Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = Al2O3–nano-Ni

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 12008 KB  
Article
Electrochemical Behavior of the Ni3Al Intermetallic Alloy in Nitrate Salts
by Daniel Lopez-Dominguez, Nestor Belisario Gomez-Guzman, Cinthya Dinorah Arrieta-Gonzalez, Jonathan de la Vega Olivas, Jose Gonzalo Gonzalez-Rodriguez, Jesus Porcayo-Calderon and Jose Guadalupe Chacon-Nava
Metals 2025, 15(7), 764; https://doi.org/10.3390/met15070764 - 7 Jul 2025
Viewed by 348
Abstract
In this paper, the electrochemical performance of the NiAl intermetallic immersed in the 60% NaNO3-40% KNO3 (wt%) eutectic mixture, also known as Solar Salt, is reported. Mass loss measurements and electrochemical tests evaluate its behavior at different temperatures (300, 400, [...] Read more.
In this paper, the electrochemical performance of the NiAl intermetallic immersed in the 60% NaNO3-40% KNO3 (wt%) eutectic mixture, also known as Solar Salt, is reported. Mass loss measurements and electrochemical tests evaluate its behavior at different temperatures (300, 400, and 500 °C). Mass loss measurements are performed over 1000 h, and electrochemical tests over 100 h. The mass loss results show that the Ni3Al intermetallic exhibits excellent corrosion resistance under the test conditions. Electrochemical measurements confirm the excellent performance of the Ni3Al intermetallic in molten solar salt in the test temperature range. Experimental observations show that increasing temperature decreases the corrosion resistance of the intermetallic and favors the formation of protective layers of the Al2O3 and NaAlO2 types. Full article
(This article belongs to the Special Issue Properties, Microstructure and Forming of Intermetallics)
Show Figures

Figure 1

15 pages, 15318 KB  
Article
Breaking the Hardness-Wear Trade-Off: Quantitative Correlation in Nano-Al2O3-Reinforced Al10Cr17Fe20NiV4 High-Entropy Alloys
by Cong Feng, Huan Wang and Yaping Wang
Nanomaterials 2025, 15(10), 775; https://doi.org/10.3390/nano15100775 - 21 May 2025
Viewed by 478
Abstract
Multi-principal element alloys (MPEAs) exhibit distinct characteristics compared to conventional single-principal element-based metallic materials, primarily due to their unique design, resulting in intricate microstructural features. Currently, a comprehensive understanding of the fabrication processes, compositional design, and microstructural influence on the tribological and corrosion [...] Read more.
Multi-principal element alloys (MPEAs) exhibit distinct characteristics compared to conventional single-principal element-based metallic materials, primarily due to their unique design, resulting in intricate microstructural features. Currently, a comprehensive understanding of the fabrication processes, compositional design, and microstructural influence on the tribological and corrosion behavior of multi-component alloys remains limited. While the hardness of MPEAs generally correlates positively with wear resistance, with higher hardness typically associated with improved wear resistance and reduced wear rates, quantitative relationships between these properties are not well established. In this study, the Al10Cr17Fe20NiV4 alloy was selected as a model system. A homogeneous Al10Cr17Fe20NiV4 alloy was successfully synthesized via mechanical alloying followed by spark plasma sintering (SPS). To further investigate the correlation between hardness and wear rate, varying concentrations of alumina nanoparticles were incorporated into the alloy matrix as a reinforcing phase. The results revealed that the Al10Cr17Fe20NiV4 alloy exhibited a single-phase face-centered cubic (FCC) structure, which was maintained with the addition of alumina nanoparticles. The hardness of the Al10Cr17Fe20NiV4 alloy without nano-alumina was 727 HV, with a corresponding wear rate of 2.9 × 10−4 mm3·N−1·m−1. The incorporation of nano-alumina increased the hardness to 823 HV, and significantly reduced the wear rate to 1.6 × 10−4 mm3·N−1·m−1, representing a 45% reduction. The Al2O3 nanoparticles effectively mitigated alloy wear through crack passivation and matrix strengthening; however, excessive addition reversed this effect due to the agglomeration-induced brittleness and thermal mismatch. The quantitative relationship between hardness (HV) and wear rate (W) was determined as W = 2348 e(−0.006HV). Such carefully bounded empirical relationships, as demonstrated in studies of cold-formed materials and dental enamel, remain valuable tools in applied research when accompanied by explicit scope limitations. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

