Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = CMOS SPAD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4761 KB  
Article
A Scalable Sub-Picosecond TDC Based on Analog Sampling of Dual-Phase Signals from a Free-Running Oscillator
by Roberto Cardella, Luca Iodice, Lorenzo Paolozzi, Thanushan Kugathasan, Antonio Picardi, Carlo Alberto Fenoglio, Pierpaolo Valerio, Fulvio Martinelli, Roberto Cardarelli and Giuseppe Iacobucci
Sensors 2025, 25(17), 5577; https://doi.org/10.3390/s25175577 - 6 Sep 2025
Viewed by 1134
Abstract
This work presents a novel time-to-digital converter based on the analog sampling of dual-phase periodic signals generated from a free-running oscillator. A proof-of-concept ASIC, implemented in 130 nm CMOS technology, achieves an average single-shot precision of 0.9 ps-rms for time intervals up to [...] Read more.
This work presents a novel time-to-digital converter based on the analog sampling of dual-phase periodic signals generated from a free-running oscillator. A proof-of-concept ASIC, implemented in 130 nm CMOS technology, achieves an average single-shot precision of 0.9 ps-rms for time intervals up to 3 ns, with a best performance of 0.79 ps-rms. It maintains a precision below 3.7 ps-rms for intervals up to 25 ns. The design demonstrates excellent linearity, with a peak-to-peak differential nonlinearity of 0.56 LSB and a peak-to-peak integral nonlinearity of 1.43 LSB. The free-running oscillator is shareable across multiple channels, enabling power consumption of approximately 4.1 mW per channel and efficient area utilization. These features make the design highly suitable for detection systems requiring picosecond-level precision and high channel density, such as silicon pixel sensors, SPADs, LiDARs, and time-correlated single-photon counting systems. Furthermore, the architecture shows strong potential for use in high-count-rate applications, reaching up to 22 Mcps. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

19 pages, 7643 KB  
Article
A 64 × 1 Multi-Mode Linear Single-Photon Avalanche Detector with Storage and Shift Reuse in Histogram
by Hankun Lv, Jingyi Wang, Bu Chen and Zhangcheng Huang
Electronics 2025, 14(3), 509; https://doi.org/10.3390/electronics14030509 - 26 Jan 2025
Viewed by 964
Abstract
Single-photon avalanche detectors (SPADs) have significant applications in fields such as autonomous driving. However, processing massive amounts of background data requires substantial storage and computational resources. This paper designs a linear SPAD sensor capable of three detection modes: 2D intensity detection, 3D synchronous [...] Read more.
Single-photon avalanche detectors (SPADs) have significant applications in fields such as autonomous driving. However, processing massive amounts of background data requires substantial storage and computational resources. This paper designs a linear SPAD sensor capable of three detection modes: 2D intensity detection, 3D synchronous detection, and 3D asynchronous detection. A configurable coincidence circuit is used to effectively suppress background light. To overcome the significant resource demands for storage and computation, this paper designs a histogram circuit that simultaneously possesses data storage and shifting capabilities. This circuit can not only perform statistical counting on time data but also shift data to quickly complete computational analysis. The chip is fabricated using a 0.13 μm mixed-signal CMOS process, with a pixel scale of 64 elements, a time resolution of 132 ps, and a power consumption of 12.9 mW. Test results indicate that the chip has good detection capabilities and good background light suppression. When the background light intensity is 6000 lux, the maximum background data are suppressed by 95.4%, and the average suppression rate increases to 86% as the coincidence threshold is raised from 0 to 1. Full article
(This article belongs to the Special Issue Advances in Solid-State Single Photon Detection Devices and Circuits)
Show Figures

