Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = CDI electrodes and desalination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4491 KiB  
Review
Selective Ion Separation by Capacitive Deionization: A Comprehensive Review
by Fanyi Xu, Ling Yuan, Rui Zhao, Bing Qin, Feng Zhang, Liming Ren, Hailun Yang and Menglei Yuan
Materials 2025, 18(5), 1107; https://doi.org/10.3390/ma18051107 - 28 Feb 2025
Viewed by 728
Abstract
Within the last decade, in addition to water desalination, capacitive deionization (CDI) has been used for the resource recovery and selective separation of target ions in multicomponent solutions. CDI is a new technology for selectively extracting valuable metal ions from solutions using an [...] Read more.
Within the last decade, in addition to water desalination, capacitive deionization (CDI) has been used for the resource recovery and selective separation of target ions in multicomponent solutions. CDI is a new technology for selectively extracting valuable metal ions from solutions using an electric field and electrode materials. Unlike traditional adsorption methods, it raises attention for its environmentally friendly process and low cost, especially for extracting valuable elements. CDI technology has advanced significantly in desalination and selective element extraction due to a deep understanding of ion storage, electrode material structure–activity relationships, solvent effects, and reactor design. However, it still faces challenges like short electrode cycle life, poor reversible absorption/desorption, low charge utilization, and limited ion selectivity. In this review, we commence with an examination of the historical development of CDI technology, followed by a comprehensive summary of the fundamental operating principles of capacitors. We then evaluate the criteria for assessing capacitor performance and analyze the advantages and disadvantages associated with various capacitor materials. According to the review, we address the current challenges and obstacles encountered in the advancement of capacitor technology and offer constructive recommendations for its future development. Full article
Show Figures

Figure 1

15 pages, 5276 KiB  
Article
ZIF-8-Embedded Cation-Exchange Membranes with Improved Monovalent Ion Selectivity for Capacitive Deionization
by Eui-Gyu Han, Ji-Hyeon Lee and Moon-Sung Kang
Membranes 2025, 15(1), 19; https://doi.org/10.3390/membranes15010019 - 9 Jan 2025
Viewed by 1404
Abstract
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal–organic [...] Read more.
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal–organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios. The resulting membranes were systematically characterized using diverse electrochemical methods. The ZIF-8-embedded CEMs demonstrated a sieving effect based on differences in ion size and hydration energy, achieving excellent permselectivity for monovalent ions. MCDI tests using the prepared CEMs showed a Na+ ion removal rate exceeding 99% in Na+/Mg2+ and Na+/Ca2+ mixed feed solutions, outperforming a commercial membrane (CSE, Astom Corp., Tokyo, Japan), which achieved a removal rate of 94.1%. These findings are expected to provide valuable insights for advancing not only MCDI but also other electro-membrane processes capable of selectively separating specific ions. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

16 pages, 3598 KiB  
Article
Low-Energy Desalination Techniques, Development of Capacitive Deionization Systems, and Utilization of Activated Carbon
by Gaber A. Elawadi
Materials 2024, 17(20), 5130; https://doi.org/10.3390/ma17205130 - 21 Oct 2024
Viewed by 1418
Abstract
Water desalination technology has emerged as a critical area of research, particularly with the advent of more cost-effective alternatives to conventional methods, such as reverse osmosis and thermal evaporation. Given the vital importance of water for life and the scarcity of potable water [...] Read more.
Water desalination technology has emerged as a critical area of research, particularly with the advent of more cost-effective alternatives to conventional methods, such as reverse osmosis and thermal evaporation. Given the vital importance of water for life and the scarcity of potable water for agriculture and livestock—especially in the Kingdom of Saudi Arabia—the capacitive deionization (CDI) method for removing salt from water has been highlighted as the most economical choice compared to other techniques. CDI applies a voltage difference across two porous electrodes to extract salt ions from saline water. This study will investigate water desalination using CDI, utilizing a compact DC power source under 5 volts and a standard current of 2 amperes. We will convert waste materials like sunflower seeds, peanut shells, and rice husks into activated carbon through carbonization and chemical activation to improve its pore structure. Critical parameters for desalination, including voltage, flow rate, and total dissolved solids (TDS) concentration, have been established. The initial TDS levels are set at 2000, 1500, 1000, and 500 ppm, with flow rates of 38.2, 16.8, and 9.5 mL/min across the different voltage settings of 2.5, 2, and 1.5 volts, applicable to both direct and inverse desalination methods. The efficiency at TDS concentrations of 2000, 1500, and 1000 ppm remains between 18% and 20% for up to 8 min. Our results indicate that the desalination process operates effectively at a TDS level of 750 ppm, achieving a maximum efficiency of 45% at a flow rate of 9.5 mL/min. At voltages of 2.5 V, 2 V, and 1.5 V, efficiencies at 3 min are attained with a constant flow rate of 9.5 mL/min and a TDS of 500 ppm, with the maximum desalination efficiency reaching 56%. Full article
(This article belongs to the Special Issue Emerging Materials and Technologies for Electrolysis of Seawater)
Show Figures