12 pages, 3336 KB  
Article
Alumina–Nano-Nickel Composite Coatings on Al6061 Substrate Obtained by Electrophoretic Deposition
by Souaad Hamoudi, Nacer Bezzi, Farid Bensebaa and Philippe Delaporte
J. Compos. Sci. 2025, 9(3), 122; https://doi.org/10.3390/jcs9030122 - 6 Mar 2025
Cited by 2 | Viewed by 793
Abstract
Ceramic–nano-metallic composite coatings of Al2O3–nano-Ni on an aluminum substrate (Al6061) were obtained using electrophoretic deposition (EPD). Three composite coatings with different ratios of nano-Ni, i.e., 25, 50, and 75%, were obtained. The phase composition of the resulting composite coatings [...] Read more.
Ceramic–nano-metallic composite coatings of Al2O3–nano-Ni on an aluminum substrate (Al6061) were obtained using electrophoretic deposition (EPD). Three composite coatings with different ratios of nano-Ni, i.e., 25, 50, and 75%, were obtained. The phase composition of the resulting composite coatings was examined using XRD; this confirmed the existence of alumina and nickel in the composite coatings. The surface morphology and microstructure of the composite coatings were analyzed with SEM, while the chemical composition and phase content were determined through energy-dispersive spectroscopy. The hardness indenter results revealed a high hardness 420 HV for the Ni 25% composite coating However the hardness decreased with an increase in the Ni nanoparticle ratio, reaching a value of 360 HV for the Ni 75% composite coating. Reflectance measurements were conducted using a UV–visible spectrophotometer equipped with an integrating sphere (UV2600), and the composite coating with a Ni ratio of 75% exhibited the lowest reflectance of UV–visible light at <0.035. These results are promising for subsequent investigations into the absorbance of Al2O3–nano-Ni composite coatings within the sunlight irradiation wavelength range. Full article
(This article belongs to the Section Metal Composites)
Show Figures

Figure 1

15 pages, 10074 KB  
Article
Influence of Y2O3 Nano-Dispersoids on the Characteristics of AlCoCrFeNi2.1-Reinforced Tungsten Alloys via Mechanical Alloying and Low-Temperature Sintering
by Chun-Liang Chen, Fang-Yu Huang and Geoff West
Materials 2025, 18(3), 672; https://doi.org/10.3390/ma18030672 - 3 Feb 2025
Viewed by 762
Abstract
This study investigates the effects of nano-oxide dispersoids on microstructural evolution, phase formation, and mechanical properties of W-Mo-Ti alloys reinforced with AlCoCrFeNi2.1 during mechanical alloying. An EBSD/EDS analysis confirmed the formation of different phases, including the tungsten matrix, FCC reinforcement phase, Al [...] Read more.
This study investigates the effects of nano-oxide dispersoids on microstructural evolution, phase formation, and mechanical properties of W-Mo-Ti alloys reinforced with AlCoCrFeNi2.1 during mechanical alloying. An EBSD/EDS analysis confirmed the formation of different phases, including the tungsten matrix, FCC reinforcement phase, Al2O3, and (Al,Cr) oxide. Y2O3 particles played a crucial role in refining the microstructure, promoting a uniform dispersion of the reinforcement phase and oxide particles in the tungsten model alloys. Mechanical testing demonstrates that the Y2O3-containing alloy exhibits improved hardness with prolonged milling, attributed to the refinement in the microstructure. In contrast, the Y2O3-free alloy shows reduced hardness due to the agglomeration of reinforcement phases surrounded by an (Al,Cr) oxide layer. The model tungsten alloys exhibit brittle behavior in compression tests, which can be attributed to the presence of (Al,Cr) oxide layers weakening the interfacial bonding and limiting plastic deformation. Full article
Show Figures