Figure 1

13 pages, 5691 KB  
Article
An Analysis of Temperature-Dependent Timing Jitter Factors in the Structural Design of Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Detectors
by Jau-Yang Wu, Yu-Wei Lu, Meng-Hsuan Liu, Tien-Ning Chang and Chun-Hsien Liu
Sensors 2025, 25(2), 391; https://doi.org/10.3390/s25020391 - 10 Jan 2025
Cited by 1 | Viewed by 1606
Abstract
Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays [...] Read more.
Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays a crucial role in LiDAR systems and Quantum Key Distribution (QKD) applications. However, limited studies have been conducted on this topic. In this study, we analyze the jitter characteristics of SPAD devices, focusing on the influence of device structures in two SPAD designs fabricated using the TSMC 18HV and TSMC 13HV processes. Using picosecond lasers with wavelengths ranging from ultraviolet (405 nm) to near-infrared (905 nm), we investigate the impact of different diffusion carrier types on jitter values and their temperature dependence across a range of 0 °C to 60 °C. Our results show that the jitter value of SPAD devices with low electric field regions varies significantly with temperature. This variation can be attributed to the higher temperature-dependent diffusion constant, as demonstrated by fitting the jitter diffusion tail with two diffusion time constants. In contrast, SPADs designed with modified electric field distributions exhibit smaller diffusion time constants and weaker temperature dependence, resulting in a much smaller temperature-dependent jitter value. Full article
Show Figures

Figure 1

13 pages, 1729 KB  
Article
Reducing Avalanche Build-Up Time by Integrating a Single-Photon Avalanche Diode with a BiCMOS Gating Circuit
by Bernhard Goll, Mehran Saadi Nejad, Kerstin Schneider-Hornstein and Horst Zimmermann
Sensors 2024, 24(23), 7598; https://doi.org/10.3390/s24237598 - 28 Nov 2024
Viewed by 1091
Abstract
It is shown that the integration of a single-photon avalanche diode (SPAD) together with a BiCMOS gating circuit on one chip reduces the parasitic capacitance a lot and therefore reduces the avalanche build-up time. The capacitance of two bondpads, which are necessary for [...] Read more.
It is shown that the integration of a single-photon avalanche diode (SPAD) together with a BiCMOS gating circuit on one chip reduces the parasitic capacitance a lot and therefore reduces the avalanche build-up time. The capacitance of two bondpads, which are necessary for the connection of an SPAD chip and a gating chip, are eliminated by the integration. The gating voltage transients of the SPAD are measured using an integrated mini-pad and a picoprobe. Furthermore, the gating voltage transients of a CMOS gating circuit and of the BiCMOS gating circuit are compared for the same integrated SPAD. The extension of the 0.35 μm CMOS process by an NPN transistor process module enabled the BiCMOS gating circuit. The avalanche build-up time of the SPAD is reduced to 1.6 ns due to the integration compared to about 3 ns for a wire-bonded off-chip SPAD using the same n+ and p-well as well as the same 0.35 μm technology. Full article
(This article belongs to the Special Issue Advanced CMOS Integrated Circuit Design and Application III)
Show Figures

Figure 1

14 pages, 5297 KB  
Article
Area-Efficient Mixed-Signal Time-to-Digital Converter Integration for Time-Resolved Photon Counting
by Sergio Moreno, Victor Moro, Joan Canals and Angel Diéguez
Sensors 2024, 24(17), 5763; https://doi.org/10.3390/s24175763 - 4 Sep 2024
Viewed by 1463
Abstract
Digital histogram generation for time-resolved measurements with single-photon avalanche diode (SPAD) sensors requires the storage of many timestamp signals. This work presents a mixed-signal time-to-digital converter (TDC) that uses analog storage to achieve an area-efficient design that can be integrated in large SPAD [...] Read more.
Digital histogram generation for time-resolved measurements with single-photon avalanche diode (SPAD) sensors requires the storage of many timestamp signals. This work presents a mixed-signal time-to-digital converter (TDC) that uses analog storage to achieve an area-efficient design that can be integrated in large SPAD arrays. Fabricated using a 150 nm CMOS process, the prototype occupies an area of only 18.3 µm × 36.5 µm, a notable size reduction compared to conventional designs. The experimental results demonstrated high performance, with an integral nonlinearity (INL) of 0.35/0.14 least significant bit (LSB) and a differential nonlinearity (DNL) of 0.14/−0.12 LSB. In addition, the proposed TDC can support the construction of histograms comprising up to 512 bins, making it an effective solution to accommodate a wide range of resolution requirements. Validated in a point-of-care (PoC) device for fluorescence lifetime measurements, it distinguished between lifetimes of approximately 4.1 ns, 3.6 ns and 80 ns with the Alexa Fluor (AF) 546 and 568 dyes and Quantum Dot (QD) 705, respectively. The analog storage design and area-efficient architecture offer a novel approach to integrating TDCs in SPAD-based systems, with potential applications in medical diagnostics and beyond. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

