water-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4999 KiB  
Article
Baseline Conditions and Projected Future Hydro-Climatic Change in National Parks in the Conterminous United States
by William Battaglin, Lauren Hay, David J. Lawrence, Greg McCabe and Parker Norton
Water 2020, 12(6), 1704; https://doi.org/10.3390/w12061704 - 15 Jun 2020
Cited by 2 | Viewed by 3226
Abstract
The National Park Service (NPS) manages hundreds of parks in the United States, and many contain important aquatic ecosystems and/or threatened and endangered aquatic species vulnerable to hydro-climatic change. More effective management of park resources under future hydro-climatic uncertainty requires information on both [...] Read more.
The National Park Service (NPS) manages hundreds of parks in the United States, and many contain important aquatic ecosystems and/or threatened and endangered aquatic species vulnerable to hydro-climatic change. More effective management of park resources under future hydro-climatic uncertainty requires information on both baseline conditions and the range of projected future conditions. A monthly water balance model was used to assess baseline (1981–1999) conditions and a range of projected future hydro-climatic conditions in 374 NPS parks. General circulation model outputs representing 214 future climate simulations were used to drive the model. Projected future changes in air temperature (T), precipitation (p), and runoff (R) are expressed as departures from historical baselines. Climate simulations indicate increasing T by 2030 for all parks with 50th percentile simulations projecting increases of 1.67 °C or more in 50% of parks. Departures in 2030 p indicate a mix of mostly increases and some decreases, with 50th percentile simulations projecting increases in p in more than 70% of parks. Departures in R for 2030 are mostly decreases, with the 50th percentile simulations projecting decreases in R in more than 50% of parks in all seasons except winter. Hence, in many NPS parks, R is projected to decrease even when p is projected to increase because of increasing T in all parks. Projected changes in future hydro-climatic conditions can also be assessed for individual parks, and Rocky Mountain National Park and Congaree National Park are used as examples. Full article
Show Figures

Figure 1

14 pages, 2745 KiB  
Article
Accounting for the Three-Dimensional Distribution of Escherichia coli Concentrations in Pond Water in Simulations of the Microbial Quality of Water Withdrawn for Irrigation
by Matthew D. Stocker, Dong Jin Jeon, Ekaterina Sokolova, Hoonsoo Lee, Moon S. Kim and Yakov A. Pachepsky
Water 2020, 12(6), 1708; https://doi.org/10.3390/w12061708 - 15 Jun 2020
Cited by 5 | Viewed by 2441
Abstract
Evaluating the microbial quality of irrigation water is essential for the prevention of foodborne illnesses. Generic Escherichia coli (E. coli) is used as an indicator organism to estimate the microbial quality of irrigation water. Monitoring E. coli concentrations in irrigation water [...] Read more.
Evaluating the microbial quality of irrigation water is essential for the prevention of foodborne illnesses. Generic Escherichia coli (E. coli) is used as an indicator organism to estimate the microbial quality of irrigation water. Monitoring E. coli concentrations in irrigation water sources is commonly performed using water samples taken from a single depth. Vertical gradients of E. coli concentrations are typically not measured or are ignored; however, E. coli concentrations in water bodies can be expected to have horizontal and vertical gradients. The objective of this work was to research 3D distributions of E. coli concentrations in an irrigation pond in Maryland and to estimate the dynamics of E. coli concentrations at the water intake during the irrigation event using hydrodynamic modeling in silico. The study pond is about 22 m wide and 200 m long, with an average depth of 1.5 m. Three transects sampled at 50-cm depth intervals, along with intensive nearshore sampling, were used to develop the initial concentration distribution for the application of the environmental fluid dynamic code (EFDC) model. An eight-hour irrigation event was simulated using on-site data on the wind speed and direction. Substantial vertical and horizontal variations in E. coli concentrations translated into temporally varying concentrations at the intake. Additional simulations showed that the E. coli concentrations at the intake reflect the 3D distribution of E. coli in the limited pond section close to the intake. The 3D sampling revealed E. coli concentration hot spots at different depths across the pond. Measured and simulated 3D E. coli concentrations provide improved insights into the expected microbial water quality of irrigation water compared with 1D or 2D representations of the spatial variability of the indicator concentration. Full article
(This article belongs to the Special Issue Irrigation Management)
Show Figures

Figure 1

22 pages, 3531 KiB  
Article
Comparison of ERA5-Land and UERRA MESCAN-SURFEX Reanalysis Data with Spatially Interpolated Weather Observations for the Regional Assessment of Reference Evapotranspiration
by Anna Pelosi, Fabio Terribile, Guido D’Urso and Giovanni Battista Chirico
Water 2020, 12(6), 1669; https://doi.org/10.3390/w12061669 - 11 Jun 2020
Cited by 112 | Viewed by 7815
Abstract
Reanalysis data are being increasingly used as gridded weather data sources for assessing crop-reference evapotranspiration (ET0) in irrigation water-budget analyses at regional scales. This study assesses the performances of ET0 estimates based on weather data, respectively produced by two high-resolution [...] Read more.
Reanalysis data are being increasingly used as gridded weather data sources for assessing crop-reference evapotranspiration (ET0) in irrigation water-budget analyses at regional scales. This study assesses the performances of ET0 estimates based on weather data, respectively produced by two high-resolution reanalysis datasets: UERRA MESCAN-SURFEX (UMS) and ERA5-Land (E5L). The study is conducted in Campania Region (Southern Italy), with reference to the irrigation seasons (April–September) of years 2008–2018. Temperature, wind speed, vapor pressure deficit, solar radiation and ET0 derived from reanalysis datasets, were compared with the corresponding estimates obtained by spatially interpolating data observed by a network of 18 automatic weather stations (AWSs). Statistical performances of the spatial interpolations were evaluated with a cross-validation procedure, by recursively applying universal kriging or ordinary kriging to the observed weather data. ERA5-Land outperformed UMS both in weather data and ET0 estimates. Averaging over all 18 AWSs sites in the region, the normalized BIAS (nBIAS) was found less than 5% for all the databases. The normalized RMSE (nRMSE) for ET0 computed with E5L data was 17%, while it was 22% with UMS data. Both performances were not far from those obtained by kriging interpolation, which presented an average nRMSE of 14%. Overall, this study confirms that reanalysis can successfully surrogate the unavailability of observed weather data for the regional assessment of ET0. Full article
Show Figures

Figure 1

14 pages, 2834 KiB  
Article
Reasons of Acceptance and Barriers of House Onsite Greywater Treatment and Reuse in Palestinian Rural Areas
by Rehab A. Thaher, Nidal Mahmoud, Issam A. Al-Khatib and Yung-Tse Hung
Water 2020, 12(6), 1679; https://doi.org/10.3390/w12061679 - 11 Jun 2020
Cited by 16 | Viewed by 4630
Abstract
In the last twenty years, house onsite wastewater management systems have been increasing in the West Bank’s rural areas. The aim of this research was to reveal, in the context of providing onsite Grey Water Treatment Plants (GWTPs) for wastewater management in the [...] Read more.
In the last twenty years, house onsite wastewater management systems have been increasing in the West Bank’s rural areas. The aim of this research was to reveal, in the context of providing onsite Grey Water Treatment Plants (GWTPs) for wastewater management in the rural communities in Palestine, the local population’s perceptions, in the sense of acceptance of and barriers towards such a type of wastewater management, so as to figure out successes, failures and lessons. The data collection tool was a questionnaire that targeted the households served with GWTPs. The findings show that 13% of the total constructed treatment plants were not operative. The most important barrier as mentioned by 66.5% is odor emission and insect infestation. Then, 25.1% of the implementing agencies never monitor or check the treatment plants, and 59.3% of them monitor and check the plants only during the first 2–3 months. The next barrier is inadequate beneficiary experience in operation and maintenance. Health concerns regarding quality of crops irrigated by treated grey water were another barrier. The results revealed that the reuse of treated grey water in irrigation was the main incentive for GWTPs as stated by 88.0% of beneficiaries. The second incentive was the saving of cesspit discharge frequency and its financial consequences, as stated by 71.3%. Finally, 72.5% of the beneficiaries stated that they had a water shortage before implementing GWTPs, and the GWTPs contributed to solving it. The highest percentage (82.6%) of beneficiaries accepted the treatment units because of their willingness to reuse treated water for irrigation and agricultural purposes. Education level has an impact on GWTP acceptance, with 73% of not educated beneficiaries being satisfied and 58.8% of educated people being satisfied. Islamic religion is considered a driver for accepting reuse of treated grey water in irrigation, according to the majority of people (70%). Women play a major role on GWTP management; 68.9% of the treatment systems are run by men side-by-side with women (fathers and mothers), and 24% are run completely by women. The majority of GWTP beneficiaries (70.4%) are satisfied with GWTPs. Little effort is required for operation and maintenance, with only an average of 0.4 working hours per week. Therefore, house onsite grey water management systems are acceptable in rural communities, but attention should be given to the reasons of acceptance and barriers highlighted in this research. Full article
(This article belongs to the Special Issue Water Quality Engineering and Wastewater Treatment)
Show Figures

Figure 1

22 pages, 644 KiB  
Article
Agenda Setting in Water and IWRM: Discourse Analysis of Water Policy Debate in Pakistan
by Muhammad Arfan, Kamran Ansari, Asmat Ullah, Daniyal Hassan, Altaf Ali Siyal and Shaofeng Jia
Water 2020, 12(6), 1656; https://doi.org/10.3390/w12061656 - 10 Jun 2020
Cited by 17 | Viewed by 8095
Abstract
This article explores the water policy narrative in Pakistan, and identifies its historical trajectories and influences, as well as the impact of the global agenda setting of water for 2030. For this purpose, water sector reforms in Pakistan are examined as a case [...] Read more.
This article explores the water policy narrative in Pakistan, and identifies its historical trajectories and influences, as well as the impact of the global agenda setting of water for 2030. For this purpose, water sector reforms in Pakistan are examined as a case study. The National Water Policy (NWP) 2018 and Participatory Irrigation Management (PIM) reforms are critically evaluated and loopholes identified, in terms of both theoretical aspects and constraints in their practical implementation. The overall analysis reveals that the engineering narrative is dominant in policy circles and large-scale infrastructure construction is seen as an exceptional measure to overcome the current loss of storage potential due to sedimentation. On the other hand, the adoption of the Integrated Water Resource Management (IWRM) framework reflects the desire of state institutions to imbue water policy reform with international credibility. The IWRM framework has been adopted as isomorphic mimicry to appease international financing institutions and donors. PIM reform is thus far from delivering the desired results due to ideological battles among new (i.e., the Participatory Farmers Institution) and traditional bureaucratic irrigation institutions. As adopted, the global agenda setting of water, in the shape of IWRM, is a repackaging of existing activities, and prevents alternative thinking in the setting of water priorities according to developmental needs. Full article
(This article belongs to the Special Issue Attention and Water Governance: An Agenda-Setting Perspective)
Show Figures

Graphical abstract

24 pages, 6651 KiB  
Review
Constructed Wetlands for Sustainable Wastewater Treatment in Hot and Arid Climates: Opportunities, Challenges and Case Studies in the Middle East
by Alexandros I. Stefanakis
Water 2020, 12(6), 1665; https://doi.org/10.3390/w12061665 - 10 Jun 2020
Cited by 92 | Viewed by 15513
Abstract
Many countries and regions around the world are facing a continuously growing pressure on their limited freshwater resources, particularly those under hot and arid climates. Higher water demand than availability led to over-abstraction and deterioration of the available freshwater resources’ quality. In this [...] Read more.
Many countries and regions around the world are facing a continuously growing pressure on their limited freshwater resources, particularly those under hot and arid climates. Higher water demand than availability led to over-abstraction and deterioration of the available freshwater resources’ quality. In this context, wastewater, if properly treated, can represent a new water source added in the local water balance, particularly in regions of Colorado, California, Australia, China and in the wide region of the Middle East, which is characterized as one of most water-stressed regions in the world. This article summarizes the status of wastewater treatment and management in the Middle East and discusses the challenges, the various barriers and also the opportunities that arise by introducing the sustainable technology of Constructed Wetlands in the region. Furthermore, the aim of the article is to provide a better insight into the possibility and feasibility of a wider implementation of this green technology under the hot and arid climate of Middle East by presenting several successful case studies of operating Constructed Wetlands facilities in the region for the treatment of various wastewater sources. Full article
Show Figures