Figure 1

15 pages, 32026 KB  
Article
Gas-Phase Reactions in Nano-Strand Formation from Al-Fe-Ni Powder Reacted with CaF2-SiO2-Al2O3-MgO-MnO-TiO2 Flux at 1350 °C: SEM Study and Diffusion Calculations
by Theresa Coetsee and Frederik De Bruin
Reactions 2025, 6(1), 1; https://doi.org/10.3390/reactions6010001 - 2 Jan 2025
Cited by 1 | Viewed by 1095
Abstract
Fast high-temperature gas-phase reactions occurring in the limited space of the arc cavity in the submerged arc welding (SAW) process limit the study of specific gas-phase behaviours. A low-temperature experimental method is applied to investigate gas-phase reactions in the reaction of oxy-fluoride slag [...] Read more.
Fast high-temperature gas-phase reactions occurring in the limited space of the arc cavity in the submerged arc welding (SAW) process limit the study of specific gas-phase behaviours. A low-temperature experimental method is applied to investigate gas-phase reactions in the reaction of oxy-fluoride slag with Al-Fe-Ni metal powders. The presence of nano-strands in the slag cavities confirms the vaporisation and re-condensation of gasses. Ti is the main element in nano-strands, although some nano-strands also contain Al-Mg-Si-Na oxy-fluoride. Nano-strand end-caps contain Mn-Fe-Si fluoride, and some contain Ni. The Ni in nano-strand end-caps is sourced from the added Ni powder and indicates gas-phase transfer. The Ti in the nano-strands is sourced from the flux. Themochemistry calculations identify KAlF4, TiF3, NaAlF4, SiF4, AlF3, SiF3, and Na in the gas phase. Increased Al reaction results in decreased TiF3 in the gas phase, likely due to the displacement of Ti from TiF3, resulting in the gas-phase transfer of Ti from the flux. Comparative diffusion flux calculations support Ti nano-strand formation via the vaporisation of TiF3 and the re-condensation of Ti. The low-temperature simulation experiment applied here can be used to study the gas reaction behaviour in the reaction of oxy-fluoride flux with metal powders. Full article
Show Figures

Figure 1

22 pages, 7710 KB  
Article
Investigation of the Effect of Al2O3 Nanoparticle-Added MQL Lubricant on Sustainable and Clean Manufacturing
by Fuat Kara
Lubricants 2024, 12(11), 393; https://doi.org/10.3390/lubricants12110393 - 15 Nov 2024
Cited by 16 | Viewed by 1406
Abstract
In this study, in order to improve the characteristics of the vegetable-based cutting fluids used in the MQL technique and increase the machining performance of MQL and its positive effects on sustainable manufacturing, the effects of the MQL method with nano-Al2O [...] Read more.
In this study, in order to improve the characteristics of the vegetable-based cutting fluids used in the MQL technique and increase the machining performance of MQL and its positive effects on sustainable manufacturing, the effects of the MQL method with nano-Al2O3 additives on surface roughness (Ra) and cutting temperature (Ctt) were examined through turning experiments carried out by adding nano-Al2O3 to the vegetable-based cutting fluid. For this purpose, machining tests were carried out on hot work tool steel alloyed with Cr-Ni-Mo that has a delivery hardness of 45 HRC. In hard machining experiments, three techniques for cooling and lubricating (dry cutting, MQL, and nano-MQL), three cutting speeds (V) (100, 130, 160 m/min), three feed rates (f) (0.10, 0.125, and 0.15 mm/rev), and two different ceramic cutting tools (uncoated and TiN-coated with PVD methods) were used as control factors. For Ra, the nano-MQL method provided an average of 21.49% improvement compared to other cooling methods. For Ctt, this rate increased to 26.7%. In crater wear areas, the nano-MQL method again exhibited the lowest wear values, decreasing performance by approximately 50%. The results of this research showed that the tests conducted using the cooling of nano-MQL approach produced the best results for all output metrics (Ra, Ctt, and crater wear). Full article
Show Figures