20 pages, 5507 KB  
Article
Robust Pixel Design Methodologies for a Vertical Avalanche Photodiode (VAPD)-Based CMOS Image Sensor
by Akito Inoue, Naoki Torazawa, Shota Yamada, Yuki Sugiura, Motonori Ishii, Yusuke Sakata, Taiki Kunikyo, Masaki Tamaru, Shigetaka Kasuga, Yusuke Yuasa, Hiromu Kitajima, Hiroshi Koshida, Tatsuya Kabe, Manabu Usuda, Masato Takemoto, Yugo Nose, Toru Okino, Takashi Shirono, Kentaro Nakanishi, Yutaka Hirose, Shinzo Koyama, Mitsuyoshi Mori, Masayuki Sawada, Akihiro Odagawa and Tsuyoshi Tanakaadd Show full author list remove Hide full author list
Sensors 2024, 24(16), 5414; https://doi.org/10.3390/s24165414 - 21 Aug 2024
Viewed by 2004
Abstract
We present robust pixel design methodologies for a vertical avalanche photodiode-based CMOS image sensor, taking account of three critical practical factors: (i) “guard-ring-free” pixel isolation layout, (ii) device characteristics “insensitive” to applied voltage and temperature, and (iii) stable operation subject to intense light [...] Read more.
We present robust pixel design methodologies for a vertical avalanche photodiode-based CMOS image sensor, taking account of three critical practical factors: (i) “guard-ring-free” pixel isolation layout, (ii) device characteristics “insensitive” to applied voltage and temperature, and (iii) stable operation subject to intense light exposure. The “guard-ring-free” pixel design is established by resolving the tradeoff relationship between electric field concentration and pixel isolation. The effectiveness of the optimization strategy is validated both by simulation and experiment. To realize insensitivity to voltage and temperature variations, a global feedback resistor is shown to effectively suppress variations in device characteristics such as photon detection efficiency and dark count rate. An in-pixel overflow transistor is also introduced to enhance the resistance to strong illumination. The robustness of the fabricated VAPD-CIS is verified by characterization of 122 different chips and through a high-temperature and intense-light-illumination operation test with 5 chips, conducted at 125 °C for 1000 h subject to 940 nm light exposure equivalent to 10 kLux. Full article
(This article belongs to the Special Issue Optoelectronic Functional Devices for Sensing Applications)
Show Figures

