

20 pages, 13971 KiB  
Article
New Cytoplasmic Virus-Like Elements (VLEs) in the Yeast Debaryomyces hansenii
by Xymena Połomska, Cécile Neuvéglise, Joanna Zyzak, Barbara Żarowska, Serge Casaregola and Zbigniew Lazar
Toxins 2021, 13(9), 615; https://doi.org/10.3390/toxins13090615 - 1 Sep 2021
Cited by 2 | Viewed by 3075
Abstract
Yeasts can have additional genetic information in the form of cytoplasmic linear dsDNA molecules called virus-like elements (VLEs). Some of them encode killer toxins. The aim of this work was to investigate the prevalence of such elements in D. hansenii killer yeast deposited [...] Read more.
Yeasts can have additional genetic information in the form of cytoplasmic linear dsDNA molecules called virus-like elements (VLEs). Some of them encode killer toxins. The aim of this work was to investigate the prevalence of such elements in D. hansenii killer yeast deposited in culture collections as well as in strains freshly isolated from blue cheeses. Possible benefits to the host from harboring such VLEs were analyzed. VLEs occurred frequently among fresh D. hansenii isolates (15/60 strains), as opposed to strains obtained from culture collections (0/75 strains). Eight new different systems were identified: four composed of two elements and four of three elements. Full sequences of three new VLE systems obtained by NGS revealed extremely high conservation among the largest molecules in these systems except for one ORF, probably encoding a protein resembling immunity determinant to killer toxins of VLE origin in other yeast species. ORFs that could be potentially involved in killer activity due to similarity to genes encoding proteins with domains of chitin-binding/digesting and deoxyribonuclease NucA/NucB activity, could be distinguished in smaller molecules. However, the discovered VLEs were not involved in the biocontrol of Yarrowia lipolytica and Penicillium roqueforti present in blue cheeses. Full article
(This article belongs to the Special Issue Yeast Killer Toxin)
Show Figures

Graphical abstract

14 pages, 11556 KiB  
Article
Solanum nigrum Extract and Solasonine Affected Hemolymph Metabolites and Ultrastructure of the Fat Body and the Midgut in Galleria mellonella
by Marta Spochacz, Szymon Chowański, Monika Szymczak-Cendlak, Paweł Marciniak, Filomena Lelario, Rosanna Salvia, Marisa Nardiello, Carmen Scieuzo, Laura Scrano, Sabino A. Bufo, Zbigniew Adamski and Patrizia Falabella
Toxins 2021, 13(9), 617; https://doi.org/10.3390/toxins13090617 - 1 Sep 2021
Cited by 11 | Viewed by 3160
Abstract
Glycoalkaloids, secondary metabolites abundant in plants belonging to the Solanaceae family, may affect the physiology of insect pests. This paper presents original results dealing with the influence of a crude extract obtained from Solanum nigrum unripe berries and its main constituent, solasonine, on [...] Read more.
Glycoalkaloids, secondary metabolites abundant in plants belonging to the Solanaceae family, may affect the physiology of insect pests. This paper presents original results dealing with the influence of a crude extract obtained from Solanum nigrum unripe berries and its main constituent, solasonine, on the physiology of Galleria mellonella (Lepidoptera) that can be used as an alternative bioinsecticide. G. mellonella IV instar larvae were treated with S. nigrum extract and solasonine at different concentrations. The effects of extract and solasonine were evaluated analyzing changes in carbohydrate and amino acid composition in hemolymph by RP-HPLC and in the ultrastructure of the fat body cells by TEM. Both extract and solasonine changed the level of hemolymph metabolites and the ultrastructure of the fat body and the midgut cells. In particular, the extract increased the erythritol level in the hemolymph compared to control, enlarged the intracellular space in fat body cells, and decreased cytoplasm and lipid droplets electron density. The solasonine, tested with three concentrations, caused the decrease of cytoplasm electron density in both fat body and midgut cells. Obtained results highlighted the disturbance of the midgut and the fat body due to glycoalkaloids and the potential role of hemolymph ingredients in its detoxification. These findings suggest a possible application of glycoalkaloids as a natural insecticide in the pest control of G. mellonella larvae. Full article
Show Figures

Figure 1

12 pages, 1381 KiB  
Article
Development and Validation of an LC-MS/MS Based Method for the Determination of Deoxynivalenol and Its Modified Forms in Maize
by Iris Fiby, Marta Magdalena Sopel, Herbert Michlmayr, Gerhard Adam and Franz Berthiller
Toxins 2021, 13(9), 600; https://doi.org/10.3390/toxins13090600 - 27 Aug 2021
Cited by 11 | Viewed by 3203
Abstract
The Fusarium mycotoxin deoxynivalenol (DON) is a common contaminant of cereals and is often co-occurring with its modified forms DON-3-glucoside (D3G), 3-acetyl-DON (3ADON) or 15-acetyl-DON (15ADON). A stable-isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) based method for their determination in cereals was developed [...] Read more.
The Fusarium mycotoxin deoxynivalenol (DON) is a common contaminant of cereals and is often co-occurring with its modified forms DON-3-glucoside (D3G), 3-acetyl-DON (3ADON) or 15-acetyl-DON (15ADON). A stable-isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) based method for their determination in cereals was developed and validated for maize. Therefore, 13C-labelled D3G was enzymatically produced using 13C-DON and [13C6Glc]-sucrose and used as an internal standard (IS) for D3G, while uniformly 13C labelled IS was used for the other mycotoxins. Baseline separation was achieved for the critical peak pair DON/D3G, while 3ADON/15ADON could not be fully baseline separated after testing various reversed phase, fluorinated phase and chiral LC columns. After grinding, weighing and extracting the cereal samples, the raw extract was centrifuged and a mixture of the four 13C-labelled ISs was added directly in a microinsert vial. The subsequent analytical run took 7 min, followed by negative electrospray ionization and selected reaction monitoring on a triple quadrupole MS. Maize was used as a complex cereal model matrix for validation. The use of the IS corrected the occurring matrix effects efficiently from 76 to 98% for D3G, from 86 to 103% for DON, from 68 to 100% for 15ADON and from 63 to 96% for 3ADON. Full article
Show Figures

Figure 1

12 pages, 1168 KiB  
Article
Comparative Assessment of Physical and Chemical Cyanobacteria Cell Lysis Methods for Total Microcystin-LR Analysis
by Katherine E. Greenstein, Arash Zamyadi and Eric C. Wert
Toxins 2021, 13(9), 596; https://doi.org/10.3390/toxins13090596 - 26 Aug 2021
Cited by 12 | Viewed by 3884
Abstract
Standardization and validation of alternative cell lysis methods used for quantifying total cyanotoxins is needed to improve laboratory response time goals for total cyanotoxin analysis. In this study, five cell lysis methods (i.e., probe sonication, microwave, freeze-thaw, chemical lysis with Abraxis QuikLyseTM [...] Read more.
Standardization and validation of alternative cell lysis methods used for quantifying total cyanotoxins is needed to improve laboratory response time goals for total cyanotoxin analysis. In this study, five cell lysis methods (i.e., probe sonication, microwave, freeze-thaw, chemical lysis with Abraxis QuikLyseTM, and chemical lysis with copper sulfate) were assessed using laboratory-cultured Microcystis aeruginosa (M. aeruginosa) cells. Methods were evaluated for destruction of cells (as determined by optical density of the sample) and recovery of total microcystin-LR (MC-LR) using three M. aeruginosa cell densities (i.e., 1 × 105 cells/mL (low-density), 1 × 106 cells/mL (medium-density), and 1 × 107 cells/mL (high-density)). Of the physical lysis methods, both freeze-thaw (1 to 5 cycles) and pulsed probe sonication (2 to 10 min) resulted in >80% destruction of cells and consistent (>80%) release and recovery of intracellular MC-LR. Microwave (3 to 5 min) did not demonstrate the same decrease in optical density (<50%), although it provided effective release and recovery of >80% intracellular MC-LR. Abraxis QuikLyseTM was similarly effective for intracellular MC-LR recovery across the different M. aeruginosa cell densities. Copper sulfate (up to 500 mg/L Cu2+) did not lyse cells nor release intracellular MC-LR within 20 min. None of the methods appeared to cause degradation of MC-LR. Probe sonication, microwave, and Abraxis QuikLyseTM served as rapid lysis methods (within minutes) with varying associated costs, while freeze-thaw provided a viable, low-cost alternative if time permits. Full article
(This article belongs to the Special Issue Management of Cyanobacteria and Cyanotoxins in Waters)
Show Figures