Figure 1

14 pages, 5093 KB  
Article
Efficient Toluene Decontamination and Resource Utilization through Ni/Al2O3 Catalytic Cracking
by Yifei Niu, Xiaolong Ma, Guangyi Lu, Dandan Zhao and Zichuan Ma
Molecules 2024, 29(20), 4868; https://doi.org/10.3390/molecules29204868 - 14 Oct 2024
Cited by 1 | Viewed by 1287
Abstract
Volatile organic compounds (VOCs), particularly aromatic hydrocarbons, pose significant environmental risks due to their toxicity and role in the formation of secondary pollutants. This study explores the potential of catalytic pyrolysis as an innovative strategy for the effective remediation and conversion of aromatic [...] Read more.
Volatile organic compounds (VOCs), particularly aromatic hydrocarbons, pose significant environmental risks due to their toxicity and role in the formation of secondary pollutants. This study explores the potential of catalytic pyrolysis as an innovative strategy for the effective remediation and conversion of aromatic hydrocarbon pollutants. The research investigates the high-efficiency removal and resource recovery of the VOC toluene using a Ni/Al2O3 catalyst. The Ni/Al2O3 catalyst was synthesized using the impregnation method and thoroughly characterized. Various analytical techniques, including scanning electron microscopy, X-ray diffraction, and N2 adsorption–desorption isotherms, were employed to characterize the Al2O3 support, NiO/Al2O3 precursor, Ni/Al2O3 catalyst, and the resulting solid carbon. Results indicate that Ni predominantly occupies the pores of γ-Al2O3, forming nano/microparticles and creating interstitial pores through aggregation. The catalyst demonstrated high activity in the thermochemical decomposition of toluene into solid carbon materials and COx-Free hydrogen, effectively addressing toluene pollution while recovering valuable resources. Optimal conditions were identified, revealing that a moderate temperature of 700 °C is most favorable for the catalytic process. Under optimized conditions, the Ni/Al2O3 catalyst removed 1328 mg/g of toluene, generated 915 mg/g of carbon material, and produced 1234 mL/g of hydrogen. The prepared carbon material, characterized by its mesoporous structure and high specific surface area graphite nanofibers, holds potential application value in adsorption, catalysis, and energy storage. This study offers a promising approach for the purification and resource recovery of aromatic volatile organic compounds, contributing to the goals of a circular economy and green chemistry. Full article
Show Figures

Graphical abstract

16 pages, 6235 KB  
Article
Revealing the Microstructure Evolution and Mechanical Properties of Al2O3-Reinforced FCC-CoCrFeMnNi Matrix Composites Fabricated via Gas Atomization and Spark Plasma Sintering
by Pan Dai, Runjie Chen, Xian Luo, Lin Yang, Lei Wen, Tao Tu, Chen Wang, Wenwen Zhao and Xianghong Lv
Coatings 2024, 14(6), 737; https://doi.org/10.3390/coatings14060737 - 9 Jun 2024
Viewed by 1429
Abstract
In the present work, novel Al2O3 particles were used to reinforce heterogeneous CoCrFeMnNi high-entropy alloy (HEA) matrix composites with nano- (5.0 wt.%) and nano- + micro- (5.0 wt.% + 10.0 wt.%) specimens. Al2O3 particles were fabricated via [...] Read more.
In the present work, novel Al2O3 particles were used to reinforce heterogeneous CoCrFeMnNi high-entropy alloy (HEA) matrix composites with nano- (5.0 wt.%) and nano- + micro- (5.0 wt.% + 10.0 wt.%) specimens. Al2O3 particles were fabricated via gas atomization and spark plasma sintering. The microstructure evolution and properties, i.e., density, hardness, and room temperature compression, were systematically investigated. The results indicate that the concentration of the Cr element in the pure CoCrFeMnNi HEA and the HEA matrix composite can be effectively reduced by using a gas-atomized HEA powder as the matrix. The formation of an impurity phase can also be inhibited, while the distribution uniformity of matrix elements can be improved. The composites prepared via gas-atomized powders formed a network microstructure composed of continuous Al2O3-rich regions and isolated Al2O3-poor regions, exhibiting good plasticity and improved density. The relative densities of the pure HEA, nano- (5.0 wt.%), and nano- + micro- (5.0 wt.% + 10.0 wt.%) composites were 98.9%, 97%, and 94.1%, respectively. The results demonstrate a significant improvement in the relative densities compared to the values (97.2%, 95.7%, and 93.8%) of the composites prepared via mechanical alloying. In addition, compared to the compressive fracture strains of nano- (5.0 wt.%) and nano- + micro- (5.0 wt.% + 10.0 wt.%) composites based on the mechanically alloyed HEA powder, the values of the nano- (5.0 wt.%) and nano- + micro- (5.0 wt.% + 10.0 wt.%) specimens prepared via gas atomization and spark plasma sintering increased by 80% and 67%, respectively. Full article
(This article belongs to the Special Issue Structural, Mechanical and Tribological Properties of Hard Coatings)
Show Figures