Figure 1

18 pages, 12883 KB  
Article
Comparative Analysis of Free-Running and Gating Imaging Modes of SPAD Sensors
by Xin Sun, Hu Yan, Hongcun He, Xiangshun Kong, Chen Mao and Feng Yan
Photonics 2024, 11(8), 721; https://doi.org/10.3390/photonics11080721 - 31 Jul 2024
Viewed by 2532
Abstract
A single-photon avalanche diode (SPAD) is a photon-counting sensor renowned for its exceptional single-photon sensitivity. One significant feature of SPADs is their non-linear response to light, making them ideal for high-dynamic range imaging applications. In SPAD imaging, the photon detection mode, which depends [...] Read more.
A single-photon avalanche diode (SPAD) is a photon-counting sensor renowned for its exceptional single-photon sensitivity. One significant feature of SPADs is their non-linear response to light, making them ideal for high-dynamic range imaging applications. In SPAD imaging, the photon detection mode, which depends on the quenching method employed, is crucial for optimizing image quality and dynamic range. This paper examines the free-running and gating imaging modes, evaluating their impacts on photon capture and saturation limits. Given that the number of incident photons follows a Poisson distribution, we introduce an innovative imaging-quenching model based on statistical mathematics. We designed and fabricated two SPAD imaging sensors using 180 nm CMOS technology. Image processing and evaluation were conducted using a mapping method. Our results show that in low-light conditions, the gating mode surpasses the free-running mode in the signal-to-noise ratio (SNR). However, the free-running mode exhibits a saturation limit of more than an order of magnitude higher than that of the gating mode, demonstrating its superior capability to handle a broader range of light intensities. This paper provides a thorough analysis of the differences between the two imaging methods, incorporating the theoretical mathematical model, circuit characteristics, and computed imaging quality. Full article
Show Figures

Figure 1

12 pages, 5319 KB  
Article
Shallow Trench Isolation Patterning to Improve Photon Detection Probability of Single-Photon Avalanche Diodes Integrated in FD-SOI CMOS Technology
by Shaochen Gao, Duc-Tung Vu, Thibauld Cazimajou, Patrick Pittet, Martine Le Berre, Mohammadreza Dolatpoor Lakeh, Fabien Mandorlo, Régis Orobtchouk, Jean-Baptiste Schell, Jean-Baptiste Kammerer, Andreia Cathelin, Dominique Golanski, Wilfried Uhring and Francis Calmon
Photonics 2024, 11(6), 526; https://doi.org/10.3390/photonics11060526 - 1 Jun 2024
Viewed by 2057
Abstract
The integration of Single-Photon Avalanche Diodes (SPADs) in CMOS Fully Depleted Silicon-On-Insulator (FD-SOI) technology under a buried oxide (BOX) layer and a silicon film containing transistors makes it possible to realize a 3D SPAD at the chip level. In our study, a nanostructurated [...] Read more.
The integration of Single-Photon Avalanche Diodes (SPADs) in CMOS Fully Depleted Silicon-On-Insulator (FD-SOI) technology under a buried oxide (BOX) layer and a silicon film containing transistors makes it possible to realize a 3D SPAD at the chip level. In our study, a nanostructurated layer created by an optimized arrangement of Shallow Trench Isolation (STI) above the photosensitive zone generates constructive interferences and consequently an increase in the light sensitivity in the frontside illumination. A simulation methodology is presented that couples electrical and optical data in order to optimize the STI trenches (size and period) and to estimate the Photon Detection Probability (PDP) gain. Then, a test chip was designed, manufactured, and characterized, demonstrating the PDP improvement due to the STI nanostructuring while maintaining a comparable Dark Count Rate (DCR). Full article
(This article belongs to the Special Issue Emerging Topics in Single-Photon Detectors)
Show Figures

Figure 1

17 pages, 4503 KB  
Article
Fluorescence Multi-Detection Device Using a Lensless Matrix Addressable microLED Array
by Victor Moro, Joan Canals, Sergio Moreno, Steffen Higgins-Wood, Oscar Alonso, Andreas Waag, J. Daniel Prades and Angel Dieguez
Biosensors 2024, 14(6), 264; https://doi.org/10.3390/bios14060264 - 22 May 2024
Cited by 1 | Viewed by 2369
Abstract
A Point-of-Care system for molecular diagnosis (PoC-MD) is described, combining GaN and CMOS chips. The device is a micro-system for fluorescence measurements, capable of analyzing both intensity and lifetime. It consists of a hybrid micro-structure based on a 32 × 32 matrix addressable [...] Read more.
A Point-of-Care system for molecular diagnosis (PoC-MD) is described, combining GaN and CMOS chips. The device is a micro-system for fluorescence measurements, capable of analyzing both intensity and lifetime. It consists of a hybrid micro-structure based on a 32 × 32 matrix addressable GaN microLED array, with square LEDs of 50 µm edge length and 100 µm pitch, with an underneath wire bonded custom chip integrating their drivers and placed face-to-face to an array of 16 × 16 single-photon avalanche diodes (SPADs) CMOS. This approach replaces instrumentation based on lasers, bulky optical components, and discrete electronics with a full hybrid micro-system, enabling measurements on 32 × 32 spots. The reported system is suitable for long lifetime (>10 ns) fluorophores with a limit of detection ~1/4 µM. Proof-of-concept measurements of streptavidin conjugate Qdot™ 605 and Amino PEG Qdot™ 705 are demonstrated, along with the device ability to detect both fluorophores in the same measurement. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