Graphical abstract

14 pages, 3124 KiB  
Article
In Vitro and In Vivo Analysis of Ochratoxin A-Derived Glucuronides and Mercapturic Acids as Biomarkers of Exposure
by Raphael Dekant, Michael Langer, Maria Lupp, Cynthia Adaku Chilaka and Angela Mally
Toxins 2021, 13(8), 587; https://doi.org/10.3390/toxins13080587 - 23 Aug 2021
Cited by 7 | Viewed by 3339
Abstract
Ochratoxin A (OTA) is a widespread food contaminant, with exposure estimated to range from 0.64 to 17.79 ng/kg body weight (bw) for average consumers and from 2.40 to 51.69 ng/kg bw per day for high consumers. Current exposure estimates are, however, associated with [...] Read more.
Ochratoxin A (OTA) is a widespread food contaminant, with exposure estimated to range from 0.64 to 17.79 ng/kg body weight (bw) for average consumers and from 2.40 to 51.69 ng/kg bw per day for high consumers. Current exposure estimates are, however, associated with considerable uncertainty. While biomarker-based approaches may contribute to improved exposure assessment, there is yet insufficient data on urinary metabolites of OTA and their relation to external dose to allow reliable estimates of daily intake. This study was designed to assess potential species differences in phase II biotransformation in vitro and to establish a correlation between urinary OTA-derived glucuronides and mercapturic acids and external exposure in rats in vivo. In vitro analyses of OTA metabolism using the liver S9 of rats, humans, rabbits and minipigs confirmed formation of an OTA glucuronide but provided no evidence for the formation of OTA-derived mercapturic acids to support their use as biomarkers. Similarly, OTA-derived mercapturic acids were not detected in urine of rats repeatedly dosed with OTA, while indirect analysis using enzymatic hydrolysis of the urine samples prior to LC–MS/MS established a linear relationship between urinary glucuronide excretion and OTA exposure. These results support OTA-derived glucuronides but not mercapturic acids as metabolites suitable for biomonitoring. Full article
(This article belongs to the Special Issue Toxicological Effects of Mycotoxins)
Show Figures

Figure 1

16 pages, 2193 KiB  
Article
Human-Relevant Sensitivity of iPSC-Derived Human Motor Neurons to BoNT/A1 and B1
by Maren Schenke, Hélène-Christine Prause, Wiebke Bergforth, Adina Przykopanski, Andreas Rummel, Frank Klawonn and Bettina Seeger
Toxins 2021, 13(8), 585; https://doi.org/10.3390/toxins13080585 - 22 Aug 2021
Cited by 5 | Viewed by 3957
Abstract
The application of botulinum neurotoxins (BoNTs) for medical treatments necessitates a potency quantification of these lethal bacterial toxins, resulting in the use of a large number of test animals. Available alternative methods are limited in their relevance, as they are based on rodent [...] Read more.
The application of botulinum neurotoxins (BoNTs) for medical treatments necessitates a potency quantification of these lethal bacterial toxins, resulting in the use of a large number of test animals. Available alternative methods are limited in their relevance, as they are based on rodent cells or neuroblastoma cell lines or applicable for single toxin serotypes only. Here, human motor neurons (MNs), which are the physiological target of BoNTs, were generated from induced pluripotent stem cells (iPSCs) and compared to the neuroblastoma cell line SiMa, which is often used in cell-based assays for BoNT potency determination. In comparison with the mouse bioassay, human MNs exhibit a superior sensitivity to the BoNT serotypes A1 and B1 at levels that are reflective of human sensitivity. SiMa cells were able to detect BoNT/A1, but with much lower sensitivity than human MNs and appear unsuitable to detect any BoNT/B1 activity. The MNs used for these experiments were generated according to three differentiation protocols, which resulted in distinct sensitivity levels. Molecular parameters such as receptor protein concentration and electrical activity of the MNs were analyzed, but are not predictive for BoNT sensitivity. These results show that human MNs from several sources should be considered in BoNT testing and that human MNs are a physiologically relevant model, which could be used to optimize current BoNT potency testing. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

15 pages, 2898 KiB  
Article
Metaproteomics Reveals Alteration of the Gut Microbiome in Weaned Piglets Due to the Ingestion of the Mycotoxins Deoxynivalenol and Zearalenone
by Johan S. Saenz, Alina Kurz, Ursula Ruczizka, Moritz Bünger, Maximiliane Dippel, Veronika Nagl, Bertrand Grenier, Andrea Ladinig, Jana Seifert and Evelyne Selberherr
Toxins 2021, 13(8), 583; https://doi.org/10.3390/toxins13080583 - 21 Aug 2021
Cited by 9 | Viewed by 3722
Abstract
The ingestion of mycotoxins can cause adverse health effects and represents a severe health risk to humans and livestock. Even though several acute and chronic effects have been described, the effect on the gut metaproteome is scarcely known. For that reason, we used [...] Read more.
The ingestion of mycotoxins can cause adverse health effects and represents a severe health risk to humans and livestock. Even though several acute and chronic effects have been described, the effect on the gut metaproteome is scarcely known. For that reason, we used metaproteomics to evaluate the effect of the mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) on the gut microbiome of 15 weaned piglets. Animals were fed for 28 days with feed contaminated with different concentrations of DON (DONlow: 870 μg DON/kg feed, DONhigh: 2493 μg DON/kg feed) or ZEN (ZENlow: 679 μg ZEN/kg feed, ZENhigh: 1623 μg ZEN/kg feed). Animals in the control group received uncontaminated feed. The gut metaproteome composition in the high toxin groups shifted compared to the control and low mycotoxin groups, and it was also more similar among high toxin groups. These changes were accompanied by the increase in peptides belonging to Actinobacteria and a decrease in peptides belonging to Firmicutes. Additionally, DONhigh and ZENhigh increased the abundance of proteins associated with the ribosomes and pentose-phosphate pathways, while decreasing glycolysis and other carbohydrate metabolism pathways. Moreover, DONhigh and ZENhigh increased the abundance of the antioxidant enzyme thioredoxin-dependent peroxiredoxin. In summary, the ingestion of DON and ZEN altered the abundance of different proteins associated with microbial metabolism, genetic processing, and oxidative stress response, triggering a disruption in the gut microbiome structure. Full article
(This article belongs to the Special Issue The Mutual Interaction between Mycotoxins and Gut Microbiome)
Show Figures

Figure 1

13 pages, 1325 KiB  
Article
Cytotoxicity of Mycotoxins Frequently Present in Aquafeeds to the Fish Cell Line RTGill-W1
by Elena Bernal-Algaba, Marta Pulgarín-Alfaro and María Luisa Fernández-Cruz
Toxins 2021, 13(8), 581; https://doi.org/10.3390/toxins13080581 - 20 Aug 2021
Cited by 13 | Viewed by 3367
Abstract
In the last decades, the aquaculture industry has introduced plant-based ingredients as a source of protein in aquafeeds. This has led to mycotoxin contaminations, representing an ecological, health and economic problem. The aim of this study was to determine in the RTgill-W1 fish [...] Read more.
In the last decades, the aquaculture industry has introduced plant-based ingredients as a source of protein in aquafeeds. This has led to mycotoxin contaminations, representing an ecological, health and economic problem. The aim of this study was to determine in the RTgill-W1 fish cell line the toxicity of fifteen mycotoxins of common occurrence in aquafeeds. To identify the most sensitive endpoint of toxicity, the triple assay was used. It consisted of three assays: alamarBlue, Neutral Red Uptake and CFDA-AM, which revealed the mitochondrial activity, the lysosomal integrity and the plasma membrane integrity, respectively. Most of the assayed mycotoxins were toxic predominantly at lysosomal level (enniatins, beauvericin, zearalenone, ochratoxin A, deoxynivalenol (DON) and its acetylated metabolites 15-O-acetyl-DON and 3-acetyl-DON). Aflatoxins B1 and B2 exerted the greatest effects at mitochondrial level, while fumonisins B1 and B2 and nivalenol were not toxic up to 100 µg/mL. In general, low toxicity was observed at plasma membrane level. The vast majority of the mycotoxins assayed exerted a pronounced acute effect in the fish RTgill-W1 cell line, emphasizing the need for further studies to ascertain the impact of mycotoxin contamination of fish feeds in the aquaculture industry and to establish safe limits in aquafeeds. Full article
Show Figures

Figure 1

8 pages, 1105 KiB  
Review
Secretion of Pertussis Toxin from Bordetella pertussis
by Drusilla L. Burns
Toxins 2021, 13(8), 574; https://doi.org/10.3390/toxins13080574 - 18 Aug 2021
Cited by 6 | Viewed by 3743
Abstract
Production and secretion of pertussis toxin (PT) is essential for the virulence of Bordetella pertussis. Due to the large oligomeric structure of PT, transport of the toxin across bacterial membrane barriers represents a significant hurdle that the bacteria must overcome in order [...] Read more.
Production and secretion of pertussis toxin (PT) is essential for the virulence of Bordetella pertussis. Due to the large oligomeric structure of PT, transport of the toxin across bacterial membrane barriers represents a significant hurdle that the bacteria must overcome in order to maintain pathogenicity. During the secretion process, PT undergoes a two-step transport process. The first step involves transport of the individual polypeptide chains of PT across the inner membrane utilizing a generalized secretion pathway, most likely the bacterial Sec system. The second step involves the use of a specialized apparatus to transport the toxin across the outer membrane of the bacterial cell. This apparatus, which has been termed the Ptl transporter and which is unique to the PT secretion pathway, is a member of the type IV family of bacterial transporters. Here, the current understanding of the PT secretion process is reviewed including a description of the Ptl proteins that assemble to form the transporter, the general structure of type IV transporters, the known similarities and differences between canonical type IV substrate transport and Ptl-mediated transport of PT, as well as the known sequence of events in the assembly and secretion of PT. Full article
(This article belongs to the Special Issue Pertussis Toxin and Research on Pertussis Vaccine)
Show Figures