Figure 1

21 pages, 15586 KiB  
Article
Using 1D HEC-RAS Modeling and LiDAR Data to Improve Flood Hazard Maps Accuracy: A Case Study from Jijia Floodplain (NE Romania)
by Elena Huţanu, Alin Mihu-Pintilie, Andrei Urzica, Larisa Elena Paveluc, Cristian Constantin Stoleriu and Adrian Grozavu
Water 2020, 12(6), 1624; https://doi.org/10.3390/w12061624 - 6 Jun 2020
Cited by 44 | Viewed by 7843
Abstract
The ability to extract flood hazard settings in highly vulnerable areas like populated floodplains by using new computer algorithms and hydraulic modeling software is an important aspect of any flood mitigation efforts. In this framework, the 1D/2D hydraulic models, which were generated based [...] Read more.
The ability to extract flood hazard settings in highly vulnerable areas like populated floodplains by using new computer algorithms and hydraulic modeling software is an important aspect of any flood mitigation efforts. In this framework, the 1D/2D hydraulic models, which were generated based on a Light Detection and Ranging (LiDAR) derivate Digital Elevation Model (DEM) and processed within Geographical Information Systems (GIS), can improve large-scale flood hazard maps accuracy. In this study, we developed the first flood vulnerability assessment for 1% (100-year) and 0.1% (1000-year) recurrence intervals within the Jijia floodplain (north-eastern Romania), based on 1D HEC-RAS hydraulic modeling and LiDAR derivate DEM with 0.5 m spatial resolution. The results were compared with official flood hazards maps developed for the same recurrence intervals by the hydrologists of National Administration “Romanian Waters” (NARW) based on MIKE SHE modeling software and a DEM with 2 m spatial resolutions. It was revealed that the 1D HEC-RAS provides a more realistic perspective about the possible flood threats within Jijia floodplain and improves the accuracy of the official flood hazard maps obtained according to Flood Directive 2007/60/EC. Full article
Show Figures

Graphical abstract

17 pages, 2589 KiB  
Article
A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach
by Salah L. Zubaidi, Hussein Al-Bugharbee, Sandra Ortega-Martorell, Sadik Kamel Gharghan, Ivan Olier, Khalid S. Hashim, Nabeel Saleem Saad Al-Bdairi and Patryk Kot
Water 2020, 12(6), 1628; https://doi.org/10.3390/w12061628 - 6 Jun 2020
Cited by 87 | Viewed by 5679
Abstract
Accurate and reliable urban water demand prediction is imperative for providing the basis to design, operate, and manage water system, especially under the scarcity of the natural water resources. A new methodology combining discrete wavelet transform (DWT) with an adaptive neuro-fuzzy inference system [...] Read more.
Accurate and reliable urban water demand prediction is imperative for providing the basis to design, operate, and manage water system, especially under the scarcity of the natural water resources. A new methodology combining discrete wavelet transform (DWT) with an adaptive neuro-fuzzy inference system (ANFIS) is proposed to predict monthly urban water demand based on several intervals of historical water consumption. This ANFIS model is evaluated against a hybrid crow search algorithm and artificial neural network (CSA-ANN), since these methods have been successfully used recently to tackle a range of engineering optimization problems. The study outcomes reveal that (1) data preprocessing is essential for denoising raw time series and choosing the model inputs to render the highest model performance; (2) both methodologies, ANFIS and CSA-ANN, are statistically equivalent and capable of accurately predicting monthly urban water demand with high accuracy based on several statistical metric measures such as coefficient of efficiency (0.974, 0.971, respectively). This study could help policymakers to manage extensions of urban water system in response to the increasing demand with low risk related to a decision. Full article
(This article belongs to the Special Issue Advanced Applications of Electrocoagulation in Water and Wastewater)
Show Figures

Figure 1

23 pages, 12377 KiB  
Article
Impact of Climate Change on the Hydrological Regimes in Bavaria
by Benjamin Poschlod, Florian Willkofer and Ralf Ludwig
Water 2020, 12(6), 1599; https://doi.org/10.3390/w12061599 - 4 Jun 2020
Cited by 15 | Viewed by 4830
Abstract
This study assesses the change of the seasonal runoff characteristics in 98 catchments in central Europe between the reference period of 1981–2010, and in the near future (2011–2040), mid future (2041–2070) and far future (2071–2099). Therefore, a large ensemble of 50 hydrological simulations [...] Read more.
This study assesses the change of the seasonal runoff characteristics in 98 catchments in central Europe between the reference period of 1981–2010, and in the near future (2011–2040), mid future (2041–2070) and far future (2071–2099). Therefore, a large ensemble of 50 hydrological simulations featuring the model WaSiM-ETH driven by a 50-member ensemble of the Canadian Regional Climate Model, version 5 (CRCM5) under the emission scenario Representative Concentration Pathway (RCP 8.5) is analyzed. A hierarchical cluster analysis is applied to group the runoff characteristics into six flow regime classes. In the study area, (glacio-)nival, nival (transition), nivo-pluvial and three different pluvial classes are identified. We find that the characteristics of all six regime groups are severely affected by climate change in terms of the amplitude and timing of the monthly peaks and sinks. According to our simulations, the monthly peak of nival regimes will occur earlier in the season and the relative importance of rainfall increases towards the future. Pluvial regimes will become less balanced with higher normalized monthly discharge during January to March and a strong decrease during May to October. In comparison to the reference period, 8% of catchments will shift to another regime class until 2011–2040, whereas until 2041–2070 and 2071–2099, 23% and 43% will shift to another class, respectively. Full article
(This article belongs to the Special Issue Hydrology of Rivers and Lakes under Climate Change)
Show Figures

Figure 1

28 pages, 1005 KiB  
Review
On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater
by Adrian Wartecki and Piotr Rzymski
Water 2020, 12(6), 1598; https://doi.org/10.3390/w12061598 - 4 Jun 2020
Cited by 40 | Viewed by 13505
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology [...] Read more.
The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology of Coronaviridae, a family of positive-sense single-stranded RNA viruses. Aquatic environments, lakes, rivers and ponds, are important habitats for bats and birds, which are hosts for various coronavirus species and strains and which shed viral particles in their feces. It is therefore of high interest to fully explore the role that aquatic environments may play in coronavirus spread, including cross-species transmissions. Besides the respiratory tract, coronaviruses pathogenic to humans can also infect the digestive system and be subsequently defecated. Considering this, it is pivotal to understand whether wastewater can play a role in their dissemination, particularly in areas with poor sanitation. This review provides an overview of the taxonomy, molecular biology, natural reservoirs and pathogenicity of coronaviruses; outlines their potential to survive in aquatic environments and wastewater; and demonstrates their association with aquatic biota, mainly waterfowl. It also calls for further, interdisciplinary research in the field of aquatic virology to explore the potential hotspots of coronaviruses in the aquatic environment and the routes through which they may enter it. Full article
(This article belongs to the Special Issue Coronaviruses and Water under the One Health Perspective)
Show Figures

Figure 1

23 pages, 3090 KiB  
Article
Application of Multivariate Statistical Analysis in the Development of a Surrogate Water Quality Index (WQI) for South African Watersheds
by Talent Diotrefe Banda and Muthukrishnavellaisamy Kumarasamy
Water 2020, 12(6), 1584; https://doi.org/10.3390/w12061584 - 2 Jun 2020
Cited by 52 | Viewed by 5502
Abstract
Water quality indices (WQIs) are customarily associated with heavy data input demand, making them more rigorous and bulky. Such burdensome attributes are too taxing, time-consuming, and command a significant amount of resources to implement, which discourages their application and directly influences water resource [...] Read more.
Water quality indices (WQIs) are customarily associated with heavy data input demand, making them more rigorous and bulky. Such burdensome attributes are too taxing, time-consuming, and command a significant amount of resources to implement, which discourages their application and directly influences water resource monitoring. It is then imperative to focus on developing compatible, simpler, and less-demanding WQI tools, but with equally matching computational ability. Surrogate models are the best fitting, conforming to the prescribed features and scope. Therefore, this study attempts to provide a surrogate WQI as an alternative water quality monitoring tool that requires fewer inputs, minimal effort, and marginal resources to function. Accordingly, multivariate statistical techniques which include principal component analysis (PCA), hierarchical clustering analysis (HCA) and multiple linear regression (MLR) are applied primarily to determine four proxy variables and establish relevant model coefficients. As a result, chlorophyll-a, electrical conductivity, pondus Hydrogenium and turbidity are the final four proxy variables retained. A vital feature of the proposed surrogate index is that the input parameters qualify for inclusion into remote monitoring systems; henceforth, the model can be applied in remote monitoring programs. Reflecting on the model validation results, the proposed surrogate WQI is considered scientifically stable, with a minimum magnitude of divergence from the ideal water quality values. More importantly, the model displayed a predictive pattern identical to the ideal graph, matching on both index scores and classification values. The established surrogate model is an important milestone with the potential of promoting water resource monitoring and assisting in capturing of spatial and temporal changes in South African river catchments. This paper aims at outlining the methods used in developing the surrogate water quality index and document the results achieved. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

32 pages, 3294 KiB  
Article
Analysis of the Most Severe Flood Events in Turkey (1960–2014): Which Triggering Mechanisms and Aggravating Pathways Can be Identified?
by Gamze Koç, Theresia Petrow and Annegret H. Thieken
Water 2020, 12(6), 1562; https://doi.org/10.3390/w12061562 - 30 May 2020
Cited by 16 | Viewed by 4291
Abstract
The most severe flood events in Turkey were determined for the period 1960–2014 by considering the number of fatalities, the number of affected people, and the total economic losses as indicators. The potential triggering mechanisms (i.e., atmospheric circulations and precipitation amounts) and aggravating [...] Read more.
The most severe flood events in Turkey were determined for the period 1960–2014 by considering the number of fatalities, the number of affected people, and the total economic losses as indicators. The potential triggering mechanisms (i.e., atmospheric circulations and precipitation amounts) and aggravating pathways (i.e., topographic features, catchment size, land use types, and soil properties) of these 25 events were analyzed. On this basis, a new approach was developed to identify the main influencing factor per event and to provide additional information for determining the dominant flood occurrence pathways for severe floods. The events were then classified through hierarchical cluster analysis. As a result, six different clusters were found and characterized. Cluster 1 comprised flood events that were mainly influenced by drainage characteristics (e.g., catchment size and shape); Cluster 2 comprised events aggravated predominantly by urbanization; steep topography was identified to be the dominant factor for Cluster 3; extreme rainfall was determined as the main triggering factor for Cluster 4; saturated soil conditions were found to be the dominant factor for Cluster 5; and orographic effects of mountain ranges characterized Cluster 6. This study determined pathway patterns of the severe floods in Turkey with regard to their main causal or aggravating mechanisms. Accordingly, geomorphological properties are of major importance in large catchments in eastern and northeastern Anatolia. In addition, in small catchments, the share of urbanized area seems to be an important factor for the extent of flood impacts. This paper presents an outcome that could be used for future urban planning and flood risk prevention studies to understand the flood mechanisms in different regions of Turkey. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 10236 KiB  
Article
Assessment of Restorative Maintenance Practices on the Infiltration Capacity of Permeable Pavement
by Mari E. Danz, William R. Selbig and Nicolas H. Buer
Water 2020, 12(6), 1563; https://doi.org/10.3390/w12061563 - 30 May 2020
Cited by 17 | Viewed by 4228
Abstract
Permeable pavement has the potential to be an effective tool in managing stormwater runoff through retention of sediment and other contaminants associated with urban development. The infiltration capacity of permeable pavement declines as more sediment is captured, thereby reducing its ability to treat [...] Read more.
Permeable pavement has the potential to be an effective tool in managing stormwater runoff through retention of sediment and other contaminants associated with urban development. The infiltration capacity of permeable pavement declines as more sediment is captured, thereby reducing its ability to treat runoff. Regular restorative maintenance practices can alleviate this issue and prolong the useful life and benefits of the system. Maintenance practices used to restore the infiltration capacity of permeable pavement were evaluated on three surfaces: Permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). Each of the three test plots received a similar volume of runoff and sediment load from an adjacent, impervious asphalt parking lot. Six different maintenance practices were evaluated over a four-year period: Hand-held pressure washer and vacuum, leaf blower and push broom, vacuum-assisted street cleaner, manual disturbance of PICP aggregate, pressure washing and vacuuming, and compressed air and vacuuming. Of the six practices tested, five were completed on PICP, four on PC, and two on PA. Nearly all forms of maintenance resulted in increased average surface infiltration rates. Increases ranged from 94% to 1703% for PICP, 5% to 169% for PC, and 16% to 40% for PA. Disruption of the aggregate between the joints of PICP, whether by simple hand tools or sophisticated machinery, resulted in significant (p ≤ 0.05) gains in infiltration capacity. Sediment penetrated into the solid matrix of the PC and PA, making maintenance practices using a high-pressure wash followed by high-suction vacuum the most effective for these permeable pavement types. In all instances, when the same maintenance practice was done on multiple surfaces, PICP showed the greatest recovery in infiltration capacity. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