11 pages, 3062 KB  
Article
Hot-Carrier Damage in N-Channel EDMOS Used in Single Photon Avalanche Diode Cell through Quasi-Static Modeling
by Alain Bravaix, Hugo Pitard, Xavier Federspiel and Florian Cacho
Micromachines 2024, 15(2), 205; https://doi.org/10.3390/mi15020205 - 30 Jan 2024
Cited by 1 | Viewed by 1784
Abstract
A single photon avalanche diode (SPAD) cell using N-channel extended-drain metal oxide semiconductor (N-EDMOS) is tested for its hot-carrier damage (HCD) resistance. The stressing gate-voltage (VGS) dependence is compared to hot-hole (HH) injection, positive bias temperature (PBT) instability and off-mode (V [...] Read more.
A single photon avalanche diode (SPAD) cell using N-channel extended-drain metal oxide semiconductor (N-EDMOS) is tested for its hot-carrier damage (HCD) resistance. The stressing gate-voltage (VGS) dependence is compared to hot-hole (HH) injection, positive bias temperature (PBT) instability and off-mode (VGS = 0). The goal was to check an accurate device lifetime extraction using accelerated DC to AC stressing by applying the quasi-static (QS) lifetime technique. N-EDMOS device is devoted to 3D bonding with CMOS imagers obtained by an optimized process with an effective gate-length Leff = 0.25 µm and a SiO2 gate-oxide thickness Tox = 5 nm. The operating frequency is 10 MHz at maximum supply voltage VDDmax = 5.5 V. TCAD simulations are used to determine the real voltage and timing configurations for the device in a mixed structure of the SPAD cell. AC device lifetime is obtained using worst-case DC accelerating degradation, which is transferred by QS technique to the AC waveforms applied to N-EDMOS device. This allows us to accurately obtain the AC device lifetime as a function of the delay and load for a fixed pulse shape. It shows the predominance of the high energy hot-carriers involved in the first substrate current peak during transients. Full article
(This article belongs to the Special Issue Reliability Issues in Advanced Transistor Nodes)
Show Figures

Figure 1

12 pages, 2309 KB  
Article
Effect of Proton Irradiation on Complementary Metal Oxide Semiconductor (CMOS) Single-Photon Avalanche Diodes
by Mingzhu Xun, Yudong Li, Jie Feng, Chengfa He, Mingyu Liu and Qi Guo
Electronics 2024, 13(1), 224; https://doi.org/10.3390/electronics13010224 - 4 Jan 2024
Cited by 2 | Viewed by 2183
Abstract
The effects of proton irradiation on CMOS Single-Photon Avalanche Diodes (SPADs) are investigated in this article. The I–V characteristics, dark count rate (DCR), and photon detection probability (PDP) of the CMOS SPADs were measured under 30 MeV and 52 MeV proton irradiations. Two [...] Read more.
The effects of proton irradiation on CMOS Single-Photon Avalanche Diodes (SPADs) are investigated in this article. The I–V characteristics, dark count rate (DCR), and photon detection probability (PDP) of the CMOS SPADs were measured under 30 MeV and 52 MeV proton irradiations. Two types of SPAD, with and without shallow trench isolation (STI), were designed. According to the experimental results, the leakage current, breakdown voltage, and PDP did not change after irradiation at a DDD of 2.82 × 108 MeV/g, but the DCR increased significantly at five different higher voltages. The DCR increased by 506 cps at an excess voltage of 2 V and 10,846 cps at 10 V after 30 MeV proton irradiation. A γ irradiation was conducted with a TID of 10 krad (Si). The DCR after the γ irradiation increased from 256 cps to 336 cps at an excess voltage of 10 V. The comparison of the DCR after proton and γ-ray irradiation with two structures of SPAD indicates that the major increase in the DCR was due to the depletion region defects caused by proton displacement damage rather than the Si-SiO2 interface trap generated by ionization. Full article
(This article belongs to the Special Issue Radiation Effects of Advanced Electronic Devices and Circuits)
Show Figures