Figure 1

14 pages, 2809 KiB  
Article
Association of Polygenic Risk Score and Bacterial Toxins at Screening Colonoscopy with Colorectal Cancer Progression: A Multicenter Case-Control Study
by Alfonso Piciocchi, Elena Angela Pia Germinario, Koldo Garcia Etxebarria, Silvia Rossi, Lupe Sanchez-Mete, Barbara Porowska, Vittoria Stigliano, Paolo Trentino, Andrea Oddi, Fabio Accarpio, Gian Luca Grazi, Giovanni Bruno, Massimo Bonucci, Massimo Giambenedetti, Patrizia Spigaglia, Fabrizio Barbanti, Slawomir Owczarek, Ida Luzzi, Elisabetta Delibato, Zaira Maroccia, Lorenza Nisticò, Carla Fiorentini, Mauro D’Amato, Roberta De Angelis and Alessia Fabbriadd Show full author list remove Hide full author list
Toxins 2021, 13(8), 569; https://doi.org/10.3390/toxins13080569 - 16 Aug 2021
Cited by 15 | Viewed by 5070
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and its incidence is correlated with infections, chronic inflammation, diet, and genetic factors. An emerging aspect is that microbial dysbiosis and chronic infections triggered by certain bacteria can be risk factors for [...] Read more.
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and its incidence is correlated with infections, chronic inflammation, diet, and genetic factors. An emerging aspect is that microbial dysbiosis and chronic infections triggered by certain bacteria can be risk factors for tumor progression. Recent data suggest that certain bacterial toxins implicated in DNA attack or in proliferation, replication, and death can be risk factors for insurgence and progression of CRC. In this study, we recruited more than 300 biopsy specimens from people undergoing colonoscopy, and we analyzed to determine whether a correlation exists between the presence of bacterial genes coding for toxins possibly involved in CRC onset and progression and the different stages of CRC. We also analyzed to determine whether CRC-predisposing genetic factors could contribute to bacterial toxins response. Our results showed that CIF toxin is associated with polyps or adenomas, whereas pks+ seems to be a predisposing factor for CRC. Toxins from Escherichia coli as a whole have a higher incidence rate in adenocarcinoma patients compared to controls, whereas Bacteroides fragilis toxin does not seem to be associated with pre-cancerous nor with cancerous lesions. These results have been obtained irrespectively of the presence of CRC-risk loci. Full article
Show Figures

Figure 1

27 pages, 2859 KiB  
Review
In Vivo Models and In Vitro Assays for the Assessment of Pertussis Toxin Activity
by Marieke Esther Hoonakker
Toxins 2021, 13(8), 565; https://doi.org/10.3390/toxins13080565 - 12 Aug 2021
Cited by 5 | Viewed by 6948
Abstract
One of the main virulence factors produced by Bordetella pertussis is pertussis toxin (PTx) which, in its inactivated form, is the major component of all marketed acellular pertussis vaccines. PTx ADP ribosylates Gαi proteins, thereby affecting the inhibition of adenylate cyclases and [...] Read more.
One of the main virulence factors produced by Bordetella pertussis is pertussis toxin (PTx) which, in its inactivated form, is the major component of all marketed acellular pertussis vaccines. PTx ADP ribosylates Gαi proteins, thereby affecting the inhibition of adenylate cyclases and resulting in the accumulation of cAMP. Apart from this classical model, PTx also activates some receptors and can affect various ADP ribosylation- and adenylate cyclase-independent signalling pathways. Due to its potent ADP-ribosylation properties, PTx has been used in many research areas. Initially the research primarily focussed on the in vivo effects of the toxin, including histamine sensitization, insulin secretion and leukocytosis. Nowadays, PTx is also used in toxicology research, cell signalling, research involving the blood–brain barrier, and testing of neutralizing antibodies. However, the most important area of use is testing of acellular pertussis vaccines for the presence of residual PTx. In vivo models and in vitro assays for PTx often reflect one of the toxin’s properties or details of its mechanism. Here, the established and novel in vivo and in vitro methods used to evaluate PTx are reviewed, their mechanisms, characteristics and limitations are described, and their application for regulatory and research purposes are considered. Full article
(This article belongs to the Special Issue Pertussis Toxin and Research on Pertussis Vaccine)
Show Figures

Figure 1

20 pages, 770 KiB  
Review
Deoxynivalenol and Zearalenone—Synergistic or Antagonistic Agri-Food Chain Co-Contaminants?
by Asmita Thapa, Karina A. Horgan, Blánaid White and Dermot Walls
Toxins 2021, 13(8), 561; https://doi.org/10.3390/toxins13080561 - 11 Aug 2021
Cited by 28 | Viewed by 5384
Abstract
Deoxynivalenol (DON) and Zearalenone (ZEN) are two commonly co-occurring mycotoxins produced by members of the genus Fusarium. As important food chain contaminants, these can adversely affect both human and animal health. Critically, as they are formed prior to harvesting, their occurrence cannot [...] Read more.
Deoxynivalenol (DON) and Zearalenone (ZEN) are two commonly co-occurring mycotoxins produced by members of the genus Fusarium. As important food chain contaminants, these can adversely affect both human and animal health. Critically, as they are formed prior to harvesting, their occurrence cannot be eliminated during food production, leading to ongoing contamination challenges. DON is one of the most commonly occurring mycotoxins and is found as a contaminant of cereal grains that are consumed by humans and animals. Consumption of DON-contaminated feed can result in vomiting, diarrhoea, refusal of feed, and reduced weight gain in animals. ZEN is an oestrogenic mycotoxin that has been shown to have a negative effect on the reproductive function of animals. Individually, their mode of action and impacts have been well-studied; however, their co-occurrence is less well understood. This common co-occurrence of DON and ZEN makes it a critical issue for the Agri-Food industry, with a fundamental understanding required to develop mitigation strategies. To address this issue, in this targeted review, we appraise what is known of the mechanisms of action of DON and ZEN with particular attention to studies that have assessed their toxic effects when present together. We demonstrate that parameters that impact toxicity include species and cell type, relative concentration, exposure time and administration methods, and we highlight additional research required to further elucidate mechanisms of action and mitigation strategies. Full article
(This article belongs to the Special Issue Mycotoxins, Food Safety and Metrology)
Show Figures

Figure 1

14 pages, 1473 KiB  
Article
The Dragon’s Paralysing Spell: Evidence of Sodium and Calcium Ion Channel Binding Neurotoxins in Helodermatid and Varanid Lizard Venoms
by James S. Dobson, Richard J. Harris, Christina N. Zdenek, Tam Huynh, Wayne C. Hodgson, Frank Bosmans, Rudy Fourmy, Aude Violette and Bryan G. Fry
Toxins 2021, 13(8), 549; https://doi.org/10.3390/toxins13080549 - 6 Aug 2021
Cited by 8 | Viewed by 5434
Abstract
Bites from helodermatid lizards can cause pain, paresthesia, paralysis, and tachycardia, as well as other symptoms consistent with neurotoxicity. Furthermore, in vitro studies have shown that Heloderma horridum venom inhibits ion flux and blocks the electrical stimulation of skeletal muscles. Helodermatids have long [...] Read more.
Bites from helodermatid lizards can cause pain, paresthesia, paralysis, and tachycardia, as well as other symptoms consistent with neurotoxicity. Furthermore, in vitro studies have shown that Heloderma horridum venom inhibits ion flux and blocks the electrical stimulation of skeletal muscles. Helodermatids have long been considered the only venomous lizards, but a large body of robust evidence has demonstrated venom to be a basal trait of Anguimorpha. This clade includes varanid lizards, whose bites have been reported to cause anticoagulation, pain, and occasionally paralysis and tachycardia. Despite the evolutionary novelty of these lizard venoms, their neuromuscular targets have yet to be identified, even for the iconic helodermatid lizards. Therefore, to fill this knowledge gap, the venoms of three Heloderma species (H. exasperatum, H. horridum and H. suspectum) and two Varanus species (V. salvadorii and V. varius) were investigated using Gallus gallus chick biventer cervicis nerve–muscle preparations and biolayer interferometry assays for binding to mammalian ion channels. Incubation with Heloderma venoms caused the reduction in nerve-mediated muscle twitches post initial response of avian skeletal muscle tissue preparation assays suggesting voltage-gated sodium (NaV) channel binding. Congruent with the flaccid paralysis inducing blockage of electrical stimulation in the skeletal muscle preparations, the biolayer interferometry tests with Heloderma suspectum venom revealed binding to the S3–S4 loop within voltage-sensing domain IV of the skeletal muscle channel subtype, NaV1.4. Consistent with tachycardia reported in clinical cases, the venom also bound to voltage-sensing domain IV of the cardiac smooth muscle calcium channel, CaV1.2. While Varanus varius venom did not have discernable effects in the avian tissue preparation assay at the concentration tested, in the biointerferometry assay both V. varius and V. salvadorii bound to voltage-sensing domain IV of both NaV1.4 and CaV1.2, similar to H. suspectum venom. The ability of varanid venoms to bind to mammalian ion channels but not to the avian tissue preparation suggests prey-selective actions, as did the differential potency within the Heloderma venoms for avian versus mammalian pathophysiological targets. This study thus presents the detailed characterization of Heloderma venom ion channel neurotoxicity and offers the first evidence of varanid lizard venom neurotoxicity. In addition, the data not only provide information useful to understanding the clinical effects produced by envenomations, but also reveal their utility as physiological probes, and underscore the potential utility of neglected venomous lineages in the drug design and development pipeline. Full article
(This article belongs to the Special Issue Drivers of Venom Potency across the Animal Kingdom)
Show Figures