24 pages, 5667 KiB  
Article
Novel Ensembles of Deep Learning Neural Network and Statistical Learning for Flash-Flood Susceptibility Mapping
by Romulus Costache, Phuong Thao Thi Ngo and Dieu Tien Bui
Water 2020, 12(6), 1549; https://doi.org/10.3390/w12061549 - 29 May 2020
Cited by 55 | Viewed by 4541
Abstract
This study aimed to assess flash-flood susceptibility using a new hybridization approach of Deep Neural Network (DNN), Analytical Hierarchy Process (AHP), and Frequency Ratio (FR). A catchment area in south-eastern Romania was selected for this proposed approach. In this regard, a geospatial database [...] Read more.
This study aimed to assess flash-flood susceptibility using a new hybridization approach of Deep Neural Network (DNN), Analytical Hierarchy Process (AHP), and Frequency Ratio (FR). A catchment area in south-eastern Romania was selected for this proposed approach. In this regard, a geospatial database of the flood with 178 flood locations and with 10 flash-flood predictors was prepared and used for this proposed approach. AHP and FR were used for processing and coding the predictors into a numeric format, whereas DNN, which is a powerful and state-of-the-art probabilistic machine leaning, was employed to build an inference flash-flood model. The reliability of the models was verified with the help of Receiver Operating Characteristic (ROC) Curve, Area Under Curve (AUC), and several statistical measures. The result shows that the two proposed ensemble models, DNN-AHP and DNN-FR, are capable of predicting future flash-flood areas with accuracy higher than 92%; therefore, they are a new tool for flash-flood studies. Full article
Show Figures

Figure 1

18 pages, 280 KiB  
Review
Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review
by Alfonso Expósito, Felicitas Beier and Julio Berbel
Water 2020, 12(6), 1559; https://doi.org/10.3390/w12061559 - 29 May 2020
Cited by 31 | Viewed by 5164
Abstract
Hydro-economic models (HEMs) constitute useful instruments to assess water-resource management and inform water policy. In the last decade, HEMs have achieved significant advances regarding the assessment of the impacts of water-policy instruments at a river basin or catchment level in the context of [...] Read more.
Hydro-economic models (HEMs) constitute useful instruments to assess water-resource management and inform water policy. In the last decade, HEMs have achieved significant advances regarding the assessment of the impacts of water-policy instruments at a river basin or catchment level in the context of climate change (CC). This paper offers an overview of the alternative approaches used in river-basin hydro-economic modelling to address water-resource management issues and CC during the past decade. Additionally, it analyses how uncertainty and risk factors of global CC have been treated in recent HEMs, offering a discussion on these last advances. As the main conclusion, current challenges in the realm of hydro-economic modelling include the representation of the food-energy-water nexus, the successful representation of micro-macro linkages and feedback loops between the socio-economic model components and the physical side, and the treatment of CC uncertainties and risks in the analysis. Full article
(This article belongs to the Special Issue Institutions and Economics of Water Scarcity and Droughts)
19 pages, 6896 KiB  
Article
Development Trends and Frontiers of Ocean Big Data Research Based on CiteSpace
by Jiajing Wu, Dongning Jia, Zhiqiang Wei and Dou Xin
Water 2020, 12(6), 1560; https://doi.org/10.3390/w12061560 - 29 May 2020
Cited by 18 | Viewed by 4012
Abstract
Modern socio-economic development and climate prediction depend greatly on the application of ocean big data. With the accelerated development of ocean observation methods and the continuous improvement of the big data science, the challenges of multiple data sources and data diversity have emerged [...] Read more.
Modern socio-economic development and climate prediction depend greatly on the application of ocean big data. With the accelerated development of ocean observation methods and the continuous improvement of the big data science, the challenges of multiple data sources and data diversity have emerged in the ocean field. As a result, the current data magnitude has reached the terabyte scale. Currently, the traditional theoretical foundation and technical methods have their inherent limitations and demerits that cannot satisfied the temporal and spatial attributes of the current ocean big data. Numerous scholars and countries were involved in ocean big data research. To explore the focus and current status, and determine the topics of research on bursts and acquisition of trend related to ocean big data, 400 articles between 1990 and 2019 were collected from the “Web of Science.” Combined with visualization software CiteSpace, bibliometrics method and literature combing technology, the pivotal literature related to ocean big data, including significant level countries, institutions, authors, journals and keywords were recognized. A synthetical analysis has revealed research hot spots and research frontiers. The purpose of this study is to provide researchers and practitioners in the field of ocean big data with the main research domains and research hotspots, and orientation for further research. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

32 pages, 2758 KiB  
Review
Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System
by Adewale Adewuyi
Water 2020, 12(6), 1551; https://doi.org/10.3390/w12061551 - 29 May 2020
Cited by 127 | Viewed by 12441
Abstract
Presence of pharmaceutically active compounds (PACs) as emerging contaminants in water is a major concern. Recent reports have confirmed the presence of PACs in natural and wastewater systems, which have caused several problems indicating the urgent need for their removal. The current review [...] Read more.
Presence of pharmaceutically active compounds (PACs) as emerging contaminants in water is a major concern. Recent reports have confirmed the presence of PACs in natural and wastewater systems, which have caused several problems indicating the urgent need for their removal. The current review evaluates the role of chemically modified biosorbents in the removal of PACs in water. Reported biosorbents include plant and animal solid waste, microorganisms and bio-composite. Bio-composites exhibited better prospects when compared with other biosorbents. Types of chemical treatment reported include acid, alkaline, solvent extraction, metal salt impregnation and surface grafting, with alkaline treatment exhibiting better results when compared with other treatments. The biosorption processes mostly obeyed the pseudo-second-order model and the Langmuir isotherm model in a process described mainly by ionic interaction. Desorption and regeneration capacity are very important in selecting an appropriate biosorbent for the biosorption process. Depending on the type of biosorbent, the cost of water treatment per million liters of water was estimated as US $10–US $200, which presents biosorption as a cheap process compared to other known water treatment processes. However, there is a need to conduct large-scale studies on the biosorption process for removing PACs in water. Full article
(This article belongs to the Special Issue Adsorbents for Water and Wastewater Treatment and Resource Recovery)
Show Figures

Figure 1

39 pages, 6143 KiB  
Review
Challenges and Opportunities for Sustainable Management of Water Resources in the Island of Crete, Greece
by V. A. Tzanakakis, A. N. Angelakis, N. V. Paranychianakis, Y. G. Dialynas and G. Tchobanoglous
Water 2020, 12(6), 1538; https://doi.org/10.3390/w12061538 - 28 May 2020
Cited by 46 | Viewed by 10748
Abstract
Crete, located in the South Mediterranean Sea, is characterized by long coastal areas, varied terrain relief and geology, and great spatial and inter-annual variations in precipitation. Under average meteorological conditions, the island is water-sufficient (967 mm precipitation; theoretical water potential 3425.89 hm3 [...] Read more.
Crete, located in the South Mediterranean Sea, is characterized by long coastal areas, varied terrain relief and geology, and great spatial and inter-annual variations in precipitation. Under average meteorological conditions, the island is water-sufficient (967 mm precipitation; theoretical water potential 3425.89 hm3; and total water use 610 hm3). Agriculture is by far the greatest user of water (78% of total water use), followed by domestic use (21%). Despite the high average water availability, water scarcity events commonly occur, particularly in the eastern-south part of the island, driven by local climatic conditions and seasonal or geographical mismatches between water availability and demand. Other critical issues in water management include the over-exploitation of groundwater, accounting for 93% of the water used in agriculture; low water use efficiencies in the farms; limited use of non-conventional water sources (effluent reuse); lack of modern frameworks of control and monitoring; and inadequate cooperation among stakeholders. These deficiencies impact adversely water use efficiency, deteriorate quality of water resources, increase competition for water and water pricing, and impair agriculture and environment. Moreover, the water-limited areas may display low adaptation potential to climate variability and face increased risks for the human-managed and natural ecosystems. The development of appropriate water governance frameworks that promote the development of integrated water management plans and allow concurrently flexibility to account for local differentiations in social-economic favors is urgently needed to achieve efficient water management and to improve the adaptation to the changing climatic conditions. Specific corrective actions may include use of alternative water sources (e.g., treated effluent and brackish water), implementation of efficient water use practices, re-formation of pricing policy, efficient control and monitoring, and investment in research and innovation to support the above actions. It is necessary to strengthen the links across stakeholders (e.g., farmers, enterprises, corporations, institutes, universities, agencies, and public authorities), along with an effective and updated governance framework to address the critical issues in water management, facilitate knowledge transfer, and promote the efficient use of non-conventional water resources. Full article
(This article belongs to the Special Issue Water Supply and Water Scarcity)
Show Figures

Figure 1

16 pages, 3705 KiB  
Article
Tillage Versus No-Tillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern Iberian Peninsula
by Artemi Cerdà, Jesús Rodrigo-Comino, Tuğrul Yakupoğlu, Turgay Dindaroğlu, Enric Terol, Gaspar Mora-Navarro, Alireza Arabameri, Maja Radziemska, Agata Novara, Ataollah Kavian, Magdalena Daria Vaverková, Sameh Kotb Abd-Elmabod, Hafiz Mohkum Hammad and Ioannis N. Daliakopoulos
Water 2020, 12(6), 1539; https://doi.org/10.3390/w12061539 - 28 May 2020
Cited by 45 | Viewed by 5869
Abstract
There is an urgent need to implement environmentally friendly agriculture management practices to achieve the Sustainable Goals for Development (SDGs) of the United Nations by 2030. Mediterranean agriculture is characterized by intense and millennia-old tillage management and as a consequence degraded soil. No-Tillage [...] Read more.
There is an urgent need to implement environmentally friendly agriculture management practices to achieve the Sustainable Goals for Development (SDGs) of the United Nations by 2030. Mediterranean agriculture is characterized by intense and millennia-old tillage management and as a consequence degraded soil. No-Tillage has been widely examined as a solution for soil degradation but No-Tillage relies more on the application of herbicides that reduce plant cover, which in turn enhances soil erosion. However, No-Tillage with weed cover should be researched to promote organic farming and sustainable agriculture. Therefore, we compare Tillage against No-Tillage using weed cover as an alternative strategy to reduce soil losses in persimmon plantations, both of them under organic farming management. To achieve these goals, two plots were established at “La Canyadeta” experimental station on 25-years old Persimmon plantations, which are managed with Tillage and No-Tillage for 3 years. A survey of the soil cover, soil properties, runoff generation and initial soil losses using rainfall simulation experiments at 55 mm h−1 in 0.25 m2 plot was carried out. Soils under Tillage are bare (96.7%) in comparison to the No-Tillage (16.17% bare soil), with similar organic matter (1.71 vs. 1.88%) and with lower bulk densities (1.23 vs. 1.37 g cm3). Tillage induces faster ponding (60 vs. 92 s), runoff (90 vs. 320 s) and runoff outlet (200 vs. 70 s). The runoff discharge was 5.57 times higher in the Tillage plots, 8.64 for sediment concentration and 48.4 for soil losses. We conclude that No-tillage shifted the fate of the tilled field after 3 years with the use of weeds as a soil cover conservation strategy. This immediate effect of No-Tillage under organic farming conditions is very promising to achieve the SDGs. Full article
Show Figures