Figure 1

14 pages, 7553 KB  
Article
Multi-Channel Gating Chip in 0.18 µm High-Voltage CMOS for Quantum Applications
by Christoph Ribisch, Michael Hofbauer, Seyed Saman Kohneh Poushi, Alexander Zimmer, Kerstin Schneider-Hornstein, Bernhard Goll and Horst Zimmermann
Sensors 2023, 23(24), 9644; https://doi.org/10.3390/s23249644 - 6 Dec 2023
Cited by 2 | Viewed by 1527
Abstract
A gating circuit for a photonic quantum simulator is introduced. The gating circuit uses a large excess bias voltage of up to 9.9 V and an integrated single-photon avalanche diode (SPAD). Nine channels are monolithically implemented in an application-specific integrated circuit (ASIC) including [...] Read more.
A gating circuit for a photonic quantum simulator is introduced. The gating circuit uses a large excess bias voltage of up to 9.9 V and an integrated single-photon avalanche diode (SPAD). Nine channels are monolithically implemented in an application-specific integrated circuit (ASIC) including nine SPADs using 0.18 µm high-voltage CMOS technology. The gating circuit achieves rise and fall times of 480 ps and 280 ps, respectively, and a minimum full-width-at-half-maximum pulse width of 1.26 ns. Thanks to a fast and sensitive comparator, a detection threshold for avalanche events of less than 100 mV is possible. The power consumption of all nine channels is about 250 mW in total. This gating chip is used to characterize the integrated SPADs. A photon detection probability of around 50% at 9.9 V excess bias and for a wavelength of 635 nm is found. Full article
(This article belongs to the Special Issue Integrated Circuits and CMOS Sensors)
Show Figures

Figure 1

7 pages, 2120 KB  
Communication
N-Channel MOSFET Reliability Issue Induced by Visible/Near-Infrared Photons in Image Sensors
by Chun-Hsien Liu and Sheng-Di Lin
Sensors 2023, 23(23), 9586; https://doi.org/10.3390/s23239586 - 3 Dec 2023
Viewed by 1621
Abstract
Image sensors such as single-photon avalanched diode (SPAD) arrays typically adopt in-pixel quenching and readout circuits, and the under-illumination first-stage readout circuits often employs high-threshold input/output (I/O) or thick-oxide metal-oxide-semiconductor field-effect transistors (MOSFETs). We have observed reliability issues with high-threshold n-channel MOSFETs when [...] Read more.
Image sensors such as single-photon avalanched diode (SPAD) arrays typically adopt in-pixel quenching and readout circuits, and the under-illumination first-stage readout circuits often employs high-threshold input/output (I/O) or thick-oxide metal-oxide-semiconductor field-effect transistors (MOSFETs). We have observed reliability issues with high-threshold n-channel MOSFETs when they are exposed to strong visible light. The specific stress conditions have been applied to observe the drain current (Id) variations as a function of gate voltage. The experimental results indicate that photo-induced hot electrons generate interface trap states, leading to Id degradation including increased off-state current (Ioff) and decreased on-state current (Ion). The increased Ioff further activates parasitic bipolar junction transistors (BJT). This reliability issue can be avoided by forming an inversion layer in the channel under appropriate bias conditions or by reducing the incident photon energy. Full article
(This article belongs to the Special Issue Recent Advances in CMOS Image Sensor)
Show Figures