Figure 1

19 pages, 13655 KB  
Article
High-Entropy Alloy Al0.2Co1.5CrFeNi1.5Ti0.5 Prepared from High-Entropy Oxide (Al0.2Co1.5CrFeNi1.5Ti0.5)3O4 by a Deoxidation Process via a CaH2-Assisted Molten Salt Method
by Yasukazu Kobayashi, Shota Yokoyama and Ryo Shoji
Metals 2024, 14(4), 443; https://doi.org/10.3390/met14040443 - 10 Apr 2024
Cited by 3 | Viewed by 2211
Abstract
High-entropy alloys (HEAs) have attracted a great deal of research interest these days because of their attractive properties. Low-temperature chemical synthesis methods are being developed to obtain nanoscale HEAs with low energy consumption. In this study, we prepared HEA Al0.2Co1.5 [...] Read more.
High-entropy alloys (HEAs) have attracted a great deal of research interest these days because of their attractive properties. Low-temperature chemical synthesis methods are being developed to obtain nanoscale HEAs with low energy consumption. In this study, we prepared HEA Al0.2Co1.5CrFeNi1.5Ti0.5 nanoparticles from high-entropy oxide (HEO) (Al0.2Co1.5CrFeNi1.5Ti0.5)3O4 by a deoxidation process via a CaH2-assisted molten salt method at 600 °C. X-ray diffraction measurements demonstrated that the oxide precursor and the reduced product have single-phases of spinel structure and face-centered cubic structures, indicating the formation of HEO and HEA, respectively. The HEA nanoparticles exhibited superior catalytic performance in the liquid-phase hydrogenation of p-nitrophenol at room temperature with little leaching of the component elements. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDX) exhibited a good distribution of constituent elements over the HEA nanoparticles in a micro-sized range. However, transmission electron microscopy (TEM) with EDX revealed a slight deviation of elemental distributions of Al and Ti from those of Co, Cr, Fe, and Ni in a nano-sized range, probably due to the incomplete reduction of aluminum and titanium oxides. The elemental homogeneity in the HEA nanoparticles could be improved by taking advantage of the HEO precursor with homogeneous elemental distributions, but the experimental results suggested the importance of the total reduction of oxide precursors to prepare homogeneous HEAs from HEOs. Full article
Show Figures