Figure 1

22 pages, 2264 KiB  
Article
Development of a Universal Water Quality Index (UWQI) for South African River Catchments
by Talent Diotrefe Banda and Muthukrishnavellaisamy Kumarasamy
Water 2020, 12(6), 1534; https://doi.org/10.3390/w12061534 - 28 May 2020
Cited by 24 | Viewed by 10310
Abstract
The assessment of water quality has turned to be an ultimate goal for most water resource and environmental stakeholders, with ever-increasing global consideration. Against this backdrop, various tools and water quality guidelines have been adopted worldwide to govern water quality deterioration and institute [...] Read more.
The assessment of water quality has turned to be an ultimate goal for most water resource and environmental stakeholders, with ever-increasing global consideration. Against this backdrop, various tools and water quality guidelines have been adopted worldwide to govern water quality deterioration and institute the sustainable use of water resources. Water quality impairment is mainly associated with a sudden increase in population and related proceedings, which include urbanization, industrialization and agricultural production, among others. Such socio-economic activities accelerate water contamination and cause pollution stress to the aquatic environment. Scientifically based water quality index (WQI) models are then essentially important to measure the degree of contamination and advise whether specific water resources require restoration and to what extent. Such comprehensive evaluations reflect the integrated impact of adverse parameter concentrations and assist in the prioritization of remedial actions. WQI is a simple, yet intelligible and systematically structured, indexing scale beneficial for communicating water quality data to non-technical individuals, policymakers and, more importantly, water scientists. The index number is normally presented as a relative scale ranging from zero (worst quality) to one hundred (best quality). WQIs simplify and streamline what would otherwise be impractical assignments, thus justifying the efforts of developing water quality indices (WQIs). Generally, WQIs are not designed for broad applications; they are customarily developed for specific watersheds and/or regions, unless different basins share similar attributes and test a comparable range of water quality parameters. Their design and formation are governed by their intended use together with the degree of accuracy required, and such technicalities ultimately define the application boundaries of WQIs. This is perhaps the most demanding scientific need—that is, to establish a universal water quality index (UWQI) that can function in most, if not all, the catchments in South Africa. In cognizance of such a need, this study attempts to provide an index that is not limited to certain application boundaries, with a contribution that is significant not only to the authors, but also to the nation at large. The proposed WQI is based on the weighted arithmetic sum method, with parameters, weight coefficients and sub-index rating curves established through expert opinion in the form of the participation-based Rand Corporation’s Delphi Technique and extracts from the literature. UWQI functions with thirteen explanatory variables, which are NH3, Ca, Cl, Chl-a, EC, F, CaCO3, Mg, Mn, NO3, pH, SO4 and turbidity (NTU). Based on the model validation analysis, UWQI is considered robust and technically stable, with negligible variation from the ideal values. Moreover, the prediction pattern corresponds to the ideal graph with comparable index scores and identical classification grades, which signifies the readiness of the model to appraise water quality status across South African watersheds. The research article intends to substantiate the methods used and document the results achieved. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

29 pages, 2840 KiB  
Article
Multiple-Line Identification of Socio-Ecological Stressors Affecting Aquatic Ecosystems in Semi-Arid Countries: Implications for Sustainable Management of Fisheries in Sub-Saharan Africa
by Vincent-Paul Sanon, Patrice Toé, Jaime Caballer Revenga, Hamid El Bilali, Laura Janine Hundscheid, Michalina Kulakowska, Piotr Magnuszewski, Paul Meulenbroek, Julie Paillaugue, Jan Sendzimir, Gabriele Slezak, Stefan Vogel and Andreas H. Melcher
Water 2020, 12(6), 1518; https://doi.org/10.3390/w12061518 - 26 May 2020
Cited by 12 | Viewed by 5715
Abstract
Water resources are among the fundamental resources that are the most threatened worldwide by various pressures. This study applied the Driver–Pressure–State–Impact–Response (DPSIR) framework as an innovative tool to better understand the dynamic interlinkages between the different sources of multiple stressors on aquatic ecosystems [...] Read more.
Water resources are among the fundamental resources that are the most threatened worldwide by various pressures. This study applied the Driver–Pressure–State–Impact–Response (DPSIR) framework as an innovative tool to better understand the dynamic interlinkages between the different sources of multiple stressors on aquatic ecosystems in Burkina Faso. The triangulation of evidences from interviews, literature reviews, and strategic simulations shows that several human impacts as well as climate change and its effects (such as the decrease of the water level, and the increase of the surface water temperature) are detrimental to fish productivity, abundance, and average size. Furthermore, the ongoing demographic and nutritional transition is driving cumulative pressures on water and fish resources. In this context, the development of aquaculture could offer alternative livelihoods and help fish stocks in natural ecosystems to recover, thereby reducing fishermen’s vulnerability and easing overfishing pressures. Further, the empowerment of the actors and their participation to reinforce fisheries regulation are required to escape the current “regeneration trap” and to achieve a sustainable management of aquatic ecosystems in Burkina Faso. Full article
Show Figures

Figure 1

14 pages, 10631 KiB  
Communication
Experimental Investigation of Erosion Characteristics of Fine-Grained Cohesive Sediments
by Bommanna Gounder Krishnappan, Mike Stone, Steven J. Granger, Hari Ram Upadhayay, Qiang Tang, Yusheng Zhang and Adrian L. Collins
Water 2020, 12(5), 1511; https://doi.org/10.3390/w12051511 - 25 May 2020
Cited by 7 | Viewed by 3310
Abstract
In this short communication, the erosion process of the fine, cohesive sediment collected from the upper River Taw in South West England was studied in a rotating annular flume located in the National Water Research Institute in Burlington, Ontario, Canada. This study is [...] Read more.
In this short communication, the erosion process of the fine, cohesive sediment collected from the upper River Taw in South West England was studied in a rotating annular flume located in the National Water Research Institute in Burlington, Ontario, Canada. This study is part of a research project that is underway to model the transport of fine sediment and the associated nutrients in that river system. The erosion experimental data show that the critical shear stress for erosion of the upper River Taw sediment is about 0.09 Pa and it did not depend on the age of sediment deposit. The eroded sediment was transported in a flocculated form and the agent of flocculation for the upper River Taw sediment may be due to the presence of fibrils from microorganisms and organic material in the system. The experimental data were analysed using a curve fitting approach of Krone and a mathematical model of cohesive sediment transport in rotating circular flumes developed by Krishnappan. The modelled and measured data were in good agreement. An evaluation of the physical significance of Krone’s fitting coefficients is presented. Variability of the fitting coefficients as a function of bed shear stress and age of sediment deposit indicate the key role these two factors play in the erosion process of fluvial cohesive sediment. Full article
(This article belongs to the Special Issue Environmental Hydraulics Research)
Show Figures

Figure 1

17 pages, 4252 KiB  
Article
Utility of Artificial Neural Networks in Modeling Pan Evaporation in Hyper-Arid Climates
by Abdullah A. Alsumaiei
Water 2020, 12(5), 1508; https://doi.org/10.3390/w12051508 - 25 May 2020
Cited by 29 | Viewed by 4549
Abstract
Evaporation is the major water-loss component of the hydrologic cycle and thus requires efficient management. This study aims to model daily pan evaporation rates in hyper-arid climates using artificial neural networks (ANNs). Hyper-arid climates are characterized by harsh environmental conditions where annual precipitation [...] Read more.
Evaporation is the major water-loss component of the hydrologic cycle and thus requires efficient management. This study aims to model daily pan evaporation rates in hyper-arid climates using artificial neural networks (ANNs). Hyper-arid climates are characterized by harsh environmental conditions where annual precipitation rates do not exceed 3% of annual evaporation rates. For the first time, ANNs were applied to model such climatic conditions in the State of Kuwait. Pan evaporation data from 1993–2015 were normalized to a 0–1 range to boost ANN performance and the ANN structure was optimized by testing various meteorological input combinations. Levenberg–Marquardt algorithms were used to train the ANN models. The proposed ANN was satisfactorily efficient in modeling pan evaporation in these hyper-arid climatic conditions. The Nash–Sutcliffe coefficients ranged from 0.405 to 0.755 over the validation period. Mean air temperatures and average wind speeds were identified as meteorological variables that most influenced the ANN performance. A sensitivity analysis showed that the number of hidden layers did not significantly impact the ANN performance. The ANN models demonstrated considerable bias in predicting high pan evaporation rates (>25 mm/day). The proposed modeling method may assist water managers in Kuwait and other hyper-arid regions in establishing resilient water-management plans. Full article
(This article belongs to the Special Issue The Application of Artificial Intelligence in Hydrology)
Show Figures

Figure 1

25 pages, 1387 KiB  
Review
Organic Fouling in Forward Osmosis: A Comprehensive Review
by Sudesh Yadav, Ibrar Ibrar, Salam Bakly, Daoud Khanafer, Ali Altaee, V. C. Padmanaban, Akshaya Kumar Samal and Alaa H. Hawari
Water 2020, 12(5), 1505; https://doi.org/10.3390/w12051505 - 25 May 2020
Cited by 49 | Viewed by 7025
Abstract
Organic fouling in the forward osmosis process is complex and influenced by different parameters in the forward osmosis such as type of feed and draw solution, operating conditions, and type of membrane. In this article, we reviewed organic fouling in the forward osmosis [...] Read more.
Organic fouling in the forward osmosis process is complex and influenced by different parameters in the forward osmosis such as type of feed and draw solution, operating conditions, and type of membrane. In this article, we reviewed organic fouling in the forward osmosis by focusing on wastewater treatment applications. Model organic foulants used in the forward osmosis literature were highlighted, which were followed by the characteristics of organic foulants when real wastewater was used as feed solution. The various physical and chemical cleaning protocols for the organic fouled membrane are also discussed. The study also highlighted the effective pre-treatment strategies that are effective in reducing the impact of organic fouling on the forward osmosis (FO) membrane. The efficiency of cleaning methods for the removal of organic fouling in the FO process was investigated, including recommendations on future cleaning technologies such as Ultraviolet and Ultrasound. Generally, a combination of physical and chemical cleaning is the best for restoring the water flux in the FO process. Full article
(This article belongs to the Special Issue Novel Forward Osmotic Process for Seawater and Wastewater Treatment)
Show Figures