Figure 1

18 pages, 5265 KB  
Article
Pion Detection Using Single Photon Avalanche Diodes
by Anthony Frederick Bulling and Ian Underwood
Sensors 2023, 23(21), 8759; https://doi.org/10.3390/s23218759 - 27 Oct 2023
Cited by 1 | Viewed by 2025
Abstract
We present the first reported use of a CMOS-compatible single photon avalanche diode (SPAD) array for the detection of high-energy charged particles, specifically pions, using the Super Proton Synchrotron at CERN, the European Organization for Nuclear Research. The results confirm the detection of [...] Read more.
We present the first reported use of a CMOS-compatible single photon avalanche diode (SPAD) array for the detection of high-energy charged particles, specifically pions, using the Super Proton Synchrotron at CERN, the European Organization for Nuclear Research. The results confirm the detection of incident high-energy pions at 120 GeV, minimally ionizing, which complements the variety of ionizing radiation that can be detected with CMOS SPADs. Full article
(This article belongs to the Special Issue Optical Sensors Technology and Applications: Volume II)
Show Figures

Figure 1

15 pages, 1796 KB  
Article
A 256 × 256 LiDAR Imaging System Based on a 200 mW SPAD-Based SoC with Microlens Array and Lightweight RGB-Guided Depth Completion Neural Network
by Jier Wang, Jie Li, Yifan Wu, Hengwei Yu, Lebei Cui, Miao Sun and Patrick Yin Chiang
Sensors 2023, 23(15), 6927; https://doi.org/10.3390/s23156927 - 3 Aug 2023
Cited by 4 | Viewed by 5334
Abstract
Light detection and ranging (LiDAR) technology, a cutting-edge advancement in mobile applications, presents a myriad of compelling use cases, including enhancing low-light photography, capturing and sharing 3D images of fascinating objects, and elevating the overall augmented reality (AR) experience. However, its widespread adoption [...] Read more.
Light detection and ranging (LiDAR) technology, a cutting-edge advancement in mobile applications, presents a myriad of compelling use cases, including enhancing low-light photography, capturing and sharing 3D images of fascinating objects, and elevating the overall augmented reality (AR) experience. However, its widespread adoption has been hindered by the prohibitive costs and substantial power consumption associated with its implementation in mobile devices. To surmount these obstacles, this paper proposes a low-power, low-cost, single-photon avalanche detector (SPAD)-based system-on-chip (SoC) which packages the microlens arrays (MLAs) and a lightweight RGB-guided sparse depth imaging completion neural network for 3D LiDAR imaging. The proposed SoC integrates an 8 × 8 SPAD macropixel array with time-to-digital converters (TDCs) and a charge pump, fabricated using a 180 nm bipolar-CMOS-DMOS (BCD) process. Initially, the primary function of this SoC was limited to serving as a ranging sensor. A random MLA-based homogenizing diffuser efficiently transforms Gaussian beams into flat-topped beams with a 45° field of view (FOV), enabling flash projection at the transmitter. To further enhance resolution and broaden application possibilities, a lightweight neural network employing RGB-guided sparse depth complementation is proposed, enabling a substantial expansion of image resolution from 8 × 8 to quarter video graphics array level (QVGA; 256 × 256). Experimental results demonstrate the effectiveness and stability of the hardware encompassing the SoC and optical system, as well as the lightweight features and accuracy of the algorithmic neural network. The state-of-the-art SoC-neural network solution offers a promising and inspiring foundation for developing consumer-level 3D imaging applications on mobile devices. Full article
(This article belongs to the Collection 3D Imaging and Sensing System)
Show Figures

Figure 1

Back to TopTop