Figure 1

23 pages, 417 KiB  
Review
Evaluation of Mycotoxins in Infant Breast Milk and Infant Food, Reviewing the Literature Data
by Marta Hernández, Ana Juan-García, Juan Carlos Moltó, Jordi Mañes and Cristina Juan
Toxins 2021, 13(8), 535; https://doi.org/10.3390/toxins13080535 - 30 Jul 2021
Cited by 19 | Viewed by 3393
Abstract
In this review, an analysis focusing on mycotoxin determination in infant breast milk and infant food has been summarised for the last fifteen years of research focused on the intended population group of 1–9 months. The objective was to know the level of [...] Read more.
In this review, an analysis focusing on mycotoxin determination in infant breast milk and infant food has been summarised for the last fifteen years of research focused on the intended population group of 1–9 months. The objective was to know the level of exposure of the child population to an estimated daily intake (EDI) of mycotoxins from the consumption of habitual foods. The EDI was compared with the tolerable daily intake (TDI) established by EFSA to estimate risk. In breast milk, the high prevalence and levels were for samples from Africa (Egypt and Tanzania) with aflatoxin M1 (1.9 μg/L and 10%), and Asia (Iran) with ochratoxin-A (7.3 μg/L and 100%). In infant formulas, high incidences and values were for samples with aflatoxin M1 from Burkina Faso (167 samples, 84%, 87 μg/kg). In cereal products, the highest incidence was for DON from the United States (96 samples), and the highest value was an Italian sample (0.83 μg/kg of enniatin B). In fruit products, patulin was the most detected in Italian (78) and Spanish (24) samples. The highest risk was observed in breast milk during the first month of age, the highest EDI for aflatoxin M1 was reported for Egypt (344–595 ng/kg bw/day) and ochratoxin-A for Iran (97–167ng/kg bw/day), representing a public health problem. Full article
16 pages, 2318 KiB  
Article
Scalable Reporter Assays to Analyze the Regulation of stx2 Expression in Shiga Toxin-Producing Enteropathogens
by Martin B. Koeppel, Jana Glaser, Tobias Baumgartner, Stefanie Spriewald, Roman G. Gerlach, Benedikt von Armansperg, John M. Leong and Bärbel Stecher
Toxins 2021, 13(8), 534; https://doi.org/10.3390/toxins13080534 - 29 Jul 2021
Cited by 1 | Viewed by 2806
Abstract
Stx2 is the major virulence factor of EHEC and is associated with an increased risk for HUS in infected patients. The conditions influencing its expression in the intestinal tract are largely unknown. For optimal management and treatment of infected patients, the identification of [...] Read more.
Stx2 is the major virulence factor of EHEC and is associated with an increased risk for HUS in infected patients. The conditions influencing its expression in the intestinal tract are largely unknown. For optimal management and treatment of infected patients, the identification of environmental conditions modulating Stx2 levels in the human gut is of central importance. In this study, we established a set of chromosomal stx2 reporter assays. One system is based on superfolder GFP (sfGFP) using a T7 polymerase/T7 promoter-based amplification loop. This reporter can be used to analyze stx2 expression at the single-cell level using FACSs and fluorescence microscopy. The other system is based on the cytosolic release of the Gaussia princeps luciferase (gluc). This latter reporter proves to be a highly sensitive and scalable reporter assay that can be used to quantify reporter protein in the culture supernatant. We envision that this new set of reporter tools will be highly useful to comprehensively analyze the influence of environmental and host factors, including drugs, small metabolites and the microbiota, on Stx2 release and thereby serve the identification of risk factors and new therapies in Stx-mediated pathologies. Full article
(This article belongs to the Special Issue Escherichia coli Toxins and Intestinal Diseases)
Show Figures

Figure 1

7 pages, 552 KiB  
Communication
Distribution of the Emetic Toxin Cereulide in Cow Milk
by Veronika Walser, Markus Kranzler, Corinna Dawid, Monika Ehling-Schulz, Timo D. Stark and Thomas F. Hofmann
Toxins 2021, 13(8), 528; https://doi.org/10.3390/toxins13080528 - 28 Jul 2021
Cited by 6 | Viewed by 2828
Abstract
Bacillus cereus is frequently associated with food-borne intoxications, and its emetic toxin cereulide causes emesis and nausea after consumption of contaminated foods. The major source for contamination is found within contaminated raw materials containing the highly chemically resistant cereulide, independent of vegetative bacteria [...] Read more.
Bacillus cereus is frequently associated with food-borne intoxications, and its emetic toxin cereulide causes emesis and nausea after consumption of contaminated foods. The major source for contamination is found within contaminated raw materials containing the highly chemically resistant cereulide, independent of vegetative bacteria cells. Up to date, non-existing removal strategies for cereulide evoke the question of how the toxin is distributed within a food sample, especially cow milk. Milk samples with different milk fat contents were incubated with purified cereulide, separated by centrifugation into a lipid and an aqueous phase, and cereulide was quantified in both fractions by SIDA-LC-MS/MS. By artificially increasing the milk fat content from 0.5% to 50%, the amount of cereulide recovered in the lipid phase and could be augmented from 13.3 to 78.6%. Further, the ratio of cereulide increased in the lipid phase of milk with additional plant-based lipid (sunflower oil) to 47.8%. This demonstrated a clear affinity of cereulide towards the hydrophobic, lipid phase, aligning with cereulide’s naturally strong hydrophobic properties. Therefore, an intensified cereulide analysis of lipid enriched dairy products to prevent severe cereulide intoxications or cross-contamination in processed foods is suggested. Full article
Show Figures

Graphical abstract

24 pages, 2880 KiB  
Article
Primary Human Renal Proximal Tubular Epithelial Cells (pHRPTEpiCs): Shiga Toxin (Stx) Glycosphingolipid Receptors, Stx Susceptibility, and Interaction with Membrane Microdomains
by Johanna Detzner, Anna-Lena Klein, Gottfried Pohlentz, Elisabeth Krojnewski, Hans-Ulrich Humpf, Alexander Mellmann, Helge Karch and Johannes Müthing
Toxins 2021, 13(8), 529; https://doi.org/10.3390/toxins13080529 - 28 Jul 2021
Cited by 6 | Viewed by 2596
Abstract
Tubular epithelial cells of the human kidney are considered as targets of Shiga toxins (Stxs) in the Stx-mediated pathogenesis of hemolytic–uremic syndrome (HUS) caused by Stx-releasing enterohemorrhagic Escherichia coli (EHEC). Analysis of Stx-binding glycosphingolipids (GSLs) of primary human renal proximal tubular epithelial cells [...] Read more.
Tubular epithelial cells of the human kidney are considered as targets of Shiga toxins (Stxs) in the Stx-mediated pathogenesis of hemolytic–uremic syndrome (HUS) caused by Stx-releasing enterohemorrhagic Escherichia coli (EHEC). Analysis of Stx-binding glycosphingolipids (GSLs) of primary human renal proximal tubular epithelial cells (pHRPTEpiCs) yielded globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Investigation of detergent-resistant membranes (DRMs) and nonDRMs, serving as equivalents for the liquid-ordered and liquid-disordered membrane phase, respectively, revealed the prevalence of Gb3Cer and Gb4Cer together with cholesterol and sphingomyelin in DRMs, suggesting lipid raft association. Stx1a and Stx2a exerted strong cellular damage with half-maximal cytotoxic doses (CD50) of 1.31 × 102 pg/mL and 1.66 × 103 pg/mL, respectively, indicating one order of magnitude higher cellular cytotoxicity of Stx1a. Surface acoustic wave (SAW) real-time interaction analysis using biosensor surfaces coated with DRM or nonDRM fractions gave stronger binding capability of Stx1a versus Stx2a that correlated with the lower cytotoxicity of Stx2a. Our study underlines the substantial role of proximal tubular epithelial cells of the human kidney being associated with the development of Stx-mediated HUS at least for Stx1a, while the impact of Stx2a remains somewhat ambiguous. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

22 pages, 18849 KiB  
Article
Escherichia coli Alpha-Hemolysin HlyA Induces Host Cell Polarity Changes, Epithelial Barrier Dysfunction and Cell Detachment in Human Colon Carcinoma Caco-2 Cell Model via PTEN-Dependent Dysregulation of Cell Junctions
by Emanuel Schulz, Michael Schumann, Martina Schneemann, Violaine Dony, Anja Fromm, Oliver Nagel, Jörg-Dieter Schulzke and Roland Bücker
Toxins 2021, 13(8), 520; https://doi.org/10.3390/toxins13080520 - 26 Jul 2021
Cited by 9 | Viewed by 3742
Abstract
Escherichia coli (E. coli) of the B2 phylotype reside in human and animal intestines. The bacteria possess pathogenicity factors such as α-hemolysin (HlyA) that can induce intestinal epithelial leaks. We addressed the questions which host cell processes were dysregulated by E. [...] Read more.
Escherichia coli (E. coli) of the B2 phylotype reside in human and animal intestines. The bacteria possess pathogenicity factors such as α-hemolysin (HlyA) that can induce intestinal epithelial leaks. We addressed the questions which host cell processes were dysregulated by E. coli HlyA that can potentiate intestinal diseases. The colon carcinoma cell line Caco-2 was infected by HlyA+ E. coli. Cell polarity regulation was analyzed by live cell imaging for the phosphatidylinositol-4,5-bisphosphate (PIP2) abundance. In Caco-2 monolayers, transepithelial electrical resistance was measured for characterization of barrier function. Cell proliferation and separation were assessed microscopically. Epithelial regulation and cell signaling were analyzed by RNA-Seq and Ingenuity Pathway Analysis (IPA). Our main findings from E. coli HlyA toxinogenicity in the colon carcinoma cell line are that (i) PIP2 at the membrane decrease, (ii) PTEN (phosphatase and tensin homolog) inhibition leads to cell polarity changes, (iii) epithelial leakiness follows these polarity changes by disruption of cell junctions and (iv) epithelial cell detachment increases. HlyA affected pathways, e.g., the PTEN and metastasis signaling, were identified by RNA-Seq bioinformatics calculations in IPA. In conclusion, HlyA affects cell polarity, thereby inducing epithelial barrier dysfunction due to defective tight junctions and focal leak induction as an exemplary mechanism for leaky gut. Full article
(This article belongs to the Special Issue Escherichia coli Toxins and Intestinal Diseases)
Show Figures