Figure 1

15 pages, 7028 KiB  
Article
Employing Manganese Dioxide and Bamboo Carbon for Capacitive Water Desalination and Disinfection
by Cuihui Cao, Xiaofeng Wu, Yuming Zheng, Lizhen Zhang and Yunfa Chen
Nanomaterials 2024, 14(19), 1565; https://doi.org/10.3390/nano14191565 - 27 Sep 2024
Cited by 1 | Viewed by 1095
Abstract
A manganese dioxide (MnO2)/bamboo carbon (BC) composite was prepared using hydrothermal and impregnation methods and used for the capacitive desalination (CDI) and disinfection of water. The results showed that these composites had fast Na+ ion exchange and charge transfer properties. [...] Read more.
A manganese dioxide (MnO2)/bamboo carbon (BC) composite was prepared using hydrothermal and impregnation methods and used for the capacitive desalination (CDI) and disinfection of water. The results showed that these composites had fast Na+ ion exchange and charge transfer properties. During the CDI process, these composites’ electrodes exhibited good cycle stability and electrosorption capacity (4.09 mg/g) and an excellent bactericidal effect. These carbon-based composite electrodes’ bactericidal rate for Escherichia coli could reach 99.99% within 180 min; therefore, they had good performance and are a good choice for high-performance deionization applications. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

20 pages, 2592 KiB  
Article
A Comparison of Capacitive Deionization and Membrane Capacitive Deionization Using Novel Fabricated Ion Exchange Membranes
by Mahmoud M. Elewa, Mervette El Batouti and Nouf F. Al-Harby
Materials 2023, 16(13), 4872; https://doi.org/10.3390/ma16134872 - 7 Jul 2023
Cited by 7 | Viewed by 2989
Abstract
Another technique for desalination, known as membrane capacitive deionization (MCDI), has been investigated as an alternative. This approach has the potential to lower the voltage that is required, in addition to improving the ability to renew the electrodes. In this study, the desalination [...] Read more.
Another technique for desalination, known as membrane capacitive deionization (MCDI), has been investigated as an alternative. This approach has the potential to lower the voltage that is required, in addition to improving the ability to renew the electrodes. In this study, the desalination effectiveness of capacitive deionization (CDI) was compared to that of MCDI, employing newly produced cellulose acetate ion exchange membranes (IEMs), which were utilized for the very first time in MCDI. As expected, the salt adsorption and charge efficiency of MCDI were shown to be higher than those of CDI. Despite this, the unique electrosorption behavior of the former reveals that ion transport via the IEMs is a crucial rate-controlling step in the desalination process. We monitored the concentration of salt in the CDI and MCDI effluent streams, but we also evaluated the pH of the effluent stream in each of these systems and investigated the factors that may have caused these shifts. The significant change in pH that takes place during one adsorption and desorption cycle in CDI (pH range: 2.3–11.6) may cause problems in feed water that already contains components that are prone to scaling. In the case of MCDI, the fall in pH was only slightly more noticeable. Based on these findings, it appears that CDI and MCDI are promising new desalination techniques that has the potential to be more ecologically friendly and efficient than conventional methods of desalination. MCDI has some advantages over CDI in its higher salt removal efficiency, faster regeneration, and longer lifetime, but it is also more expensive and complex. The best choice for a particular application will depend on the specific requirements. Full article
Show Figures