Graphical abstract

29 pages, 10243 KiB  
Review
Life Cycle of Oil and Gas Fields in the Mississippi River Delta: A Review
by John W. Day, H. C. Clark, Chandong Chang, Rachael Hunter and Charles R. Norman
Water 2020, 12(5), 1492; https://doi.org/10.3390/w12051492 - 23 May 2020
Cited by 35 | Viewed by 9069
Abstract
Oil and gas (O&G) activity has been pervasive in the Mississippi River Delta (MRD). Here we review the life cycle of O&G fields in the MRD focusing on the production history and resulting environmental impacts and show how cumulative impacts affect coastal ecosystems. [...] Read more.
Oil and gas (O&G) activity has been pervasive in the Mississippi River Delta (MRD). Here we review the life cycle of O&G fields in the MRD focusing on the production history and resulting environmental impacts and show how cumulative impacts affect coastal ecosystems. Individual fields can last 40–60 years and most wells are in the final stages of production. Production increased rapidly reaching a peak around 1970 and then declined. Produced water lagged O&G and was generally higher during declining O&G production, making up about 70% of total liquids. Much of the wetland loss in the delta is associated with O&G activities. These have contributed in three major ways to wetland loss including alteration of surface hydrology, induced subsidence due to fluids removal and fault activation, and toxic stress due to spilled oil and produced water. Changes in surface hydrology are related to canal dredging and spoil placement. As canal density increases, the density of natural channels decreases. Interconnected canal networks often lead to saltwater intrusion. Spoil banks block natural overland flow affecting exchange of water, sediments, chemicals, and organisms. Lower wetland productivity and reduced sediment input leads to enhanced surficial subsidence. Spoil banks are not permanent but subside and compact over time and many spoil banks no longer have subaerial expression. Fluid withdrawal from O&G formations leads to induced subsidence and fault activation. Formation pore pressure decreases, which lowers the lateral confining stress acting in the formation due to poroelastic coupling between pore pressure and stress. This promotes normal faulting in an extensional geological environment like the MRD, which causes surface subsidence in the vicinity of the faults. Induced reservoir compaction results in a reduction of reservoir thickness. Induced subsidence occurs in two phases especially when production rate is high. The first phase is compaction of the reservoir itself while the second phase is caused by a slow drainage of pore pressure in bounding shales that induces time-delayed subsidence associated with shale compaction. This second phase can continue for decades, even after most O&G has been produced, resulting in subsidence over much of an oil field that can be greater than surface subsidence due to altered hydrology. Produced water is water brought to the surface during O&G extraction and an estimated 2 million barrels per day were discharged into Louisiana coastal wetlands and waters from nearly 700 sites. This water is a mixture of either liquid or gaseous hydrocarbons, high salinity (up to 300 ppt) water, dissolved and suspended solids such as sand or silt, and injected fluids and additives associated with exploration and production activities and it is toxic to many estuarine organisms including vegetation and fauna. Spilled oil has lethal and sub-lethal effects on a wide range of estuarine organisms. The cumulative effect of alterations in surface hydrology, induced subsidence, and toxins interact such that overall impacts are enhanced. Restoration of coastal wetlands degraded by O&G activities should be informed by these impacts. Full article
Show Figures

Figure 1

12 pages, 4148 KiB  
Article
Study on the Performance Improvement of Axial Flow Pump’s Saddle Zone by Using a Double Inlet Nozzle
by Weidong Cao and Wei Li
Water 2020, 12(5), 1493; https://doi.org/10.3390/w12051493 - 23 May 2020
Cited by 11 | Viewed by 4060
Abstract
The operating range of axial flow pumps is often constrained by the onset of rotating stall. An improved method using a double inlet nozzle to stabilize the performance curve is presented in the current study; a single inlet nozzle and three kinds of [...] Read more.
The operating range of axial flow pumps is often constrained by the onset of rotating stall. An improved method using a double inlet nozzle to stabilize the performance curve is presented in the current study; a single inlet nozzle and three kinds of double inlet nozzle with different rib gap widths at the inlet of axial flow pump impeller were designed. Three dimensional (3D) incompressible flow fields were simulated, and the distributions of turbulence kinetic energy and velocity at different flow rates located at the inlet section, as well as the pressure and streamline in the impeller, were obtained at the same time. The single inlet nozzle scheme and a double inlet nozzle scheme were studied; the experimental and numerical performance results show that although the cross section is partly blocked in the double inlet nozzle, the head and efficiency do not decline at stable operation flow rate. On small flow rate condition, the double inlet nozzle scheme effectively stabilized the head-flow performance, whereby the block induced by the backflow before the impeller was markedly improved by using a double inlet nozzle. It has also been found that the rib gap width impacts the efficiency curve of the axial flow pump. Full article
(This article belongs to the Special Issue Application of Smart Technologies in Water Resources Management)
Show Figures

Figure 1

27 pages, 3838 KiB  
Article
Application of Soft Computing Models with Input Vectors of Snow Cover Area in Addition to Hydro-Climatic Data to Predict the Sediment Loads
by Waqas Ul Hussan, Muhammad Khurram Shahzad, Frank Seidel and Franz Nestmann
Water 2020, 12(5), 1481; https://doi.org/10.3390/w12051481 - 22 May 2020
Cited by 6 | Viewed by 3826
Abstract
The accurate estimate of sediment load is important for management of the river ecosystem, designing of water infrastructures, and planning of reservoir operations. The direct measurement of sediment is the most credible method to estimate the sediments. However, this requires a lot of [...] Read more.
The accurate estimate of sediment load is important for management of the river ecosystem, designing of water infrastructures, and planning of reservoir operations. The direct measurement of sediment is the most credible method to estimate the sediments. However, this requires a lot of time and resources. Because of these two constraints, most often, it is not possible to continuously measure the daily sediments for most of the gauging sites. Nowadays, data-based sediment prediction models are famous for bridging the data gaps in the estimation of sediment loads. In data-driven sediment predictions models, the selection of input vectors is critical in determining the best structure of models for the accurate estimation of sediment yields. In this study, time series inputs of snow cover area, basin effective rainfall, mean basin average temperature, and mean basin evapotranspiration in addition to the flows were assessed for the prediction of sediment loads. The input vectors were assessed with artificial neural network (ANN), adaptive neuro-fuzzy logic inference system with grid partition (ANFIS-GP), adaptive neuro-fuzzy logic inference system with subtractive clustering (ANFIS-SC), adaptive neuro-fuzzy logic inference system with fuzzy c-means clustering (ANFIS-FCM), multiple adaptive regression splines (MARS), and sediment rating curve (SRC) models for the Gilgit River, the tributary of the Indus River in Pakistan. The comparison of different input vectors showed improvements in the prediction of sediments by using the snow cover area in addition to flows, effective rainfall, temperature, and evapotranspiration. Overall, the ANN model performed better than all other models. However, as regards sediment load peak time series, the sediment loads predicted using the ANN, ANFIS-FCM, and MARS models were found to be closer to the measured sediment loads. The ANFIS-FCM performed better in the estimation of peak sediment yields with a relative accuracy of 81.31% in comparison to the ANN and MARS models with 80.17% and 80.16% of relative accuracies, respectively. The developed multiple linear regression equation of all models show an R2 value of 0.85 and 0.74 during the training and testing period, respectively. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

20 pages, 4790 KiB  
Article
Accelerating Contaminant Transport Simulation in MT3DMS Using JASMIN-Based Parallel Computing
by Xingwei Liu, Qiulan Zhang and Tangpei Cheng
Water 2020, 12(5), 1480; https://doi.org/10.3390/w12051480 - 22 May 2020
Cited by 1 | Viewed by 4019
Abstract
To overcome the large time and memory consumption problems in large-scale high-resolution contaminant transport simulations, an efficient approach was presented to parallelize the modular three-dimensional transport model for multi-species (MT3DMS) (University of Alabama, Tuscaloosa, AL, USA) program on J adaptive structured meshes applications [...] Read more.
To overcome the large time and memory consumption problems in large-scale high-resolution contaminant transport simulations, an efficient approach was presented to parallelize the modular three-dimensional transport model for multi-species (MT3DMS) (University of Alabama, Tuscaloosa, AL, USA) program on J adaptive structured meshes applications infrastructures (JASMIN). In this approach, a domain decomposition method and a stencil-based method were used to accomplish parallel implementation, while a ghost cell strategy was used for communication. The MODFLOW-MT3DMS coupling mode was optimized to achieve the parallel coupling of flow and contaminant transport. Five types of models were used to verify the correctness and test the parallel performance of the method. The developed parallel program JMT3D (China University of Geosciences (Beijing), Beijing, China) can increase the speed by up to 31.7 times, save memory consumption by 96% with 46 processors, and ensure that the solution accuracy and convergence do not decrease as the number of domains increases. The BiCGSTAB (Bi-conjugate gradient variant algorithm) method required the least amount of time and achieved high speedup in most cases. Coupling the flow and contaminant transport further improved the efficiency of the simulations, with a 33.45 times higher speedup achieved on 46 processors. The AMG (algebraic multigrid) method achieved a good scalability, with an efficiency above 100% on hundreds of processors for the simulation of tens of millions of cells. Full article
(This article belongs to the Special Issue Groundwater and Soil Remediation)
Show Figures

Figure 1

19 pages, 1540 KiB  
Article
Three-Dimensional Wave-Induced Dynamic Response in Anisotropic Poroelastic Seabed
by Cheng-Jung Hsu and Ching Hung
Water 2020, 12(5), 1465; https://doi.org/10.3390/w12051465 - 21 May 2020
Cited by 5 | Viewed by 2508
Abstract
This paper presents a novel analytical solution, which is developed for investigating three-dimensional wave-induced seabed responses for anisotropic permeability. The analytical solution is based on the assumption of the poroelastic and the u p dynamic form, which considers the inertia force of [...] Read more.
This paper presents a novel analytical solution, which is developed for investigating three-dimensional wave-induced seabed responses for anisotropic permeability. The analytical solution is based on the assumption of the poroelastic and the u p dynamic form, which considers the inertia force of the soil skeleton. In this paper, the problem is regarded as an eigenvalue problem through a first-order ordinary differential equation in matrix form. The problematic eigenvector involved in the solution is dealt with using numerical computation, and a process is proposed to implement the present solution for the desired dynamic response. A verification, which is compared with two existing solutions, demonstrates an agreement with the present solution. The results show that the amplitude profile of seabed response for a shorter wave period varies significantly. A comparison between the anisotropic and transverse isotropic, as well as isotropic permeabilities reveals that the error of vertical effective stress on the seabed bottom can reach 74 . 8 % for the isotropic case. For anisotropic permeability, when the wave direction is parallel to the higher horizontal permeability direction, the amplitude profiles of pore pressure and vertical effective stress exhibit the greatest dissipation and increment, respectively. For transverse isotropic permeability, the vertical effective stress is independent of the wave direction, which results in the two horizontal effective stresses on the seabed bottom being identical to each other and independent of the wave direction. Our comprehensive analysis provides insight into the effect of anisotropic permeability on different wave periods and wave directions. Full article
(This article belongs to the Special Issue Wave-structure Interaction Processes in Coastal Engineering)
Show Figures

Figure 1

23 pages, 7394 KiB  
Article
Heavy Precipitation Systems in Calabria Region (Southern Italy): High-Resolution Observed Rainfall and Large-Scale Atmospheric Pattern Analysis
by Aldo Greco, Davide Luciano De Luca and Elenio Avolio
Water 2020, 12(5), 1468; https://doi.org/10.3390/w12051468 - 21 May 2020
Cited by 23 | Viewed by 4649
Abstract
An in-depth analysis of historical heavy rainfall fields clearly constitutes an important aspect in many related topics: as examples, mesoscale models for early warning systems and the definition of design event scenarios can be improved, with the consequent upgrading in the prediction of [...] Read more.
An in-depth analysis of historical heavy rainfall fields clearly constitutes an important aspect in many related topics: as examples, mesoscale models for early warning systems and the definition of design event scenarios can be improved, with the consequent upgrading in the prediction of induced phenomena (mainly floods and landslides) into specific areas of interest. With this goal, in this work the authors focused on Calabria region (southern Italy) and classified the main precipitation systems through the analysis of selected heavy rainfall events from high resolution rain gauge network time series. Moreover, the authors investigated the relationships among the selected events and the main synoptic atmospheric patterns derived by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 Reanalysis dataset, in order to assess the possible large-scale scenarios which can induce heavy rainfall events in the study area. The obtained results highlighted: (i) the importance of areal reduction factors, rainfall intensities and amounts in order to discriminate the investigated precipitations systems for the study area; (ii) the crucial role played by the position of the averaged low-pressure areas over the Mediterranean for the synoptic systems, and by low-level temperature for the convective systems. Full article
(This article belongs to the Special Issue Extreme Rainfall and Floods in the Mediterranean Regions)
Show Figures