Figure 1

25 pages, 2073 KiB  
Article
Seasonal Variability of the Airborne Eukaryotic Community Structure at a Coastal Site of the Central Mediterranean
by Mattia Fragola, Maria Rita Perrone, Pietro Alifano, Adelfia Talà and Salvatore Romano
Toxins 2021, 13(8), 518; https://doi.org/10.3390/toxins13080518 - 24 Jul 2021
Cited by 8 | Viewed by 2741
Abstract
The atmosphere represents an underexplored temporary habitat for airborne microbial communities such as eukaryotes, whose taxonomic structure changes across different locations and/or regions as a function of both survival conditions and sources. A preliminary dataset on the seasonal dependence of the airborne eukaryotic [...] Read more.
The atmosphere represents an underexplored temporary habitat for airborne microbial communities such as eukaryotes, whose taxonomic structure changes across different locations and/or regions as a function of both survival conditions and sources. A preliminary dataset on the seasonal dependence of the airborne eukaryotic community biodiversity, detected in PM10 samples collected from July 2018 to June 2019 at a coastal site representative of the Central Mediterranean, is provided in this study. Viridiplantae and Fungi were the most abundant eukaryotic kingdoms. Streptophyta was the prevailing Viridiplantae phylum, whilst Ascomycota and Basidiomycota were the prevailing Fungi phyla. Brassica and Panicum were the most abundant Streptophyta genera in winter and summer, respectively, whereas Olea was the most abundant genus in spring and autumn. With regards to Fungi, Botrytis and Colletotrichum were the most abundant Ascomycota genera, reaching the highest abundance in spring and summer, respectively, while Cryptococcus and Ustilago were the most abundant Basidiomycota genera, and reached the highest abundance in winter and spring, respectively. The genus community structure in the PM10 samples varied day-by-day, and mainly along with the seasons. The impact of long-range transported air masses on the same structure was also proven. Nevertheless, rather few genera were significantly correlated with meteorological parameters and PM10 mass concentrations. The PCoA plots and non-parametric Spearman’s rank-order correlation coefficients showed that the strongest correlations generally occurred between parameters reaching high abundances/values in the same season or PM10 sample. Moreover, the screening of potential pathogenic fungi allowed us to detect seven potential pathogenic genera in our PM10 samples. We also found that, with the exception of Panicum and Physcomitrella, all of the most abundant and pervasive identified Streptophyta genera could serve as potential sources of aeroallergens in the studied area. Full article
(This article belongs to the Special Issue Phytopathogenic Fungi and Toxicity)
Show Figures

Graphical abstract

23 pages, 778 KiB  
Article
Co-Occurrence of 35 Mycotoxins: A Seven-Year Survey of Corn Grain and Corn Silage in the United States
by Alexandra C. Weaver, Daniel M. Weaver, Nicholas Adams and Alexandros Yiannikouris
Toxins 2021, 13(8), 516; https://doi.org/10.3390/toxins13080516 - 23 Jul 2021
Cited by 41 | Viewed by 4819
Abstract
Mycotoxins contaminate crops worldwide and play a role in animal health and performance. Multiple mycotoxins may co-occur which may increase the impact on the animal. To assess the multiple mycotoxin profile of corn (Zea mays), we conducted a 7-year survey of [...] Read more.
Mycotoxins contaminate crops worldwide and play a role in animal health and performance. Multiple mycotoxins may co-occur which may increase the impact on the animal. To assess the multiple mycotoxin profile of corn (Zea mays), we conducted a 7-year survey of new crop corn grain and silage in the United States. A total of 711 grain and 1117 silage samples were collected between 2013 and 2019 and analyzed for the simultaneous presence of 35 mycotoxins using ultra-performance liquid chromatography–tandem mass spectrometry. The measured mean number of mycotoxins per sample were 4.8 (grain) and 5.2 (silage), ranging from 0 to 13. Fusaric acid (FA) was most frequently detected in 78.1 and 93.8% of grains and silages, respectively, followed by deoxynivalenol (DON) in 75.7 and 88.2% of samples. Fumonisin B1 (FB1), fumonisin B2 and 15-acetyl-deoxynivalenol (15ADON) followed. The greatest (p < 0.05) co-occurrence was between FA and DON in 59.1% of grains and 82.7% of silages, followed by FA with FB1, DON with 15ADON, and FA with 15ADON. Although many samples had lower mycotoxin concentrations, 1.6% (grain) and 7.9% (silage) of tested samples had DON ≥ 5000 µg/kg. Fumonisins were detected ≥ 10,000 µg/kg in 9.6 and 3.9% of grain and silage samples, respectively. Concentrations in grain varied by year for eight mycotoxin groups (p < 0.05), while all 10 groups showed yearly variations in silage. Our survey suggest that multiple mycotoxins frequently co-occur in corn grain and silage in the United States, and some of the more prevalent mycotoxins are those that may not be routinely analyzed (i.e., FA and 15ADON). Assessment of multiple mycotoxins should be considered when developing management programs. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

36 pages, 11448 KiB  
Article
Proteo-Trancriptomic Analyses Reveal a Large Expansion of Metalloprotease-Like Proteins in Atypical Venom Vesicles of the Wasp Meteorus pulchricornis (Braconidae)
by Jean-Luc Gatti, Maya Belghazi, Fabrice Legeai, Marc Ravallec, Marie Frayssinet, Stéphanie Robin, Djibril Aboubakar-Souna, Ramasamy Srinivasan, Manuele Tamò, Marylène Poirié and Anne-Nathalie Volkoff
Toxins 2021, 13(7), 502; https://doi.org/10.3390/toxins13070502 - 19 Jul 2021
Cited by 5 | Viewed by 3666
Abstract
Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. [...] Read more.
Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. In order to define the content and understand the biogenesis of these atypical vesicles, we performed a transcriptome analysis of the venom gland and a proteomic analysis of the venom and purified MpVLPs. About half of the MpVLPs and soluble venom proteins identified were unknown and no similarity with any known viral sequence was found. However, MpVLPs contained a large number of proteins labelled as metalloproteinases while the most abundant protein family in the soluble venom was that of proteins containing the Domain of Unknown Function DUF-4803. The high number of these proteins identified suggests that a large expansion of these two protein families occurred in M. pulchricornis. Therefore, although the exact mechanism of MpVLPs formation remains to be elucidated, these vesicles appear to be “metalloproteinase bombs” that may have several physiological roles in the host including modifying the functions of its immune cells. The role of DUF4803 proteins, also present in the venom of other braconids, remains to be clarified. Full article
(This article belongs to the Special Issue Evolution, Genomics and Proteomics of Venom)
Show Figures

Figure 1

21 pages, 3485 KiB  
Article
Identification and Characterization of Novel Proteins from Arizona Bark Scorpion Venom That Inhibit Nav1.8, a Voltage-Gated Sodium Channel Regulator of Pain Signaling
by Tarek Mohamed Abd El-Aziz, Yucheng Xiao, Jake Kline, Harold Gridley, Alyse Heaston, Klaus D. Linse, Micaiah J. Ward, Darin R. Rokyta, James D. Stockand, Theodore R. Cummins, Luca Fornelli and Ashlee H. Rowe
Toxins 2021, 13(7), 501; https://doi.org/10.3390/toxins13070501 - 18 Jul 2021
Cited by 4 | Viewed by 4977
Abstract
The voltage-gated sodium channel Nav1.8 is linked to neuropathic and inflammatory pain, highlighting the potential to serve as a drug target. However, the biophysical mechanisms that regulate Nav1.8 activation and inactivation gating are not completely understood. Progress has been hindered by a lack [...] Read more.
The voltage-gated sodium channel Nav1.8 is linked to neuropathic and inflammatory pain, highlighting the potential to serve as a drug target. However, the biophysical mechanisms that regulate Nav1.8 activation and inactivation gating are not completely understood. Progress has been hindered by a lack of biochemical tools for examining Nav1.8 gating mechanisms. Arizona bark scorpion (Centruroides sculpturatus) venom proteins inhibit Nav1.8 and block pain in grasshopper mice (Onychomys torridus). These proteins provide tools for examining Nav1.8 structure–activity relationships. To identify proteins that inhibit Nav1.8 activity, venom samples were fractioned using liquid chromatography (reversed-phase and ion exchange). A recombinant Nav1.8 clone expressed in ND7/23 cells was used to identify subfractions that inhibited Nav1.8 Na+ current. Mass-spectrometry-based bottom-up proteomic analyses identified unique peptides from inhibitory subfractions. A search of the peptides against the AZ bark scorpion venom gland transcriptome revealed four novel proteins between 40 and 60% conserved with venom proteins from scorpions in four genera (Centruroides, Parabuthus, Androctonus, and Tityus). Ranging from 63 to 82 amino acids, each primary structure includes eight cysteines and a “CXCE” motif, where X = an aromatic residue (tryptophan, tyrosine, or phenylalanine). Electrophysiology data demonstrated that the inhibitory effects of bioactive subfractions can be removed by hyperpolarizing the channels, suggesting that proteins may function as gating modifiers as opposed to pore blockers. Full article
(This article belongs to the Special Issue Animal Poisons and Venoms in Drug Discovery)
Show Figures