Figure 1

11 pages, 6138 KiB  
Article
Synthesis of Low-Crystalline MnO2/MXene Composites for Capacitive Deionization with Efficient Desalination Capacity
by Zhumei Sun, Jun Peng, Shu Yang, Riya Jin, Changcheng Liu and Que Huang
Metals 2023, 13(6), 1047; https://doi.org/10.3390/met13061047 - 30 May 2023
Cited by 8 | Viewed by 2317
Abstract
MXene has drawn widespread attention as a potential material for electrode use in capacitive deionization (CDI). However, the applications of MXene are limited by its property of low electrical capacity. Herein, a MnO2/MXene composite was firstly evaluated in a capacitive deionization [...] Read more.
MXene has drawn widespread attention as a potential material for electrode use in capacitive deionization (CDI). However, the applications of MXene are limited by its property of low electrical capacity. Herein, a MnO2/MXene composite was firstly evaluated in a capacitive deionization system, in which the MnO2 acts as intercalation-type pseudocapacitive electrodes to enhance the electrical capacity, and MXene provides an electron conduction highway network that improves the charge transfer of the MnO2. The result showed that the low-crystallinity MnO2 with irregular particles was well-distributed on the surface of the MXene. The desalination capacity of 30.5 mg·g−1 is achieved at a voltage window of 1.2 V, which was higher than that of the reported pure MXene and MnO2. The electrical double-layer (EDL) capacitive and the diffusion-controlled processes are the main charge storage mechanisms, and the EDL contribution provides 50.3% to the total capacitance. This result suggests a promising direction for further applying a MnO2/MXene composite in CDI. Full article
(This article belongs to the Special Issue Manufacturing and Characterization of Metallic Electrode Materials)
Show Figures

Figure 1

24 pages, 3852 KiB  
Review
Application of Capacitive Deionization in Water Treatment and Energy Recovery: A Review
by Shenxu Bao, Chunfu Xin, Yimin Zhang, Bo Chen, Wei Ding and Yongpeng Luo
Energies 2023, 16(3), 1136; https://doi.org/10.3390/en16031136 - 19 Jan 2023
Cited by 58 | Viewed by 8354
Abstract
Water resources are the basis for human survival and development. However, human beings face severe challenges of water pollution and freshwater shortage. With the critical advantages of low energy consumption, high efficiency, low cost, green and pollution-free, and renewable electrodes, capacitive deionization (CDI) [...] Read more.
Water resources are the basis for human survival and development. However, human beings face severe challenges of water pollution and freshwater shortage. With the critical advantages of low energy consumption, high efficiency, low cost, green and pollution-free, and renewable electrodes, capacitive deionization (CDI) has become an up-and-coming water treatment technology. After decades of development, the application of CDI has expanded from seawater desalination to many fields. However, the existing literature still needs a comprehensive overview of the multi-functional application of CDI technology in water treatment. Therefore, our work critically reviewed the latest research progress of CDI in water treatment to meet the technical requirements of various application fields. This paper first summarizes the various applications of CDI in water treatment, focusing on CDI’s representative research results in heavy metal removal, organic contaminants removal, water softening, phosphate and nitrate removal, and water disinfection. In addition, we also discussed the latest research progress of energy recovery and energy consumption assessment for the CDI process. Finally, this paper discusses the challenges and future opportunities facing CDI technology. Full article
(This article belongs to the Topic Capacitive Deionization Technology for Water Treatment)
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

14 pages, 3133 KiB  
Article
Fabrication of Activated Carbon Decorated with ZnO Nanorod-Based Electrodes for Desalination of Brackish Water Using Capacitive Deionization Technology
by Jhonatan Martinez, Martín Colán, Ronald Castillón, Pierre G. Ramos, Robert Paria, Luis Sánchez and Juan M. Rodríguez
Int. J. Mol. Sci. 2023, 24(2), 1409; https://doi.org/10.3390/ijms24021409 - 11 Jan 2023
Cited by 7 | Viewed by 2855
Abstract
Capacitive deionization (CDI) is a promising and cost-effective technology that is currently being widely explored for removing dissolved ions from saline water. This research developed materials based on activated carbon (AC) materials modified with zinc oxide (ZnO) nanorods and used them as high-performance [...] Read more.
Capacitive deionization (CDI) is a promising and cost-effective technology that is currently being widely explored for removing dissolved ions from saline water. This research developed materials based on activated carbon (AC) materials modified with zinc oxide (ZnO) nanorods and used them as high-performance CDI electrodes for water desalination. The as-prepared electrodes were characterized by cyclic voltammetry, and their physical properties were studied through SEM and XRD. ZnO-coated AC electrodes revealed a better specific absorption capacity (SAC) and an average salt adsorption rate (ASAR) compared to pristine AC, specifically with values of 123.66 mg/g and 5.06 mg/g/min, respectively. The desalination process was conducted using a 0.4 M sodium chloride (NaCl) solution with flow rates from 45 mL/min to 105 mL/min under an applied potential of 1.2 V. Furthermore, the energy efficiency of the desalination process, the specific energy consumption (SEC), and the maximum and minimum of the effluent solution concentration were quantified using thermodynamic energy efficiency (TEE). Finally, this work suggested that AC/ZnO material has the potential to be utilized as a CDI electrode for the desalination of saline water. Full article
Show Figures