Figure 1

17 pages, 5495 KB  
Article
The Effect of Electroplating Nickel on the Mechanical Properties of Brittle Mg-Based Bulk Metallic Glasses
by Jingyao Zhang, Jing Li, Mei Jing, Lichen Zhao, Yumin Qi, Wei Yang and Xin Wang
Coatings 2023, 13(9), 1598; https://doi.org/10.3390/coatings13091598 - 13 Sep 2023
Cited by 1 | Viewed by 2175
Abstract
Magnesium-based bulk metallic glasses (BMGs) are typical intrinsic brittle lightweight BMG alloys, and their improvement in plasticity has attracted widespread attention in the field of BMGs. We used the electroplating method to modify the surface of Mg59.5Cu22.9Ag11Gd [...] Read more.
Magnesium-based bulk metallic glasses (BMGs) are typical intrinsic brittle lightweight BMG alloys, and their improvement in plasticity has attracted widespread attention in the field of BMGs. We used the electroplating method to modify the surface of Mg59.5Cu22.9Ag11Gd6.6 BMGs and investigated the geometric confinement effect of the Ni coating on the mechanical properties of the BMG. The results show that under the plating conditions of adding 1 g/L nano Al2O3 to the plating solution, adjusting the plating temperature to 50 °C, and plating time to 3 h, a smooth and dense nickel coating with a thickness of about 150 μm can be formed on the surface of the Mg-based BMG. The uniaxial compression tests showed that the average fracture strength of the BMG was increased from 565 MPa to 598 MPa by a 50 μm Ni coating, and the fluctuation range of strength was decreased from 429 MPa to 265 MPa, a reduction of 36%. The Weibull analysis showed that the Weibull modulus m was increased from 4.3 to 4.8 by the coating, and the safety stress was increased from 54 MPa to 235 MPa, indicating that electroplating nickel could improve the reliability of the Mg-based BMG alloy. However, no significant improvement of the compression plasticity was found, which indicated that improving the room temperature plasticity of brittle Mg-based BMG alloys by the geometric confinement of electroplating Ni was limited. The influence of the thickness of the Ni coating on the maximum stress level and stress distribution in the BMG samples was analyzed by ANSYS finite element simulation. It was found that when the thickness of the coating was 30% of the radius of the cylindrical compressed sample, the stress distribution caused by the Ni coating was the most uniform, and the maximum stress level was relatively reduced, which is beneficial for improving the geometric confinement effect. As a result, the Mg-based BMG sample coated with a Ni coating of 150 μm thickness exhibited ~0.3% macroscopic compressive plasticity. This is of great significance for understanding the plastic deformation mechanism of brittle BMGs improved by geometric confinement. Full article
(This article belongs to the Special Issue Microstructure, Mechanical and Tribological Properties of Alloys)
Show Figures

Figure 1

23 pages, 16286 KB  
Article
EERZ (Effective Equilibrium Reaction Zone) Model of Gas-Slag-Metal Reactions in the Application of Unconstrained Al-Ni-Cr-Co-Cu Metal Powders in Submerged Arc Welding: Model and 3D Slag SEM Evidence
by Theresa Coetsee and Frederik De Bruin
Processes 2023, 11(7), 2110; https://doi.org/10.3390/pr11072110 - 14 Jul 2023
Cited by 8 | Viewed by 3287
Abstract
The scope of this work is to improve the SAW process understanding and present an improved description of the SAW process in terms of gas-slag-metal reactions with alloy powder and Al powder additions. The scope does not include the materials properties of the [...] Read more.
The scope of this work is to improve the SAW process understanding and present an improved description of the SAW process in terms of gas-slag-metal reactions with alloy powder and Al powder additions. The scope does not include the materials properties of the weld metal. The latter may easily be optimised in the future by changing the weld metal chemistry once the process reactions of different element powders in SAW are understood. Aluminium as de-oxidiser element was applied to SAW to lower the oxygen partial pressure in the process. The results show the Al-Ni-Cr-Co-Cu alloyed weld metal total oxygen content was reduced to 257 ppm O, compared to the base case weld metal at 499 ppm O, made with the same flux and no metal powder additions. Thus, the aluminium that was added as a de-oxidiser element to the SAW process effectively lowered the original flux-induced partial oxygen pressure, both in the arc cavity and at the interface of the molten flux–weld pool phases. This partial oxygen pressure lowering effect of Al also prevents oxidation of Cr, preventing loss of Cr to the slag. Carbon steel was alloyed to 3.9% Al, 4.8% Ni, 4.9% Cr, 4.8% Co, 4.7% Cu at 62% Al yield, 76% Ni yield, 77% Cr yield, 75% Co yield, 74% Cu yield. SEM (scanning electron microscope) work on the three-dimensional (3D) post-weld slag sample show dome cavities with 3D rounded structures embedded in the dome cavity walls, as well as shards and nano-strands on the dome cavity walls. The 3D structures indicate vapour formation and re-condensation of oxy-fluorides. The novel application of the EERZ (effective equilibrium reaction zone) model simulates the mass transfer effects in the SAW process. This model is novel because it is the first model used to calculate the gas-slag-metal phase chemistry changes in SAW as a function of welding time. The novel SAW process modification of adding Al de-oxidiser powder with alloying element powders of the unique combination of Co-Cr-Co-Ni-Al was successfully applied. The results confirm that the gas phase and its reactions must be included in the interpretation and modelling of SAW process metallurgy. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