Figure 1

17 pages, 1391 KiB  
Review
Biosensors for Deoxynivalenol and Zearalenone Determination in Feed Quality Control
by Krisztina Majer-Baranyi, Nóra Adányi and András Székács
Toxins 2021, 13(7), 499; https://doi.org/10.3390/toxins13070499 - 17 Jul 2021
Cited by 13 | Viewed by 3984
Abstract
Mycotoxin contamination of cereals used for feed can cause intoxication, especially in farm animals; therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current trends in food/feed analysis are focusing on the application of [...] Read more.
Mycotoxin contamination of cereals used for feed can cause intoxication, especially in farm animals; therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current trends in food/feed analysis are focusing on the application of biosensor technologies that offer fast and highly selective and sensitive detection with minimal sample treatment and reagents required. The article presents an overview of the recent progress of the development of biosensors for deoxynivalenol and zearalenone determination in cereals and feed. Novel biosensitive materials and highly sensitive detection methods applied for the sensors and the application of these sensors to food/feed products, the limit, and the time of detection are discussed. Full article
(This article belongs to the Special Issue Influence of Deoxynivalenol and Zearalenone in Feed on Animal Health)
Show Figures

Figure 1

13 pages, 295 KiB  
Review
Botulinum Toxin Type A for Glabellar Frown Lines: What Impact of Higher Doses on Outcomes?
by Joely Kaufman-Janette, Sue Ellen Cox, Steven Dayan and John Joseph
Toxins 2021, 13(7), 494; https://doi.org/10.3390/toxins13070494 - 16 Jul 2021
Cited by 10 | Viewed by 4733
Abstract
Botulinum toxin serotype-A (BoNT-A) preparations are widely used to improve the appearance of wrinkles. While effective and well tolerated, patients require retreatment over time to re-establish the effects. There is growing interest from patients as to whether higher doses can prolong response without [...] Read more.
Botulinum toxin serotype-A (BoNT-A) preparations are widely used to improve the appearance of wrinkles. While effective and well tolerated, patients require retreatment over time to re-establish the effects. There is growing interest from patients as to whether higher doses can prolong response without significantly increasing side effects. We reviewed the efficacy and safety evidence for high-dose BoNT-A treatment of glabellar lines, by evaluating high-dose studies published since 2015. Toxins approved for glabellar line treatment in the US or Europe were considered. “High-dose” indicated doses above the licensed dose for each BoNT-A preparation. Five studies met the inclusion criteria and most were randomized, double-blind trials; designs and population sizes varied. Findings suggested that higher-dose BoNT-A treatment is feasible and may improve response duration without increased safety issues. Around 9 months’ median duration was achieved with a 2–2.5-fold increase of the abobotulinumtoxinA on-label dose, or with a 5-fold increase in incobotulinumtoxinA dose. A 2–4-fold increase of the onabotulinumtoxinA on-label dose yielded a median duration of around 6 months. Importantly, patient satisfaction and natural look remained with increasing abobotulinumtoxinA doses. While more data are needed, these findings may lead to more effective, individually tailored treatment plans to meet patient expectations. Full article
12 pages, 1915 KiB  
Article
Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia
by Sunny Eloot, Jonathan De Rudder, Patrick Verloo, Evelyn Dhont, Ann Raes, Wim Van Biesen and Evelien Snauwaert
Toxins 2021, 13(7), 484; https://doi.org/10.3390/toxins13070484 - 13 Jul 2021
Cited by 2 | Viewed by 2957
Abstract
Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal [...] Read more.
Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow QB). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = QB∙[(Cinlet − Coutlet)/Cinlet]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration Cstart to a desired target concentration Ctarget is then equal to T = (−V/K)∙LN(Ctarget/Cstart). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia. Full article
(This article belongs to the Special Issue New Strategies for the Reduction of Uremic Toxins)
Show Figures

Figure 1

16 pages, 594 KiB  
Review
Tetrodotoxin, a Potential Drug for Neuropathic and Cancer Pain Relief?
by Rafael González-Cano, M. Carmen Ruiz-Cantero, Miriam Santos-Caballero, Carlos Gómez-Navas, Miguel Á. Tejada and Francisco R. Nieto
Toxins 2021, 13(7), 483; https://doi.org/10.3390/toxins13070483 - 12 Jul 2021
Cited by 25 | Viewed by 8983
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin found mainly in puffer fish and other marine and terrestrial animals. TTX blocks voltage-gated sodium channels (VGSCs) which are typically classified as TTX-sensitive or TTX-resistant channels. VGSCs play a key role in pain signaling and some TTX-sensitive [...] Read more.
Tetrodotoxin (TTX) is a potent neurotoxin found mainly in puffer fish and other marine and terrestrial animals. TTX blocks voltage-gated sodium channels (VGSCs) which are typically classified as TTX-sensitive or TTX-resistant channels. VGSCs play a key role in pain signaling and some TTX-sensitive VGSCs are highly expressed by adult primary sensory neurons. During pathological pain conditions, such as neuropathic pain, upregulation of some TTX-sensitive VGSCs, including the massive re-expression of the embryonic VGSC subtype NaV1.3 in adult primary sensory neurons, contribute to painful hypersensitization. In addition, people with loss-of-function mutations in the VGSC subtype NaV1.7 present congenital insensitive to pain. TTX displays a prominent analgesic effect in several models of neuropathic pain in rodents. According to this promising preclinical evidence, TTX is currently under clinical development for chemo-therapy-induced neuropathic pain and cancer-related pain. This review focuses primarily on the preclinical and clinical evidence that support a potential analgesic role for TTX in these pain states. In addition, we also analyze the main toxic effects that this neurotoxin produces when it is administered at therapeutic doses, and the therapeutic potential to alleviate neuropathic pain of other natural toxins that selectively block TTX-sensitive VGSCs. Full article
(This article belongs to the Special Issue Tetrodotoxin (TTX) as a Therapeutic Agent)
Show Figures

Figure 1

18 pages, 2151 KiB  
Article
Biomonitoring of Mycotoxins in Plasma of Patients with Alzheimer’s and Parkinson’s Disease
by Beatriz Arce-López, Lydia Alvarez-Erviti, Barbara De Santis, María Izco, Silvia López-Calvo, Maria Eugenia Marzo-Sola, Francesca Debegnach, Elena Lizarraga, Adela López de Cerain, Elena González-Peñas and Ariane Vettorazzi
Toxins 2021, 13(7), 477; https://doi.org/10.3390/toxins13070477 - 10 Jul 2021
Cited by 10 | Viewed by 3348
Abstract
Exposure to environmental contaminants might play an important role in neurodegenerative disease pathogenesis, such as Parkinson´s disease (PD) and Alzheimer´s disease (AD). For the first time in Spain, the plasmatic levels of 19 mycotoxins from patients diagnosed with a neurodegenerative disease (44 PD [...] Read more.
Exposure to environmental contaminants might play an important role in neurodegenerative disease pathogenesis, such as Parkinson´s disease (PD) and Alzheimer´s disease (AD). For the first time in Spain, the plasmatic levels of 19 mycotoxins from patients diagnosed with a neurodegenerative disease (44 PD and 24 AD) and from their healthy companions (25) from La Rioja region were analyzed. The studied mycotoxins were aflatoxins B1, B2, G1, G2 and M1, T-2 and HT-2, ochratoxins A (OTA) and B (OTB), zearalenone, sterigmatocystin (STER), nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, deepoxy-deoxynivalenol, neosolaniol, diacetoxyscirpenol and fusarenon-X. Samples were analyzed by LC-MS/MS before and after treatment with β-glucuronidase/arylsulfatase in order to detect potential metabolites. Only OTA, OTB and STER were detected in the samples. OTA was present before (77% of the samples) and after (89%) the enzymatic treatment, while OTB was only detectable before (13%). Statistically significant differences in OTA between healthy companions and patients were observed but the observed differences might seem more related to gender (OTA levels higher in men, p-value = 0.0014) than the disease itself. STER appeared only after enzymatic treatment (88%). Statistical analysis on STER, showed distributions always different between healthy controls and patients (patients’ group > controls, p-value < 0.0001). Surprisingly, STER levels weakly correlated positively with age in women (rho = 0.3384), while OTA correlation showed a decrease of levels with age especially in the men with PD (rho = −0.4643). Full article
(This article belongs to the Special Issue Biomonitoring of Mycotoxins)
Show Figures