Figure 1

13 pages, 2720 KiB  
Article
Spinel LiMn2O4 as a Capacitive Deionization Electrode Material with High Desalination Capacity: Experiment and Simulation
by Yuxin Jiang, Ken Li, Sikpaam Issaka Alhassan, Yiyun Cao, Haoyu Deng, Shan Tan, Haiying Wang, Chongjian Tang and Liyuan Chai
Int. J. Environ. Res. Public Health 2023, 20(1), 517; https://doi.org/10.3390/ijerph20010517 - 28 Dec 2022
Cited by 6 | Viewed by 3525
Abstract
Capacitive deionization (CDI) is a newly developed desalination technology with low energy consumption and environmental friendliness. The surface area restricts the desalination capacities of traditional carbon-based CDI electrodes while battery materials emerge as CDI electrodes with high performances due to the larger electrochemical [...] Read more.
Capacitive deionization (CDI) is a newly developed desalination technology with low energy consumption and environmental friendliness. The surface area restricts the desalination capacities of traditional carbon-based CDI electrodes while battery materials emerge as CDI electrodes with high performances due to the larger electrochemical capacities, but suffer limited production of materials. LiMn2O4 is a massively-produced lithium-ion battery material with a stable spinel structure and a high theoretical specific capacity of 148 mAh·g−1, revealing a promising candidate for CDI electrode. Herein, we employed spinel LiMn2O4 as the cathode and activated carbon as the anode in the CDI cell with an anion exchange membrane to limit the movement of cations, thus, the lithium ions released from LiMn2O4 would attract the chloride ions and trigger the desalination process of the other side of the membrane. An ultrahigh deionization capacity of 159.49 mg·g−1 was obtained at 1.0 V with an initial salinity of 20 mM. The desalination capacity of the CDI cell at 1.0 V with 10 mM initial NaCl concentration was 91.04 mg·g−1, higher than that of the system with only carbon electrodes with and without the ion exchange membrane (39.88 mg·g−1 and 7.84 mg·g−1, respectively). In addition, the desalination results and mechanisms were further verified with the simulation of COMSOL Multiphysics. Full article
(This article belongs to the Special Issue Adsorption and Catalytic Pollution Control)
Show Figures

Figure 1

13 pages, 1214 KiB  
Article
Activated Carbon Aerogel as an Electrode with High Specific Capacitance for Capacitive Deionization
by Wei Wang, Kerui Li, Ge Song, Minghua Zhou and Peng Tan
Processes 2022, 10(11), 2330; https://doi.org/10.3390/pr10112330 - 9 Nov 2022
Cited by 11 | Viewed by 2689
Abstract
In this study, carbon aerogels (CAs) were synthesized by the sol-gel method, using environmentally friendly glucose as a precursor, and then they were further activated with potassium hydroxide (KOH) to obtain activated carbon aerogels (ACAs). After the activation, the electrochemical performance of the [...] Read more.
In this study, carbon aerogels (CAs) were synthesized by the sol-gel method, using environmentally friendly glucose as a precursor, and then they were further activated with potassium hydroxide (KOH) to obtain activated carbon aerogels (ACAs). After the activation, the electrochemical performance of the ACAs was significantly improved, and the specific capacitance increased from 19.70 F·g−1 to 111.89 F·g−1. Moreover, the ACAs showed a stronger hydrophilicity with the contact angle of 118.54° compared with CAs (69.31°). When used as an electrode for capacitive deionization (CDI), the ACAs had not only a better diffuse electric double layer behavior, but also a lower charge transfer resistance and intrinsic resistance. Thus, the ACA electrode had a faster CDI desalination rate and a higher desalination capacity. The unit adsorption capacity is three times larger than that of the CA electrode. In the desalination experiment of 100 mg·L−1 sodium chloride (NaCl) solution using a CDI device based on the ACA electrode, the optimal electrode spacing was 2 mm, the voltage was 1.4 V, and the flow rate was 30 mL·min−1. When the NaCl concentration was 500 mg·L−1, the unit adsorption capacity of the ACA electrode reached 26.12 mg·g−1, much higher than that which has been reported in many literatures. The desalination process followed the Langmuir model, and the electro-sorption of the NaCl was a single layer adsorption process. In addition, the ACA electrode exhibited a good regeneration performance and cycle stability. Full article
(This article belongs to the Special Issue State of the Art of Waste Utilization and Resource Recovery)
Show Figures