12 pages, 7130 KB  
Article
Development of Self-Passivating, High-Strength Ferritic Alloys for Concentrating Solar Power (CSP) and Thermal Energy Storage (TES) Applications
by Fadoua Aarab and Bernd Kuhn
Energies 2023, 16(10), 4084; https://doi.org/10.3390/en16104084 - 14 May 2023
Cited by 4 | Viewed by 1731
Abstract
Concentrating solar power (CSP) and thermal energy storage (TES) based on molten salts still lacks economic feasibility, with the material investment costs being a major drawback. Ferritic stainless steels are a comparatively cheap class of materials that could significantly contribute to cost reductions. [...] Read more.
Concentrating solar power (CSP) and thermal energy storage (TES) based on molten salts still lacks economic feasibility, with the material investment costs being a major drawback. Ferritic stainless steels are a comparatively cheap class of materials that could significantly contribute to cost reductions. The addition of aluminum to ferritic steel can result in self-passivation by forming a compact Al2O3 top layer, which exhibits significantly higher corrosion resistance to solar salt compared to the Cr2O3 surface layers typically formed on expensive structural alloys for CSP and TES, such as austenitic stainless steels and Ni-base super alloys. However, to date, no ferritic stainless steel combining Al2O3 formation and sufficient structural strength is available. For this reason, cyclic salt corrosion tests under flowing synthetic air were carried out on seven Laves phase-forming, ferritic model alloys (17Cr2-14Al0.6-1Nb2.6-4W0.25Si), using “solar salt” (60 wt. % NaNO3 and 40 wt. % KNO3). The Al content was varied to investigate the influence on the precipitation of the mechanically strengthening Laves phase, as well as the impact on the formation of the Al-oxide top layer. The W and Nb contents of the alloys were increased to examine their influence on the precipitation of the Laves phase. The salt corrosion experiments demonstrated that simultaneous self-passivation against a molten salt attack and mechanical strengthening by precipitation of fine Laves phase particles is possible in novel ferritic HiperFerSCR (salt corrosion-resistant) steel. Microstructural examination unveiled the formation of a compact, continuous Al2O3 layer on the surface of the model alloys with Al contents of 5 wt. % and higher. Furthermore, a stable distribution of fine, strengthening Laves phase precipitates was achieved in the metal matrix, resulting in a combination of molten salt corrosion resistance and potentially high mechanical strength by a combination of solid solution and precipitation strengthening. These results show that high-strength ferritic alloys are suitable for use in CSP applications. Full article
(This article belongs to the Special Issue Thermal Energy Storage and Energy Conversion Technologies)
Show Figures

Figure 1

13 pages, 11706 KB  
Article
Effect of Nano Nd2O3 on the Microstructure and High-Temperature Resistance of G@Ni Laser Alloying Coatings on Ti-6Al-4V Alloy
by Zifan Wang, Xiaoxi Meng, Zhihuan Zhao, Chuanzhong Chen and Huijun Yu
Nanomaterials 2023, 13(6), 1112; https://doi.org/10.3390/nano13061112 - 20 Mar 2023
Cited by 2 | Viewed by 1907
Abstract
Titanium and its alloys are widely used in high-end manufacturing fields. However, their low high-temperature oxidation resistance has limited their further application. Recently, laser alloying processing has attracted researchers to improve the surface properties of Ti, for which Ni coated graphite system is [...] Read more.
Titanium and its alloys are widely used in high-end manufacturing fields. However, their low high-temperature oxidation resistance has limited their further application. Recently, laser alloying processing has attracted researchers to improve the surface properties of Ti, for which Ni coated graphite system is an excellent prospect due to its outstanding properties and metallurgical bonding between coating and substrate. In this paper, nanoscaled rare earth oxide Nd2O3 addition was added to Ni coated graphite laser alloying materials to research its influence on the microstructure and high-temperature oxidation resistance of the coating. The results proved that nano-Nd2O3 has an outstanding effect on refining coating microstructures, thus the high-temperature oxidation resistance was improved. Furthermore, with the addition of 1. 5 wt.% nano-Nd2O3, more NiO formed in the oxide film, which effectively strengthened the protective effect of the film. After 100 h of 800 °C oxidation, the oxidation weight gain per unit area of the normal coating was 14.571 mg/cm2, while that of the coating with nano-Nd2O3 addition was 6.244 mg/cm2, further proving that the addition of nano-Nd2O3 substantially improved the high-temperature oxidation properties of the coating. Full article
(This article belongs to the Special Issue Processing, Surfaces and Interfaces of Nanomaterials)
Show Figures