Figure 1

19 pages, 2837 KiB  
Article
Phylogeny and Mycotoxin Profile of Pathogenic Fusarium Species Isolated from Sudden Decline Syndrome and Leaf Wilt Symptoms on Date Palms (Phoenix dactylifera) in Tunisia
by Amal Rabaaoui, Chiara Dall’Asta, Laura Righetti, Antonia Susca, Antonio Francesco Logrieco, Ahmed Namsi, Radhouane Gdoura, Stefaan P. O. Werbrouck, Antonio Moretti and Mario Masiello
Toxins 2021, 13(7), 463; https://doi.org/10.3390/toxins13070463 - 30 Jun 2021
Cited by 23 | Viewed by 4778
Abstract
In 2017–2018, extensive symptoms of sudden decline and fruit rot were observed on date palms in southern Tunisia. Samples of diseased plants were randomly collected in six localities. Based on morphological identification, Fusarium was the most frequent fungal genus detected. A sequencing of [...] Read more.
In 2017–2018, extensive symptoms of sudden decline and fruit rot were observed on date palms in southern Tunisia. Samples of diseased plants were randomly collected in six localities. Based on morphological identification, Fusarium was the most frequent fungal genus detected. A sequencing of translation elongation factor, calmodulin, and second largest subunit of RNA polymerase II genes was used to identify 63 representative Fusarium strains at species level and investigate their phylogenetic relationships. The main species detected was Fusarium proliferatum, and at a much lesser extent, Fusarium brachygibbosum, Fusarium caatingaense, Fusarium clavum, Fusarium incarnatum, and Fusarium solani. Pathogenicity on the Deglet Nour variety plantlets and the capability to produce mycotoxins were also assessed. All Fusarium species were pathogenic complying Koch’s postulates. Fusarium proliferatum strains produced mainly fumonisins (FBs), beauvericin (BEA), and, to a lesser extent, enniatins (ENNs) and moniliformin (MON). All F. brachygibbosum strains produced low levels of BEA, diacetoxyscirpenol, and neosolaniol; two strains produced also T-2 toxin, and a single strain produced HT-2 toxin. Fusarium caatingaense, F. clavum, F. incarnatum produced only BEA. Fusarium solani strains produced MON, BEA, and ENNs. This work reports for the first time a comprehensive multidisciplinary study of Fusarium species on date palms, concerning both phytopathological and food safety issues. Full article
(This article belongs to the Special Issue Selected Papers from the 15th European Fusarium Seminar)
Show Figures

Figure 1

12 pages, 2466 KiB  
Article
Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer
by Eiji Hishinuma, Muneaki Shimada, Naomi Matsukawa, Daisuke Saigusa, Bin Li, Kei Kudo, Keita Tsuji, Shogo Shigeta, Hideki Tokunaga, Kazuki Kumada, Keigo Komine, Hidekazu Shirota, Yuichi Aoki, Ikuko N. Motoike, Jun Yasuda, Kengo Kinoshita, Masayuki Yamamoto, Seizo Koshiba and Nobuo Yaegashi
Toxins 2021, 13(7), 461; https://doi.org/10.3390/toxins13070461 - 30 Jun 2021
Cited by 17 | Viewed by 5595
Abstract
Epithelial ovarian cancer (EOC) is a fatal gynecologic cancer, and its poor prognosis is mainly due to delayed diagnosis. Therefore, biomarker identification and prognosis prediction are crucial in EOC. Altered cell metabolism is a characteristic feature of cancers, and metabolomics reflects an individual’s [...] Read more.
Epithelial ovarian cancer (EOC) is a fatal gynecologic cancer, and its poor prognosis is mainly due to delayed diagnosis. Therefore, biomarker identification and prognosis prediction are crucial in EOC. Altered cell metabolism is a characteristic feature of cancers, and metabolomics reflects an individual’s current phenotype. In particular, plasma metabolome analyses can be useful for biomarker identification. In this study, we analyzed 624 metabolites, including uremic toxins (UTx) in plasma derived from 80 patients with EOC using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Compared with the healthy control, we detected 77 significantly increased metabolites and 114 significantly decreased metabolites in EOC patients. Especially, decreased concentrations of lysophosphatidylcholines and phosphatidylcholines and increased concentrations of triglycerides were observed, indicating a metabolic profile characteristic of EOC patients. After calculating the parameters of each metabolic index, we found that higher ratios of kynurenine to tryptophan correlates with worse prognosis in EOC patients. Kynurenine, one of the UTx, can affect the prognosis of EOC. Our results demonstrated that plasma metabolome analysis is useful not only for the diagnosis of EOC, but also for predicting prognosis with the variation of UTx and evaluating response to chemotherapy. Full article
(This article belongs to the Special Issue The Functional Analysis of Uremic Toxins by Metabolomics)
Show Figures

Figure 1

11 pages, 2146 KiB  
Article
Characterization of the Domoic Acid Uptake Mechanism of the Mussel (Mytilus galloprovincialis) Digestive Gland
by Juan Blanco, Carmen Mariño, Helena Martín, Gonzalo Álvarez and Araceli E. Rossignoli
Toxins 2021, 13(7), 458; https://doi.org/10.3390/toxins13070458 - 30 Jun 2021
Cited by 4 | Viewed by 2382
Abstract
Cultures of the mussel Mytilus galloprovincialis are frequently affected by accumulation of the amnesic shellfish poisoning toxin domoic acid (DA). This species is characterized by a fast uptake and release of the toxin. In this work, the main characteristics of the uptake mechanism [...] Read more.
Cultures of the mussel Mytilus galloprovincialis are frequently affected by accumulation of the amnesic shellfish poisoning toxin domoic acid (DA). This species is characterized by a fast uptake and release of the toxin. In this work, the main characteristics of the uptake mechanism have been studied by incubation of digestive gland thin slices in media with different composition and DA concentration. DA uptake seems to follow Michaelis–Menten kinetics, with a very high estimated KM (1722 µg DA mL−1) and a Vmax of 71.9 µg DA g−1 h−1, which is similar to those found for other amino acids in invertebrates. Replacement of NaCl from the incubation media by Cl-choline (Na+-free medium) did not significantly reduce the uptake, but replacement by sorbitol (Na+-free and Cl-depleted medium) did. A new experiment replacing all chlorides with their equivalent gluconates (Na+- and Cl-free medium) showed an important reduction in the uptake that should be attributed to the absence of chloride, pointing to a Na+-independent, Cl (or anion-) dependent transporter. In media with Na+ and Cl, neither decreasing the pH nor adding cyanide (a metabolic inhibitor) had significant effect on DA uptake, suggesting that the transport mechanism is not H+- or ATP-dependent. In a chloride depleted medium, lowering pH or adding CN increased the uptake, suggesting that other anions could, at least partially, substitute chloride. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Graphical abstract

28 pages, 530 KiB  
Review
Toxic or Otherwise Harmful Algae and the Built Environment
by Wolfgang Karl Hofbauer
Toxins 2021, 13(7), 465; https://doi.org/10.3390/toxins13070465 - 30 Jun 2021
Cited by 14 | Viewed by 5166
Abstract
This article gives a comprehensive overview on potentially harmful algae occurring in the built environment. Man-made structures provide diverse habitats where algae can grow, mainly aerophytic in nature. Literature reveals that algae that is potentially harmful to humans do occur in the anthropogenic [...] Read more.
This article gives a comprehensive overview on potentially harmful algae occurring in the built environment. Man-made structures provide diverse habitats where algae can grow, mainly aerophytic in nature. Literature reveals that algae that is potentially harmful to humans do occur in the anthropogenic environment in the air, on surfaces or in water bodies. Algae may negatively affect humans in different ways: they may be toxic, allergenic and pathogenic to humans or attack human structures. Toxin-producing alga are represented in the built environment mainly by blue green algae (Cyanoprokaryota). In special occasions, other toxic algae may also be involved. Green algae (Chlorophyta) found airborne or growing on manmade surfaces may be allergenic whereas Cyanoprokaryota and other forms may not only be toxic but also allergenic. Pathogenicity is found only in a special group of algae, especially in the genus Prototheca. In addition, rare cases with infections due to algae with green chloroplasts are reported. Algal action may be involved in the biodeterioration of buildings and works of art, which is still discussed controversially. Whereas in many cases the disfigurement of surfaces and even the corrosion of materials is encountered, in other cases a protective effect on the materials is reported. A comprehensive list of 79 taxa of potentially harmful, airborne algae supplemented with their counterparts occurring in the built environment, is given. Due to global climate change, it is not unlikely that the built environment will suffer from more and higher amounts of harmful algal species in the future. Therefore, intensified research in composition, ecophysiology and development of algal growth in the built environment is indicated. Full article
34 pages, 3434 KiB  
Review
Paralytic and Amnesic Shellfish Toxins Impacts on Seabirds, Analyses and Management
by Begoña Ben-Gigirey, Lucía Soliño, Isabel Bravo, Francisco Rodríguez and María V. M. Casero
Toxins 2021, 13(7), 454; https://doi.org/10.3390/toxins13070454 - 29 Jun 2021
Cited by 11 | Viewed by 6158
Abstract
Marine biotoxins have been frequently implicated in morbidity and mortality events in numerous species of birds worldwide. Nevertheless, their effects on seabirds have often been overlooked and the associated ecological impact has not been extensively studied. On top of that, the number of [...] Read more.
Marine biotoxins have been frequently implicated in morbidity and mortality events in numerous species of birds worldwide. Nevertheless, their effects on seabirds have often been overlooked and the associated ecological impact has not been extensively studied. On top of that, the number of published studies confirming by analyses the presence of marine biotoxins from harmful algal blooms (HABs) in seabirds, although having increased in recent years, is still quite low. This review compiles information on studies evidencing the impact of HAB toxins on marine birds, with a special focus on the effects of paralytic and amnesic shellfish toxins (PSTs and ASTs). It is mainly centered on studies in which the presence of PSTs and/or ASTs in seabird samples was demonstrated through analyses. The analytical techniques commonly employed, the tissues selected and the adjustments done in protocols for processing seabird matrixes are summarized. Other topics covered include the role of different vectors in the seabird intoxications, information on clinical signs in birds affected by PSTs and ASTs, and multifactorial causes which could aggravate the syndromes. Close collaboration between seabird experts and marine biotoxins researchers is needed to identify and report the potential involvement of HABs and their toxins in the mortality events. Future studies on the PSTs and ASTs pharmacodynamics, together with the establishment of lethal doses in various seabird species, are also necessary. These studies would aid in the selection of the target organs for toxins analyses and in the postmortem intoxication diagnoses. Full article
Show Figures