Figure 1

15 pages, 2876 KiB  
Article
A Pragmatic Slope-Adjusted Curve Number Model to Reduce Uncertainty in Predicting Flood Runoff from Steep Watersheds
by Muhammad Ajmal, Muhammad Waseem, Dongwook Kim and Tae-Woong Kim
Water 2020, 12(5), 1469; https://doi.org/10.3390/w12051469 - 21 May 2020
Cited by 33 | Viewed by 4480
Abstract
The applicability of the curve number (CN) model to estimate runoff has been a conundrum for years, among other reasons, because it presumes an uncertain fixed initial abstraction coefficient (λ = 0.2), and because choosing the most suitable watershed CN values is still [...] Read more.
The applicability of the curve number (CN) model to estimate runoff has been a conundrum for years, among other reasons, because it presumes an uncertain fixed initial abstraction coefficient (λ = 0.2), and because choosing the most suitable watershed CN values is still debated across the globe. Furthermore, the model is widely applied beyond its originally intended purpose. Accordingly, there is a need for more case-specific adjustments of the CN values, especially in steep-slope watersheds with diverse natural environments. This study scrutinized the λ and watershed slope factor effect in estimating runoff. Our proposed slope-adjusted CN (CNIIα) model used data from 1779 rainstorm–runoff events from 39 watersheds on the Korean Peninsula (1402 for calibration and 377 for validation), with an average slope varying between 7.50% and 53.53%. To capture the agreement between the observed and estimated runoff, the original CN model and its seven variants were evaluated using the root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), percent bias (PB), and 1:1 plot. The overall lower RMSE, higher NSE, better PB values, and encouraging 1:1 plot demonstrated good agreement between the observed and estimated runoff by one of the proposed variants of the CN model. This plausible goodness-of-fit was possibly due to setting λ = 0.01 instead of 0.2 or 0.05 and practically sound slope-adjusted CN values to our proposed modifications. For more realistic results, the effects of rainfall and other runoff-producing factors must be incorporated in CN value estimation to accurately reflect the watershed conditions. Full article
Show Figures

Figure 1

20 pages, 12269 KiB  
Article
A Zero-Liquid Discharge Model for a Transient Solar-Powered Desalination System for Greenhouse
by Mohammad Akrami, Alaa H. Salah, Mahdieh Dibaj, Maxime Porcheron, Akbar A. Javadi, Raziyeh Farmani, Hassan E. S. Fath and Abdelazim Negm
Water 2020, 12(5), 1440; https://doi.org/10.3390/w12051440 - 19 May 2020
Cited by 12 | Viewed by 6750
Abstract
The need for sustainable desalination arises from fast-occurring global warming and intensifying droughts due to increasing temperatures, particularly in the Middle East and North African (MENA) regions. Lack of water resources has meant that the countries in these regions have had to desalinate [...] Read more.
The need for sustainable desalination arises from fast-occurring global warming and intensifying droughts due to increasing temperatures, particularly in the Middle East and North African (MENA) regions. Lack of water resources has meant that the countries in these regions have had to desalinate seawater through different sustainable technologies for food supplies and agricultural products. Greenhouses (GH) are used to protect crops from harsh climates, creating a controlled environment requiring less water. In order to have a sustainable resilient GH, a zero-liquid-discharge system (ZLD) was developed by using solar still (SS) desalination techniques, humidification-dehumidification (HDH), and rainwater harvesting. An experiment was designed and carried out by designing and manufacturing a wick type solar still, together with an HDH system, implemented into a GH. Using a pyrometer, the solar intensity was recorded, while the microclimate conditions (temperature and relative humidity) of the GH were also monitored. The GH model was tested in the UK and was shown to be a successful standalone model, providing its water requirements. In the UK, for one solar still with a surface area of 0.72 m2, maximum amount of 58 mL of distilled water was achieved per day. In Egypt, a maximum amount of 1090 mL water was collected per day, from each solar still. This difference is mainly due to the differences in the solar radiation intensity and duration in addition to the temperature variance. While dehumidification generated 7 L of distilled water, rainwater harvesting was added as another solution to the greenhouse in the UK, harvested a maximum of 7 L per day from one side (half the area of the greenhouse roof). This helped to compensate for the less distilled water from the solar stills. The results for the developed greenhouses showed how GHs in countries with different weather conditions could be standalone systems for their agricultural water requirement. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

12 pages, 246 KiB  
Review
The Water Framework Directive and Agricultural Diffuse Pollution: Fighting a Running Battle?
by Mark Wiering, Daan Boezeman and Ann Crabbé
Water 2020, 12(5), 1447; https://doi.org/10.3390/w12051447 - 19 May 2020
Cited by 28 | Viewed by 4643
Abstract
In order to provide a common ground for the Special Issue ‘Water quality and agricultural diffuse pollution in light of the EU Water Framework Directive,’ this review sets out to provide a concise overview of the academic literature on two topics. First, we [...] Read more.
In order to provide a common ground for the Special Issue ‘Water quality and agricultural diffuse pollution in light of the EU Water Framework Directive,’ this review sets out to provide a concise overview of the academic literature on two topics. First, we review the issues in the governance literature on the ‘wicked problem’ of diffuse agricultural sources focussing on three principles: (1) fragmentation and the distribution of power to address diffuse sources, (2) the problem of source-oriented and effect-oriented measures, and (3) contested knowledge for policies for diffuse sources. Second, we briefly sketch the literature on policy instruments and confront that with the scholarly understanding of addressing diffuse agricultural sources under the Water Framework Directive (WFD). Full article
52 pages, 1480 KiB  
Review
Towards the Implementation of Circular Economy in the Wastewater Sector: Challenges and Opportunities
by Sonia Guerra-Rodríguez, Paula Oulego, Encarnación Rodríguez, Devendra Narain Singh and Jorge Rodríguez-Chueca
Water 2020, 12(5), 1431; https://doi.org/10.3390/w12051431 - 18 May 2020
Cited by 122 | Viewed by 12869
Abstract
The advancement of science has facilitated increase in the human lifespan, reflected in economic and population growth, which unfortunately leads to increased exploitation of resources. This situation entails not only depletion of resources, but also increases environmental pollution, mainly due to atmospheric emissions, [...] Read more.
The advancement of science has facilitated increase in the human lifespan, reflected in economic and population growth, which unfortunately leads to increased exploitation of resources. This situation entails not only depletion of resources, but also increases environmental pollution, mainly due to atmospheric emissions, wastewater effluents, and solid wastes. In this scenario, it is compulsory to adopt a paradigm change, as far as the consumption of resources by the population is concerned, to achieve a circular economy. The recovery and reuse of resources are key points, leading to a decrease in the consumption of raw materials, waste reduction, and improvement of energy efficiency. This is the reason why the concept of the circular economy can be applied in any industrial activity, including the wastewater treatment sector. With this in view, this review manuscript focuses on demonstrating the challenges and opportunities in applying a circular economy in the water sector. For example, reclamation and reuse of wastewater to increase water resources, by paying particular attention to the risks for human health, recovery of nutrients, or highly added-value products (e.g., metals and biomolecules among others), valorisation of sewage sludge, and/or recovery of energy. Being aware of this situation, in the European, Union 18 out of 27 countries are already reusing reclaimed wastewater at some level. Moreover, many wastewater treatment plants have reached energy self-sufficiency, producing up to 150% of their energy requirements. Unfortunately, many of the opportunities presented in this work are far from becoming a reality. Still, the first step is always to become aware of the problem and work on optimizing the solution to make it possible. Full article
Show Figures

Figure 1

21 pages, 3197 KiB  
Article
Water Resources Management Strategies for Irrigated Agriculture in the Indus Basin of Pakistan
by Muhammad Muzammil, Azlan Zahid and Lutz Breuer
Water 2020, 12(5), 1429; https://doi.org/10.3390/w12051429 - 17 May 2020
Cited by 36 | Viewed by 15277
Abstract
Agriculture of Pakistan relies on the Indus basin, which is facing severe water scarcity conditions. Poor irrigation practices and lack of policy reforms are major threats for water and food security of the country. In this research, alternative water-saving strategies are evaluated through [...] Read more.
Agriculture of Pakistan relies on the Indus basin, which is facing severe water scarcity conditions. Poor irrigation practices and lack of policy reforms are major threats for water and food security of the country. In this research, alternative water-saving strategies are evaluated through a high spatio-temporal water footprint (WF) assessment (1997–2016) for the Punjab and Sindh provinces, which cover an irrigated area of 17 million hectares in the Indus basin of Pakistan. The SPARE:WATER model is used as a spatial decision support tool to calculate the WF and establish alternative management plans for more sustainable water use. The average water consumption (WFarea) is estimated to 182 km3 yr−1, composed of 75% blue water (irrigation water from surface water and groundwater sources), 17% green water (precipitation) and 8% grey water (water used to remove soil salinity or dilute saline irrigation water). Sugarcane, cotton, and rice are highly water-intensive crops, which consume 57% of the annual water use. However, WFarea can be reduced by up to 35% through optimized cropping patterns of the existing crops with the current irrigation settings and even by up to 50% through the combined implementation of optimal cropping patterns and improved irrigation technologies, i.e., sprinkler and drip irrigation. We recommend that the economic impact of these water-saving strategies should be investigated in future studies to inform stakeholders and policymakers to achieve a more sustainable water policy for Pakistan. Full article
(This article belongs to the Special Issue Water Footprint Assessment Research)
Show Figures

Figure 1

22 pages, 24192 KiB  
Article
Sea-Level Rise and Shoreline Changes Along an Open Sandy Coast: Case Study of Gulf of Taranto, Italy
by Giovanni Scardino, François Sabatier, Giovanni Scicchitano, Arcangelo Piscitelli, Maurilio Milella, Antonio Vecchio, Marco Anzidei and Giuseppe Mastronuzzi
Water 2020, 12(5), 1414; https://doi.org/10.3390/w12051414 - 15 May 2020
Cited by 33 | Viewed by 5364
Abstract
The dynamics of the sandy coast between Castellaneta and Taranto (Southern Italy) has been influenced by many natural and anthropogenic factors, resulting in significant changes in the coastal system over the last century. The interactions between vertical components of sea-level changes and horizontal [...] Read more.
The dynamics of the sandy coast between Castellaneta and Taranto (Southern Italy) has been influenced by many natural and anthropogenic factors, resulting in significant changes in the coastal system over the last century. The interactions between vertical components of sea-level changes and horizontal components of the sedimentary budget, in combination with anthropogenic impact, have resulted in different erosion and accretion phases in the past years. Local isostatic, eustatic, and vertical tectonic movements, together with sedimentary budget changes, must be considered in order to predict the shoreline evolution and future marine submersion. In this study, all morpho-topographic data available for the Gulf of Taranto, in combination with Vertical Land Movements and sea-level rise trends, were considered by assessing the local evolution of the coastal trend as well as the future marine submersion. Based on the predicted spatial and temporal coastal changes, a new predictive model of submersion was developed to support coastal management in sea-level rise conditions over the next decades. After that, a multi-temporal mathematical model of coastal submersion was implemented in a Matlab environment. Finally, the effects of the relative sea-level rise on the coastal surface prone to submersion, according to the Intergovernmental Panel on Climate Change Assessment Reports (AR) 5 Representative Concentration Pathways (RCP) 2.6 and RCP 8.5 scenarios, were evaluated up to 2100. Full article
(This article belongs to the Special Issue Relative Sea-Level Changes and their Impact on Coastal Zones)
Show Figures