Figure 1

9 pages, 5702 KB  
Article
Plasmon Driven Nanocrystal Transformation by Aluminum Nano-Islands with an Alumina Layer
by Xilin Zhou, Huan Chen, Baobao Zhang, Chengyun Zhang, Min Zhang, Lei Xi, Jinyu Li, Zhengkun Fu and Hairong Zheng
Nanomaterials 2023, 13(5), 907; https://doi.org/10.3390/nano13050907 - 28 Feb 2023
Cited by 2 | Viewed by 2452
Abstract
The plasmonic photothermal effects of metal nanostructures have recently become a new priority of studies in the field of nano-optics. Controllable plasmonic nanostructures with a wide range of responses are crucial for effective photothermal effects and their applications. In this work, self-assembled aluminum [...] Read more.
The plasmonic photothermal effects of metal nanostructures have recently become a new priority of studies in the field of nano-optics. Controllable plasmonic nanostructures with a wide range of responses are crucial for effective photothermal effects and their applications. In this work, self-assembled aluminum nano-islands (Al NIs) with a thin alumina layer are designed as a plasmonic photothermal structure to achieve nanocrystal transformation via multi-wavelength excitation. The plasmonic photothermal effects can be controlled by the thickness of the Al2O3 and the intensity and wavelength of the laser illumination. In addition, Al NIs with an alumina layer have good photothermal conversion efficiency even in low temperature environments, and the efficiency will not decline significantly after storage in air for 3 months. Such an inexpensive Al/Al2O3 structure with a multi-wavelength response provides an efficient platform for rapid nanocrystal transformation and a potential application for the wide-band absorption of solar energy. Full article
(This article belongs to the Special Issue Plasmon Assisted Near-Field Manipulation and Photocatalysis)
Show Figures

Figure 1

8 pages, 6509 KB  
Communication
Evolution of the Morphology and Magnetic Properties of Flaky FeSiAl/MFe2O4 (M = Mn, Co, Ni, Cu, Zn) Composites
by Chuannan Ge, Chenglong Lei, Bo Wang, Yakun Wang, Zhouhao Peng, Zhitong Wang and Yunjun Guo
Nanomaterials 2023, 13(4), 712; https://doi.org/10.3390/nano13040712 - 13 Feb 2023
Cited by 2 | Viewed by 1859
Abstract
Nanosized spinel ferrites MFe2O4 (M = Mn, Co, Ni, Cu, Zn)-coated flaky FeSiAl alloy composites were synthesized successfully. Nano-ferrites preferentially grow into nanoplatelets due to induced or restricted growth on the flaky surface of FeSiAl. With annealing temperature increasing, the [...] Read more.
Nanosized spinel ferrites MFe2O4 (M = Mn, Co, Ni, Cu, Zn)-coated flaky FeSiAl alloy composites were synthesized successfully. Nano-ferrites preferentially grow into nanoplatelets due to induced or restricted growth on the flaky surface of FeSiAl. With annealing temperature increasing, the ferrites’ nanosheets thicken gradually and then grow into irregular particles. The annealing temperature not only affects the nanosized morphology and coating but also the magnetic properties of flaky FeSiAl composites. The saturation magnetization of CuFe2O4- or NiFe2O4-coated FeSiAl is approximate 69 emu/g, where the value of MnFe2O4-, CoFe2O4- and ZnFe2O4-coated FeSiAl show a decreasing trend generally from 64 emu/g to 55.7 emu/g annealing at 800 °C, respectively. The saturation magnetization of flaky FeSiAl composites was improved with the increased annealing temperature, except for those coated with ZnFe2O4 and NiFe2O4. These results are useful for improving the comprehensive properties of ferrite-coated flaky FeSiAl alloy composites. Full article
(This article belongs to the Special Issue Functional Electromagnetic Materials)
Show Figures

Figure 1

Back to TopTop