Figure 1

13 pages, 3394 KiB  
Article
A Novel Dual-Ion Capacitive Deionization System Design with Ultrahigh Desalination Performance
by Yuxin Jiang, Zhiguo Hou, Lvji Yan, Haiyin Gang, Haiying Wang and Liyuan Chai
Polymers 2022, 14(21), 4776; https://doi.org/10.3390/polym14214776 - 7 Nov 2022
Cited by 2 | Viewed by 2643
Abstract
Capacitive deionization is an emerging desalination technology with mild operation conditions and high energy efficiency. However, its application is limited due to the low deionization capacity of traditional capacitive electrodes. Herein, we report a novel dual-ion capacitive deionization system with a lithium-ion battery [...] Read more.
Capacitive deionization is an emerging desalination technology with mild operation conditions and high energy efficiency. However, its application is limited due to the low deionization capacity of traditional capacitive electrodes. Herein, we report a novel dual-ion capacitive deionization system with a lithium-ion battery cathode LiMn2O4/C and a sodium-ion battery anode NaTi2(PO4)3/C. Lithium ions could enhance the charge transfer during CDI desalination, while NaTi2(PO4)3/C provided direct intercalation sites for sodium ions. The electrochemical capacities of the battery electrodes fitted well, which was favorable for the optimization of the desalination capacity. The low potential of the redox couple Ti3+/Ti4+ (−0.8 V versus Ag/AgCl) and intercalation/deintercalation behaviors of sodium ions that suppressed hydrogen evolution could enlarge the voltage window of the CDI process to 1.8 V. The novel CDI cell achieved an ultrahigh desalination capacity of 140.03 mg·g−1 at 1.8 V with an initial salinity of 20 mM, revealing a new direction for the CDI performance enhancement. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

12 pages, 7895 KiB  
Article
Capacitive Desalination and Disinfection of Water Using UiO-66 Metal–Organic Framework/Bamboo Carbon with Chitosan
by Cuihui Cao, Xiaofeng Wu, Yuming Zheng, Lizhen Zhang and Yunfa Chen
Nanomaterials 2022, 12(21), 3901; https://doi.org/10.3390/nano12213901 - 4 Nov 2022
Cited by 6 | Viewed by 2389
Abstract
The zirconium-based metal–organic framework (MOF) (UiO-66)/bamboo carbon (BC) composite with chitosan was prepared using hydrothermal and impregnation methods and used for capacitive desalination (CDI) and disinfection of water. The results showed that these composites had fast ion exchange and charge transfer properties. During [...] Read more.
The zirconium-based metal–organic framework (MOF) (UiO-66)/bamboo carbon (BC) composite with chitosan was prepared using hydrothermal and impregnation methods and used for capacitive desalination (CDI) and disinfection of water. The results showed that these composites had fast ion exchange and charge transfer properties. During the CDI process, these composites’ electrodes exhibited good cycle stability, electrosorption capacity (4.25 mg/g) and excellent bactericidal effect. These carbon-based composites electrodes’ bactericidal rate for Escherichia coli could reach 99.99% within 20 minutes; therefore, they had good performance and were a good choice for high-performance deionization applications. Full article
(This article belongs to the Special Issue Advanced Nanocomposite Materials for Water and Wastewater Treatment)
Show Figures

Figure 1

41 pages, 9412 KiB  
Review
Recent Advances in Capacitive Deionization: Research Progress and Application Prospects
by Meijun Liu, Mengyao He, Jinglong Han, Yueyang Sun, Hong Jiang, Zheng Li, Yuna Li and Haifeng Zhang
Sustainability 2022, 14(21), 14429; https://doi.org/10.3390/su142114429 - 3 Nov 2022
Cited by 26 | Viewed by 8292
Abstract
With the increasing global water shortage issue, the development of water desalination and wastewater recycling technology is particularly urgent. Capacitive deionization (CDI), as an emerging approach for water desalination and ion separation, has received extensive attention due to its high ion selectivity, high [...] Read more.
With the increasing global water shortage issue, the development of water desalination and wastewater recycling technology is particularly urgent. Capacitive deionization (CDI), as an emerging approach for water desalination and ion separation, has received extensive attention due to its high ion selectivity, high water recovery, and low energy consumption. To promote the further application of CDI technology, it is necessary to understand the latest research progress and application prospects. Here, considering electric double layers (EDLs) and two typical models, we conduct an in-depth discussion on the ion adsorption mechanism of CDI technology. Furthermore, we provide a comprehensive overview of recent advances in CDI technology optimization research, including optimization of cell architecture, electrode material design, and operating mode exploration. In addition, we summarize the development of CDI in past decades in novel application fields other than seawater desalination, mainly including ionic pollutant removal, recovery of resource-based substances such as lithium and nutrients, and development of coupling systems between CDI and other technologies. We then highlight the most serious challenges faced in the process of large-scale application of CDI. In the conclusion and outlook section, we focus on summarizing the overall development prospects of CDI technology, and we discuss the points that require special attention in future development. Full article
(This article belongs to the Special Issue Sustainable Advanced Water Treatment Technologies)
Show Figures