Figure 1

26 pages, 7774 KiB  
Article
Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea)
by Angela Rizzo, Vittoria Vandelli, George Buhagiar, Anton S. Micallef and Mauro Soldati
Water 2020, 12(5), 1405; https://doi.org/10.3390/w12051405 - 15 May 2020
Cited by 42 | Viewed by 6688
Abstract
The coastal landscape of the Maltese Islands is the result of long-term evolution, influenced by tectonics, geomorphological processes, and sea level oscillations. Due to their geological setting, the islands are particularly prone to marine-related and gravity-induced processes, exacerbated by climate change. This study [...] Read more.
The coastal landscape of the Maltese Islands is the result of long-term evolution, influenced by tectonics, geomorphological processes, and sea level oscillations. Due to their geological setting, the islands are particularly prone to marine-related and gravity-induced processes, exacerbated by climate change. This study aligns different concepts into a relatively concise and expedient methodology for overall coastal vulnerability assessment, taking the NE sector of Gozo Island as a test case. Geomorphological investigation, integrated with analysis of marine geophysical data, enabled characterization of coastal dynamics, identifying this stretch of coast as being potentially hazardous. The study area features a high economic value derived from tourist and mining activities and natural protected areas, that altogether not only make coastal vulnerability a major concern but also the task of assessing it complex. Before introducing the methodology proposed for overall vulnerability assessment, an in-depth revision of the vulnerability concept is provided. The evaluation was carried out by using a set of key indicators related to local land use, anthropic and natural assets, economic activities, and social issues. Results show that the most critical areas are located east of Marsalforn including Ramla Bay, an important tourist attraction hosting the largest sandy beach in Gozo. The method combines physical exposure and social vulnerability into an overall index. It proves to be cost effective in data management and processing and is suitable for the identification and assessment of overall vulnerability of coastal areas to consequences of climate- and marine-related processes, such as coastal erosion, landslides and sea level rise. Full article
(This article belongs to the Special Issue Landscapes and Landforms of Terrestrial and Marine Areas)
Show Figures

Figure 1

25 pages, 8890 KiB  
Article
Seasonally Variant Stable Isotope Baseline Characterisation of Malawi’s Shire River Basin to Support Integrated Water Resources Management
by Limbikani C. Banda, Michael O. Rivett, Robert M. Kalin, Anold S. K. Zavison, Peaches Phiri, Geoffrey Chavula, Charles Kapachika, Sydney Kamtukule, Christina Fraser and Muthi Nhlema
Water 2020, 12(5), 1410; https://doi.org/10.3390/w12051410 - 15 May 2020
Cited by 10 | Viewed by 5481
Abstract
Integrated Water Resources Management (IWRM) is vital to the future of Malawi and motivates this study’s provision of the first stable isotope baseline characterization of the Shire River Basin (SRB). The SRB drains much of Southern Malawi and receives the sole outflow of [...] Read more.
Integrated Water Resources Management (IWRM) is vital to the future of Malawi and motivates this study’s provision of the first stable isotope baseline characterization of the Shire River Basin (SRB). The SRB drains much of Southern Malawi and receives the sole outflow of Lake Malawi whose catchment extends over much of Central and Northern Malawi (and Tanzania and Mozambique). Stable isotope (283) and hydrochemical (150) samples were collected in 2017–2018 and analysed at Malawi’s recently commissioned National Isotopes Laboratory. Distinct surface water dry-season isotope enrichment and wet-season depletion are shown with minor retention of enriched signatures ascribed to Lake Malawi influences. Isotopic signatures corroborate that wet-season river flows mostly arise from local precipitation, with dry-season flows supported by increased groundwater contributions. Groundwater signatures follow a local meteoric water line of limited spread suggesting recharge by local precipitation predominantly during the peak months of the wet-season. Relatively few dry-season groundwater samples displayed evaporative enrichment, although isotopic seasonality was more pronounced in the lowlands compared to uplands ascribed to amplified climatic effects. These signatures serve as isotopic diagnostic tools that valuably informed a basin conceptual model build and, going forward, may inform key identified Malawian IWRM concerns. The isotopic baseline establishes a benchmark against which future influences from land use, climate change and water mixing often inherent to IWRM schemes may be forensically assessed. It thereby enables both source-water protection and achievement of Sustainable Development Goal 6. Full article
Show Figures

Graphical abstract

15 pages, 2137 KiB  
Article
Uncertainty Assessment of Urban Hydrological Modelling from a Multiple Objective Perspective
by Bo Pang, Shulan Shi, Gang Zhao, Rong Shi, Dingzhi Peng and Zhongfan Zhu
Water 2020, 12(5), 1393; https://doi.org/10.3390/w12051393 - 14 May 2020
Cited by 13 | Viewed by 3400
Abstract
The uncertainty assessment of urban hydrological models is important for understanding the reliability of the simulated results. To satisfy the demand for urban flood management, we assessed the uncertainty of urban hydrological models from a multiple-objective perspective. A multiple-criteria decision analysis method, namely, [...] Read more.
The uncertainty assessment of urban hydrological models is important for understanding the reliability of the simulated results. To satisfy the demand for urban flood management, we assessed the uncertainty of urban hydrological models from a multiple-objective perspective. A multiple-criteria decision analysis method, namely, the Generalized Likelihood Uncertainty Estimation-Technique for Order Preference by Similarity to Ideal Solution (GLUE-TOPSIS) was proposed, wherein TOPSIS was adopted to measure the likelihood within the GLUE framework. Four criteria describing different urban stormwater characteristics were combined to test the acceptability of the parameter sets. The TOPSIS was used to calculate the aggregate employed in the calculation of the aggregate likelihood value. The proposed method was implemented in the Storm Water Management Model (SWMM), which was applied to the Dahongmen catchment in Beijing, China. The SWMM model was calibrated and validated based on the three and two flood events respectively downstream of the Dahongmen catchment. The results showed that the GLUE-TOPSIS provided a more precise uncertainty boundary compared with the single-objective GLUE method. The band widths were reduced by 7.30 m3/s in the calibration period, and by 7.56 m3/s in the validation period. The coverages increased by 20.3% in the calibration period, and by 3.2% in the validation period. The median estimates improved, with an increase of the Nash–Sutcliffe efficiency coefficients by 1.6% in the calibration period, and by 10.0% in the validation period. We conclude that the proposed GLUE-TOPSIS is a valid approach to assess the uncertainty of urban hydrological model from a multiple objective perspective, thereby improving the reliability of model results in urban catchment. Full article
(This article belongs to the Special Issue Advances in Hydrologic Forecasts and Water Resources Management )
Show Figures

Figure 1

15 pages, 8063 KiB  
Article
Using a PIV Measurement System to Study the Occurrence of Bursting in the Flow Over a Movable Scour Hole Downstream of a Groundsill
by Cheng-Kai Chang, Jau-Yau Lu, Shi-Yan Lu, Kuo-Ting Hsiao and Dong-Sin Shih
Water 2020, 12(5), 1396; https://doi.org/10.3390/w12051396 - 14 May 2020
Viewed by 2461
Abstract
Generally, hydraulic structures are installed along with rivers in Taiwan to prevent erosion. The groundsill is one of the most common structures to protect the underlying riverbed. However, the occurrence of bursting during the process of scouring can intensify the disturbance of sediment [...] Read more.
Generally, hydraulic structures are installed along with rivers in Taiwan to prevent erosion. The groundsill is one of the most common structures to protect the underlying riverbed. However, the occurrence of bursting during the process of scouring can intensify the disturbance of sediment in the bed, sometimes even causing hydraulic structures to collapse. This paper aimed to study the mechanisms of bursting, the effects of bursting, and the scouring exceedance probability of sediment movement. To study this topic, a particle image velocimetry (PIV) was used to measure the hydraulic characteristics of a scour hole under different flow conditions. The results showed that, firstly, the bursting and the sediment entrainment rate increased with time at the beginning. Secondly, when bursting occurred at the beginning stage of scouring, the averaged velocity of main flow was reduced by about 30% and the thickness of the riverbed was deepened by about 20%. Moreover, when scouring time was 15 min, at the location of maximum scouring depth, all the experimental groups carried the proximity values of the scouring exceedance probability that stuck to a range from 35% to 53% at the bursting stage. Therefore, the scouring exceedance probability of the bursting of the maximum scouring depth can be further applied to designs and to protect the foundation of hydraulic structures. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

33 pages, 12276 KiB  
Article
WASP 8: The Next Generation in the 50-year Evolution of USEPA’s Water Quality Model
by Tim Wool, Robert B. Ambrose, Jr., James L. Martin and Alex Comer
Water 2020, 12(5), 1398; https://doi.org/10.3390/w12051398 - 14 May 2020
Cited by 63 | Viewed by 10107
Abstract
The Water Quality Analysis Simulation Program (WASP) helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions. WASP is a dynamic compartment-modeling program for aquatic systems, including both the water column and the underlying [...] Read more.
The Water Quality Analysis Simulation Program (WASP) helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions. WASP is a dynamic compartment-modeling program for aquatic systems, including both the water column and the underlying benthos. WASP allows the user to investigate 1, 2 and 3 dimensional systems and a variety of pollutant types—including both conventional pollutants (e.g., dissolved oxygen, nutrients, phytoplankton, etc.) and toxic materials. WASP has capabilities of linking with hydrodynamic and watershed models which allows for multi-year analyses under varying meteorological and environmental conditions. WASP was originally developed by HydroScience, Inc. in 1970 and was later adapted by the US Environmental Protection Agency’s Large Lakes Research Station (LLRS) for applications to the Great Lakes. The LLRS first publicly released the model in 1981. WASP has undergone continuous development since that time and this year will mark its 50th anniversary. This paper follows the development of WASP from its origin to the latest release of the model in 2020, documenting its evolution and present structure and capabilities. Full article
(This article belongs to the Special Issue Water-Quality Modeling)
Show Figures

Figure 1

29 pages, 7332 KiB  
Article
Using SCS-CN and Earth Observation for the Comparative Assessment of the Hydrological Effect of Gradual and Abrupt Spatiotemporal Land Cover Changes
by Emmanouil Psomiadis, Konstantinos X. Soulis and Nikolaos Efthimiou
Water 2020, 12(5), 1386; https://doi.org/10.3390/w12051386 - 13 May 2020
Cited by 35 | Viewed by 6304
Abstract
In this study a comparative assessment of the impacts of urbanization and of forest fires as well as their combined effect on runoff response is investigated using earth observation and the Soil Conservation Service Curve Number (SCS-CN) direct runoff estimation method in a [...] Read more.
In this study a comparative assessment of the impacts of urbanization and of forest fires as well as their combined effect on runoff response is investigated using earth observation and the Soil Conservation Service Curve Number (SCS-CN) direct runoff estimation method in a Mediterranean peri-urban watershed in Attica, Greece. The study area underwent a significant population increase and a rapid increase of urban land uses, especially from the 1980s to the early 2000s. The urbanization process in the studied watershed caused a considerable increase of direct runoff response. A key observation of this study is that the impact of forest fires is much more prominent in rural watersheds than in urbanized watersheds. However, the increments of runoff response are important during the postfire conditions in all cases. Generally, runoff increments due to urbanization seem to be higher than runoff increments due to forest fires affecting the associated hydrological risks. It should also be considered that the effect of urbanization is lasting, and therefore, the possibility of an intense storm to take place is higher than in the case of forest fires that have an abrupt but temporal impact on runoff response. It should be noted though that the combined effect of urbanization and forest fires results in even higher runoff responses. The SCS-CN method, proved to be a valuable tool in this study, allowing the determination of the direct runoff response for each soil, land cover and land management complex in a simple but efficient way. The analysis of the evolution of the urbanization process and the runoff response in the studied watershed may provide a better insight for the design and implementation of flood risk management plans. Full article
Show Figures