Figure 1

36 pages, 853 KiB  
Review
Chronic Kidney Disease-Associated Itch (CKD-aI) in Children—A Narrative Review
by Radomir Reszke, Katarzyna Kiliś-Pstrusińska and Jacek C. Szepietowski
Toxins 2021, 13(7), 450; https://doi.org/10.3390/toxins13070450 - 29 Jun 2021
Cited by 8 | Viewed by 6827
Abstract
Chronic kidney disease (CKD) is a condition of widespread epidemiology and serious consequences affecting all organs of the organism and associated with significant mortality. The knowledge on CKD is rapidly evolving, especially concerning adults. Recently, more data is also appearing regarding CKD in [...] Read more.
Chronic kidney disease (CKD) is a condition of widespread epidemiology and serious consequences affecting all organs of the organism and associated with significant mortality. The knowledge on CKD is rapidly evolving, especially concerning adults. Recently, more data is also appearing regarding CKD in children. Chronic itch (CI) is a common symptom appearing due to various underlying dermatological and systemic conditions. CI may also appear in association with CKD and is termed chronic kidney disease-associated itch (CKD-aI). CKD-aI is relatively well-described in the literature concerning adults, yet it also affects children. Unfortunately, the data on paediatric CKD-aI is particularly scarce. This narrative review aims to describe various aspects of CKD-aI with an emphasis on children, based on the available data in this population and the data extrapolated from adults. Its pathogenesis is described in details, focusing on the growing role of uraemic toxins (UTs), as well as immune dysfunction, altered opioid transmission, infectious agents, xerosis, neuropathy and dialysis-associated aspects. Moreover, epidemiological and clinical aspects are reviewed based on the few data on CKD-aI in children, whereas treatment recommendations are proposed as well, based on the literature on CKD-aI in adults and own experience in managing CI in children. Full article
Show Figures

Figure 1

20 pages, 1310 KiB  
Article
Dietary Exposure to Mycotoxins through Alcoholic and Non-Alcoholic Beverages in Valencia, Spain
by Dionisia Carballo, Mónica Fernández-Franzón, Emilia Ferrer, Noelia Pallarés and Houda Berrada
Toxins 2021, 13(7), 438; https://doi.org/10.3390/toxins13070438 - 24 Jun 2021
Cited by 18 | Viewed by 2952
Abstract
The present study investigated the presence of 30 mycotoxins in 110 beverage samples of beer, wine, cava, and cider purchased in Valencia (Spain). A validated method based on dispersive liquid–liquid microextraction and chromatographic methods coupled with tandem mass spectrometry was applied. The method [...] Read more.
The present study investigated the presence of 30 mycotoxins in 110 beverage samples of beer, wine, cava, and cider purchased in Valencia (Spain). A validated method based on dispersive liquid–liquid microextraction and chromatographic methods coupled with tandem mass spectrometry was applied. The method showed satisfactory recoveries ranging from 61 to 116% for the different beverages studied. The detection and quantification limits ranged from 0.03 to 2.34 µg/L and 0.1 to 7.81 µg/L, respectively. The results showed that beer samples were the most contaminated, even with concentrations ranging from 0.24 to 54.76 µg/L. A significant presence of alternariol was found in wine, which reached concentrations up to 26.86 µg/L. Patulin and ochratoxin A were the most frequently detected mycotoxins in cava and cider samples, with incidences of 40% and 26%, respectively. Ochratoxin A exceeded the maximum level set by the EU in one wine sample. The results obtained were statistically validated. The combined exposure was assessed by the sum of mycotoxin concentrations contaminating the same samples to provide information on the extent of dietary exposure to mycotoxins. No significant health risk to consumers was associated with the mycotoxin levels detected in the beverages tested. Full article
Show Figures

Graphical abstract

15 pages, 1466 KiB  
Article
Variability in the Occupancy of Escherichia coli O157 Integration Sites by Shiga Toxin-Encoding Prophages
by Scott T. Henderson, Pallavi Singh, David Knupp, David W. Lacher, Galeb S. Abu-Ali, James T. Rudrik and Shannon D. Manning
Toxins 2021, 13(7), 433; https://doi.org/10.3390/toxins13070433 - 22 Jun 2021
Cited by 7 | Viewed by 2785
Abstract
Escherichia coli O157:H7 strains often produce Shiga toxins encoded by genes on lambdoid bacteriophages that insert into multiple loci as prophages. O157 strains were classified into distinct clades that vary in virulence. Herein, we used PCR assays to examine Shiga toxin (Stx) prophage [...] Read more.
Escherichia coli O157:H7 strains often produce Shiga toxins encoded by genes on lambdoid bacteriophages that insert into multiple loci as prophages. O157 strains were classified into distinct clades that vary in virulence. Herein, we used PCR assays to examine Shiga toxin (Stx) prophage occupancy in yehV, argW, wrbA, and sbcB among 346 O157 strains representing nine clades. Overall, yehV was occupied in most strains (n = 334, 96.5%), followed by wrbA (n = 213, 61.6%), argW (n = 103, 29.8%), and sbcB (n = 93, 26.9%). Twelve occupancy profiles were identified that varied in frequency and differed across clades. Strains belonging to clade 8 were more likely to have occupied sbcB and argW sites compared to other clades (p < 0.0001), while clade 2 strains were more likely to have occupied wrbA sites (p < 0.0001). Clade 8 strains also had more than the expected number of occupied sites based on the presence of stx variants (p < 0.0001). Deletion of a 20 kb non-Stx prophage occupying yehV in a clade 8 strain resulted in an ~18-fold decrease in stx2 expression. These data highlight the complexity of Stx prophage integration and demonstrate that clade 8 strains, which were previously linked to hemolytic uremic syndrome, have unique Stx prophage occupancy profiles that can impact stx2 expression. Full article
(This article belongs to the Special Issue Shiga Toxin: Occurrence, Pathogenicity, Detection and Therapies)
Show Figures

Figure 1

26 pages, 2145 KiB  
Review
Old World Vipers—A Review about Snake Venom Proteomics of Viperinae and Their Variations
by Maik Damm, Benjamin-Florian Hempel and Roderich D. Süssmuth
Toxins 2021, 13(6), 427; https://doi.org/10.3390/toxins13060427 - 17 Jun 2021
Cited by 37 | Viewed by 9602
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to [...] Read more.
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows. Full article
(This article belongs to the Special Issue Evolution, Genomics and Proteomics of Venom)
Show Figures

Figure 1

37 pages, 1528 KiB  
Review
The Occurrence of Mycotoxins in Raw Materials and Fish Feeds in Europe and the Potential Effects of Deoxynivalenol (DON) on the Health and Growth of Farmed Fish Species—A Review
by Paraskevi Koletsi, Johan W. Schrama, Elisabeth A. M. Graat, Geert F. Wiegertjes, Philip Lyons and Constanze Pietsch
Toxins 2021, 13(6), 403; https://doi.org/10.3390/toxins13060403 - 5 Jun 2021
Cited by 15 | Viewed by 6615
Abstract
The first part of this study evaluates the occurrence of mycotoxin patterns in feedstuffs and fish feeds. Results were extrapolated from a large data pool derived from wheat (n = 857), corn (n = 725), soybean meal (n = 139) [...] Read more.
The first part of this study evaluates the occurrence of mycotoxin patterns in feedstuffs and fish feeds. Results were extrapolated from a large data pool derived from wheat (n = 857), corn (n = 725), soybean meal (n = 139) and fish feed (n = 44) samples in European countries and based on sample analyses by liquid chromatography/tandem mass spectrometry (LC-MS/MS) in the period between 2012–2019. Deoxynivalenol (DON) was readily present in corn (in 47% of the samples) > wheat (41%) > soybean meal (11%), and in aquafeeds (48%). Co-occurrence of mycotoxins was frequently observed in feedstuffs and aquafeed samples. For example, in corn, multi-mycotoxin occurrence was investigated by Spearman’s correlations and odd ratios, and both showed co-occurrence of DON with its acetylated forms (3-AcDON, 15-AcDON) as well as with zearalenone (ZEN). The second part of this study summarizes the existing knowledge on the effects of DON on farmed fish species and evaluates the risk of DON exposure in fish, based on data from in vivo studies. A meta-analytical approach aimed to estimate to which extent DON affects feed intake and growth performance in fish. Corn was identified as the ingredient with the highest risk of contamination with DON and its acetylated forms, which often cannot be detected by commonly used rapid detection methods in feed mills. Periodical state-of-the-art mycotoxin analyses are essential to detect the full spectrum of mycotoxins in fish feeds aimed to prevent detrimental effects on farmed fish and subsequent economic losses for fish farmers. Because levels below the stated regulatory limits can reduce feed intake and growth performance, our results show that the risk of DON contamination is underestimated in the aquaculture industry. Full article
(This article belongs to the Special Issue Mycotoxins in Feeds and Their Effects on Fish)
Show Figures

Figure 1

Back to TopTop