Figure 1

19 pages, 2513 KiB  
Review
Energy Consumption in Capacitive Deionization for Desalination: A Review
by Yuxin Jiang, Linfeng Jin, Dun Wei, Sikpaam Issaka Alhassan, Haiying Wang and Liyuan Chai
Int. J. Environ. Res. Public Health 2022, 19(17), 10599; https://doi.org/10.3390/ijerph191710599 - 25 Aug 2022
Cited by 9 | Viewed by 3623
Abstract
Capacitive deionization (CDI) is an emerging eco-friendly desalination technology with mild operation conditions. However, the energy consumption of CDI has not yet been comprehensively summarized, which is closely related to the economic cost. Hence, this study aims to review the energy consumption performances [...] Read more.
Capacitive deionization (CDI) is an emerging eco-friendly desalination technology with mild operation conditions. However, the energy consumption of CDI has not yet been comprehensively summarized, which is closely related to the economic cost. Hence, this study aims to review the energy consumption performances and mechanisms in the literature of CDI, and to reveal a future direction for optimizing the consumed energy. The energy consumption of CDI could be influenced by a variety of internal and external factors. Ion-exchange membrane incorporation, flow-by configuration, constant current charging mode, lower electric field intensity and flowrate, electrode material with a semi-selective surface or high wettability, and redox electrolyte are the preferred elements for low energy consumption. In addition, the consumed energy in CDI could be reduced to be even lower by energy regeneration. By combining the favorable factors, the optimization of energy consumption (down to 0.0089 Wh·gNaCl−1) could be achieved. As redox flow desalination has the benefits of a high energy efficiency and long lifespan (~20,000 cycles), together with the incorporation of energy recovery (over 80%), a robust future tendency of energy-efficient CDI desalination is expected. Full article
(This article belongs to the Special Issue Adsorption and Catalytic Pollution Control)
Show Figures

Graphical abstract

12 pages, 3328 KiB  
Article
Desalination Using the Capacitive Deionization Technology with Graphite/AC Electrodes: Effect of the Flow Rate and Electrode Thickness
by Jhonatan Martinez, Martín Colán, Ronald Catillón, Jesús Huamán, Robert Paria, Luis Sánchez and Juan M. Rodríguez
Membranes 2022, 12(7), 717; https://doi.org/10.3390/membranes12070717 - 20 Jul 2022
Cited by 6 | Viewed by 3463
Abstract
Capacitive deionization (CDI) is an emerging water desalination technology whose principle lies in ion electrosorption at the surface of a pair of electrically charged electrodes. The aim of this study was to obtain the best performance of a CDI cell made of activated [...] Read more.
Capacitive deionization (CDI) is an emerging water desalination technology whose principle lies in ion electrosorption at the surface of a pair of electrically charged electrodes. The aim of this study was to obtain the best performance of a CDI cell made of activated carbon as the active material for water desalination. In this work, electrodes of different active layer thicknesses were fabricated from a slurry of activated carbon deposited on graphite sheets. The as-prepared electrodes were characterized by cyclic voltammetry, and their physical properties were also studied using SEM and DRX. A CDI cell was fabricated with nine pairs of electrodes with the highest specific capacitance. The effect of the flow rate on the electrochemical performance of the CDI cell operating in charge–discharge electrochemical cycling was analyzed. We obtained a specific absorption capacity (SAC) of 10.2 mg/g and a specific energetic consumption (SEC) of 217.8 Wh/m3 at a flow rate of 55 mL/min. These results were contrasted with those available in the literature; in addition, other parameters such as Neff and SAR, which are necessary for the characterization and optimal operating conditions of the CDI cell, were analyzed. The findings from this study lay the groundwork for future research and increase the existing knowledge on CDI based on activated carbon electrodes. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

Back to TopTop