Figure 1

15 pages, 3534 KiB  
Article
Removal of Phosphate Ions from Aqueous Solutions by Adsorption onto Leftover Coal
by Dereje Tadesse Mekonnen, Esayas Alemayehu and Bernd Lennartz
Water 2020, 12(5), 1381; https://doi.org/10.3390/w12051381 - 13 May 2020
Cited by 39 | Viewed by 5221
Abstract
High loadings of wastewater with phosphors (P) require purification measures, which can be challenging to realize in regions where the technical and financial frame does not allow sophisticated applications. Simple percolation devices employing various kinds of adsorbents might be an alternative. Here, we [...] Read more.
High loadings of wastewater with phosphors (P) require purification measures, which can be challenging to realize in regions where the technical and financial frame does not allow sophisticated applications. Simple percolation devices employing various kinds of adsorbents might be an alternative. Here, we investigated the application of leftover coal, which was collected from Ethiopian coal mining areas, as an adsorbent for the removal of phosphate from aqueous solutions in a classical slurry batch set-up. The combined effects of operational parameters such as contact time, initial concentration, and solution pH on P retention efficiency was studied employing the Response Surface Methodology (RSM). The maximum phosphate adsorption (79% removal and 198 mg kg−1 leftover coal) was obtained at a contact time of 200 min, an initial phosphate concentration of 5 mg/L, and a solution pH of 2.3. The Freundlich isotherm was fitted to the experimental data. The pseudo second-order equation describes the experimental data well, with a correlation value of R2 = 0.99. The effect of temperature on the adsorption reveals that the process is exothermic. The results demonstrate that leftover coal material could potentially be applied for the removal of phosphate from aqueous media, but additional testing in a flow-through set-up using real wastewater is required to draw definite conclusions. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 2791 KiB  
Article
Evaluating Spatiotemporal Variations of Groundwater Quality in Northeast Beijing by Self-Organizing Map
by Jia Li, Zheming Shi, Guangcai Wang and Fei Liu
Water 2020, 12(5), 1382; https://doi.org/10.3390/w12051382 - 13 May 2020
Cited by 39 | Viewed by 3763
Abstract
As one of the globally largest cities suffering from severe water shortage, Beijing is highly dependent on groundwater supply. Located northeast of Beijing, the Pinggu district is an important emergency-groundwater-supply source. This area developed rapidly under the strategy of the integrated development of [...] Read more.
As one of the globally largest cities suffering from severe water shortage, Beijing is highly dependent on groundwater supply. Located northeast of Beijing, the Pinggu district is an important emergency-groundwater-supply source. This area developed rapidly under the strategy of the integrated development of the Beijing–Tianjin–Hebei region in recent years. It is now important to evaluate the spatiotemporal variations in groundwater quality. This study analyzed groundwater-chemical-monitoring data from the periods 2014 and 2017. Hydrogeochemical analysis showed that groundwater is affected by calcite, dolomite, and silicate weathering. Self-organizing map (SOM) was used to cluster sample sites and identify possible sources of groundwater contamination. Sample sites were grouped into four clusters that explained the different pollution sources: sources of industrial and agricultural activities (Cluster I), landfill sources (Cluster II), domestic-sewage-discharge sources (Cluster III), and groundwater in Cluster IV was less affected by anthropogenic activities. Compared to 2014, concentrations of pollution indicators such as Cl, SO42−, NO3, and NH4+ increased, and the area of groundwater affected by domestic sewage discharge increased in 2017. Therefore, action should be taken in order to prevent the continuous deterioration of groundwater quality. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

23 pages, 5172 KiB  
Article
Socio-Hydrological Modelling: The Influence of Reservoir Management and Societal Responses on Flood Impacts
by Cinzia Albertini, Maurizio Mazzoleni, Vincenzo Totaro, Vito Iacobellis and Giuliano Di Baldassarre
Water 2020, 12(5), 1384; https://doi.org/10.3390/w12051384 - 13 May 2020
Cited by 18 | Viewed by 4811
Abstract
Over the last few years, several socio-hydrological studies have investigated the risk dynamics generated by the complex interactions between floods and societies, with a focus on either changing reservoir operation rules or raising levees. In this study, we propose a new socio-hydrological model [...] Read more.
Over the last few years, several socio-hydrological studies have investigated the risk dynamics generated by the complex interactions between floods and societies, with a focus on either changing reservoir operation rules or raising levees. In this study, we propose a new socio-hydrological model of human–flood interactions that represents both changes in the reservoir management strategies and updating of the levee system. Our model is applied to simulate three prototypes of floodplain management strategies to cope with flood risk: green systems, in which societies resettle outside the flood-prone area; technological systems, in which societies implement structural measures, such as levees; and green-to-techno systems, in which societies shift from green to technological approaches. Floodplain dynamics are explored simulating possible future scenarios in the city of Brisbane, Australia. Results show that flood risk is strongly influenced by changes in flood and drought memory of reservoir operators, while risk-awareness levels shape the urbanisation of floodplains. Furthermore, scenarios of more frequent and higher magnitude events prove to enhance social flood memory in green systems, while technological systems experience much higher losses. Interestingly, green-to-techno systems may also evolve toward green floodplain management systems in response to large losses and technical/economical unfeasibility of larger structural measures. Full article
(This article belongs to the Special Issue Flood Risk in the Anthropocene)
Show Figures

Figure 1

12 pages, 5964 KiB  
Article
Chromium Removal from Tannery Wastewater by Electrocoagulation: Optimization and Sludge Characterization
by Nahid M. Genawi, Mohamed H. Ibrahim, Muftah H. El-Naas and Awad E. Alshaik
Water 2020, 12(5), 1374; https://doi.org/10.3390/w12051374 - 13 May 2020
Cited by 66 | Viewed by 6419
Abstract
The treatment of tannery effluent is of great interest as it contains a complex mixture of pollutants, primarily chromium. The disposal of this wastewater can have adverse effects on the environment and aquatic life, which is an emerging problem for the environment. In [...] Read more.
The treatment of tannery effluent is of great interest as it contains a complex mixture of pollutants, primarily chromium. The disposal of this wastewater can have adverse effects on the environment and aquatic life, which is an emerging problem for the environment. In this work, electrocoagulation is used to remove chromium from real tannery wastewater, focusing on performance optimization and sludge characterization. Electrocoagulation experiments were conducted using an electrochemical cell with iron electrodes immersed in a specific volume of tannery wastewater. Operating parameters, such as the initial chromium concentration, pH and current density as well as power consumption were evaluated to determine optimum chromium removal. The optimization was performed using Response Surface Methodology combined with central composite design. Analysis of variance (ANOVA) was used to determine the response, residual, probability, 3D surface and contour plots. The maximum chromium removal was 100% at the optimum values of 13 mA/cm2, 7 and 750 ppm for current density, pH and concentration, respectively. Full article
(This article belongs to the Special Issue Advanced Applications of Electrocoagulation in Water and Wastewater)
Show Figures

Figure 1

10 pages, 472 KiB  
Article
Contamination of Surface Water and River Sediments by Antibiotic and Antiretroviral Drug Cocktails in Low and Middle-Income Countries: Occurrence, Risk and Mitigation Strategies
by Pius Kairigo, Elijah Ngumba, Lotta-Riina Sundberg, Anthony Gachanja and Tuula Tuhkanen
Water 2020, 12(5), 1376; https://doi.org/10.3390/w12051376 - 13 May 2020
Cited by 54 | Viewed by 5341
Abstract
Presence of antimicrobial cocktails in the hydrological cycles is of interest because of their potential to mediate antimicrobial resistance within the natural environment. In this study, we determined the concentrations of selected antibiotics and antiretroviral drugs (ARVDs) in wastewater treatment plant (WWTP) effluent, [...] Read more.
Presence of antimicrobial cocktails in the hydrological cycles is of interest because of their potential to mediate antimicrobial resistance within the natural environment. In this study, we determined the concentrations of selected antibiotics and antiretroviral drugs (ARVDs) in wastewater treatment plant (WWTP) effluent, effluent suspended particulate matter (SPM), surface waters and river sediments in Kenya in order to determine the extent of pollution within the sampled environment. Target analysis for the most common antibiotics and ARVDs was done. Sulfamethoxazole (SMX), ciprofloxacin (CIP), trimethoprim (TMP), norfloxacin (NOR), zidovidine (ZDV), lamivudine (3TC) and nevirapine (NVP) were analyzed using LC-ESI-MS/MS. Effluent aqueous phase had concentrations ranging between 1.2 µg L−1 to 956.4 µg L−1 while the effluent SPM showed higher concentrations, ranging between 2.19 mg Kg−1 and 82.26 mg Kg−1. This study shows emission of active pharmaceutical ingredients (APIs) from WWTP to the environment mainly occurs via the SPM phase, which is usually overlooked in environmental analyses. Concentrations in surface waters and river sediments ranged between 1.1 µg L−1 to 228 µg L−1 and 11 µg Kg−1 to 4125 µg Kg−1 respectively. ARVDs occurred at consistently higher concentrations than antibiotics in both the aqueous and solid samples. The wastewater treatment plants and lagoons where sludge degradation should occur, are sources of active pharmaceutical ingredients (APIs) including transformational products, nutrients and organic matter that are released back to the aqueous phase. Full article
Show Figures

Figure 1

22 pages, 1397 KiB  
Review
Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review
by Alina Barbulescu
Water 2020, 12(5), 1356; https://doi.org/10.3390/w12051356 - 11 May 2020
Cited by 102 | Viewed by 13373
Abstract
Groundwater vulnerability studies are sources of essential information for the management of water resources, aiming at the water quality preservation. Different methodologies for estimating the groundwater vulnerability, in general, or of the karst aquifer, in particular, are known. Among them, DRASTIC is one [...] Read more.
Groundwater vulnerability studies are sources of essential information for the management of water resources, aiming at the water quality preservation. Different methodologies for estimating the groundwater vulnerability, in general, or of the karst aquifer, in particular, are known. Among them, DRASTIC is one of the most popular due to its performance and easy-to-use applicability. In this article, we review DRASTIC and some DRASTIC-like methods introduced by different scientists, emphasizing their applications, advantages, and drawbacks. Full article
(This article belongs to the Special Issue Assessing Water Quality by Statistical Methods)
Show Figures

Figure 1

10 pages, 3353 KiB  
Article
Perturbation Solution for Pulsatile Flow of a Non-Newtonian Fluid in a Rock Fracture: A Logarithmic Model
by Irene Daprà and Giambattista Scarpi
Water 2020, 12(5), 1341; https://doi.org/10.3390/w12051341 - 9 May 2020
Cited by 1 | Viewed by 2414
Abstract
The purpose of this work is to study the motion of a non-Newtonian fluid in a rock fracture, generated by a constant pressure gradient to which a pulsating component is superposed. The momentum equation is faced analytically by adopting a logarithmic constitutive law; [...] Read more.
The purpose of this work is to study the motion of a non-Newtonian fluid in a rock fracture, generated by a constant pressure gradient to which a pulsating component is superposed. The momentum equation is faced analytically by adopting a logarithmic constitutive law; the velocity is expressed as a power series of the amplitude of the pulsating component, up to the second order, easily usable for numerical calculations. The results obtained are compared with those provided in the past by the authors, using a three-parameter Williamson model. The comparison highlights that the value of the mean flow rate in a period differs by less than 10% even if the velocity profiles look quite different. Full article
Show Figures

Figure 1

14 pages, 3450 KiB  
Article
Machine Learning Methods for Improved Understanding of a Pumping Test in Heterogeneous Aquifers
by Yong Fan, Litang Hu, Hongliang Wang and Xin Liu
Water 2020, 12(5), 1342; https://doi.org/10.3390/w12051342 - 9 May 2020
Cited by 8 | Viewed by 3016
Abstract
Pumping tests are very important means for investigating aquifer properties; however, interpreting the data using common analytical solutions become invalid in complex aquifer systems. The paper aims to explore the potential of machine learning methods in retrieving the pumping tests information in a [...] Read more.
Pumping tests are very important means for investigating aquifer properties; however, interpreting the data using common analytical solutions become invalid in complex aquifer systems. The paper aims to explore the potential of machine learning methods in retrieving the pumping tests information in a field site in the Democratic Republic of Congo. A newly planned mining site with a pumping test of three pumping wells and 28 observation wells over one month was chosen to analyze the significance of machine learning methods in the pumping test analysis. Widely used machine learning methods, including correlation, cluster, time-series analysis, artificial neural network (ANN), support vector machine (SVR), random forest (RF) method, and linear regression, are all used in this study. Correlation and cluster analyses among wells provide visual pictures of possible hydraulic connections. The pathway with the best permeability ranges from the depth of 250 m to 350 m. Time-series analysis perfectly captured changes of drawdowns within the three pumping wells. The RF method is found to have the higher accuracy and the lower sensitivity to model parameters than ANN and SVR methods. The coupling of the linear regressive model and analytical solutions is applied to estimate hydraulic conductivities. The results found that ML methods can significantly and effectively improve our understanding of pumping tests by revealing inherent information hidden in those tests. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop