Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = Picornaviruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1632 KB  
Article
Genomic Characterization of Two Bovine Enterovirus Strains Isolated from Newly Transported Cattle
by Cuilan Wu, Shuhong Zhong, Shiwen Feng, Huili He, Shuai Hu, Zhongwei Chen, Changting Li, Xiongbiao Xuan, Hao Peng, Zuzhang Wei and Jun Li
Vet. Sci. 2025, 12(7), 660; https://doi.org/10.3390/vetsci12070660 - 11 Jul 2025
Viewed by 604
Abstract
This study isolated and identified two novel Chinese bovine enterovirus (BEV) strains, designated as BEV-GX1901 and BEV-GX1902, from newly transported cattle with the diarrheal feces symptom. We also determined their complete genome sequences (7408 and 7405 nucleotides, respectively) and found both strains have [...] Read more.
This study isolated and identified two novel Chinese bovine enterovirus (BEV) strains, designated as BEV-GX1901 and BEV-GX1902, from newly transported cattle with the diarrheal feces symptom. We also determined their complete genome sequences (7408 and 7405 nucleotides, respectively) and found both strains have a genome organization analogous to that of picornaviruses. To better understand these two novel strains, a detailed analysis was applied to both strains, including the time of the cytopathic effect (CPE) production, TCID50 measurement, trypsin sensitivity test, ether sensitivity test, chioroform sensitivity test, acid and alkali resistance test, and heat resistance test. Our results showed that these two strains are different in physical and chemical properties. Our study also characterized that BEV-GX1901 and BEV-GX1902, both belonging to the BEV-E4 subtype, were closely related to the Australian strains K2577 and SL305, and the Japanese strain IS1 based on their genome sequences and VP1 region characterizations. It is speculated that this may be related to cattle trade and transportation. Additionally, the gene-by-gene or amino acid-by-amino acid comparison of the two strains found they have differences between their 5′UTR, 3′UTR, VP2, VP1, 2A, 3C, and 3D regions. Our results provide an important update of the virus’s presence in China and contribute to a better understanding of the distribution and characterization of BEVs in cattle. Full article
Show Figures

Figure 1

14 pages, 2139 KB  
Article
Phospholipase PLA2G16 Accelerates the Host Interferon Signaling Pathway Response to FMDV
by Bingjie Sun, Xiaodong Qin, Taoqing Zhang, Sujie Dong, Yinbo Ye, Changying Wang, Yan Zhang, Rongzeng Hao, Yi Ru, Hong Tian and Haixue Zheng
Viruses 2025, 17(7), 883; https://doi.org/10.3390/v17070883 - 23 Jun 2025
Viewed by 799
Abstract
PLA2G16 is a member of the phospholipase A2 family that catalyzes the generation of lysophosphatidic acids (LPAs) and free fatty acids (FFAs) from phosphatidic acid. Previously, PLA2G16 was found to be a host factor for picornaviruses. Here, we discovered that the Foot-and-Mouth Disease [...] Read more.
PLA2G16 is a member of the phospholipase A2 family that catalyzes the generation of lysophosphatidic acids (LPAs) and free fatty acids (FFAs) from phosphatidic acid. Previously, PLA2G16 was found to be a host factor for picornaviruses. Here, we discovered that the Foot-and-Mouth Disease Virus (FMDV) infection led to an elevation in PLA2G16 transcription. We established PLA2G16 overexpression and knockdown cell lines in PK-15 cells to investigate the potential role of PLA2G16 in FMDV infection. Our findings revealed that during FMDV infection, PLA2G16-overexpressing cells had increased levels of phosphorylated STAT1 and the interferon-stimulating factors ISG15 and ISG56. In PLA2G16-overexpressing cells, p-STAT1 was observed at higher levels and earlier than in wild-type cells. Subsequent research demonstrated that PLA2G16 specifically promoted an antiviral innate immune response against FMDV. The host could detect the early release of FMDV viral nucleic acid in PLA2G16-overexpressing cells and trigger the interferon signaling pathway. Additionally, we discovered that the supernatants of PLA2G16-overexpressing cells stimulated the production of higher levels of ISG56 and phosphorylated STAT1. This suggests that PLA2G16-overexpressing cells can activate the innate immune pathway of uninfected cells after FMDV infection. Full article
Show Figures

Figure 1

27 pages, 4146 KB  
Review
The Hidden Threat: Rodent-Borne Viruses and Their Impact on Public Health
by Awad A. Shehata, Rokshana Parvin, Shadia Tasnim, Phelipe Magalhães Duarte, Alfonso J. Rodriguez-Morales and Shereen Basiouni
Viruses 2025, 17(6), 809; https://doi.org/10.3390/v17060809 - 2 Jun 2025
Cited by 3 | Viewed by 3953
Abstract
Rodents represent the most diverse order of mammals, comprising over 2200 species and nearly 42% of global mammalian biodiversity. They are major reservoirs of zoonotic pathogens, including viruses, bacteria, protozoa, and fungi, and are particularly effective at transmitting diseases, especially synanthropic species that [...] Read more.
Rodents represent the most diverse order of mammals, comprising over 2200 species and nearly 42% of global mammalian biodiversity. They are major reservoirs of zoonotic pathogens, including viruses, bacteria, protozoa, and fungi, and are particularly effective at transmitting diseases, especially synanthropic species that live in close proximity to humans. As of April 2025, approximately 15,205 rodent-associated viruses have been identified across 32 viral families. Among these, key zoonotic agents belong to the Arenaviridae, Hantaviridae, Picornaviridae, Coronaviridae, and Poxviridae families. Due to their adaptability to both urban and rural environments, rodents serve as efficient vectors across diverse ecological landscapes. Environmental and anthropogenic factors, such as climate change, urbanization, deforestation, and emerging pathogens, are increasingly linked to rising outbreaks of rodent-borne diseases. This review synthesizes current knowledge on rodent-borne viral zoonoses, focusing on their taxonomy, biology, host associations, transmission dynamics, clinical impact, and public health significance. It underscores the critical need for early detection, effective surveillance, and integrated control strategies. A multidisciplinary approach, including enhanced vector control, improved environmental sanitation, and targeted public education, is essential for mitigating the growing threat of rodent-borne zoonoses to global health. Full article
(This article belongs to the Special Issue Rodent-Borne Viruses 2026)
Show Figures

Figure 1

20 pages, 3984 KB  
Article
Discovery of Small Molecules Against Foot-and-Mouth Disease Virus Replication by Targeting 2C Helicase Activity
by Saisai Zhou, Suyu Mu, Shuqi Yu, Yang Tian, Sijia Lu, Zhen Li, Hao Wu, Jiaying Zhao, Huanchun Chen, Shiqi Sun and Yunfeng Song
Viruses 2025, 17(6), 785; https://doi.org/10.3390/v17060785 - 29 May 2025
Viewed by 739
Abstract
Background: The 2C protein of foot-and-mouth disease virus (FMDV), a member of helicase superfamily 3 (SF3), drives viral genome replication and serves as a critical target for antiviral drug development. Methods: A fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) platform was developed [...] Read more.
Background: The 2C protein of foot-and-mouth disease virus (FMDV), a member of helicase superfamily 3 (SF3), drives viral genome replication and serves as a critical target for antiviral drug development. Methods: A fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) platform was developed to identify 2C helicase inhibitors. Primary screening evaluated 4424 compounds for helicase inhibition. Molecular docking analyzed inhibitor interactions with the N207 residue within the catalytic core and helicase inhibition assays classified the inhibitor type (mixed, competitive, noncompetitive). Differential scanning fluorimetry (nanoDSF) quantified 2C thermal destabilization. Antiviral activity was assessed via indirect immunofluorescence, RT-qPCR, and plaque reduction assays. Results: Six compounds inhibited 2C helicase activity at >620 μM. Molecular docking revealed hydrogen bonding, hydrophobic interactions, and π-cation stabilization at the catalytic core. 2-MPO and MPPI were classified as mixed-type inhibitors, 5-TzS and 2-PyOH as competitive, and DCMQ/Spiro-BD-CHD-dione as noncompetitive. NanoDSF showed a ΔTm ≥ 1.5 °C (2.5 mM compounds), with reduced destabilization in N207A mutants. Antiviral assays identified 2-MPO and MPPI as optimal inhibitors. MPPI achieved effective FMDV suppression at 160 μM, exhibiting two orders of magnitude higher potency than 2-MPO (400 μM). Conclusions: The established FRET-based HTS platform targeting 2C helicase facilitates anti-FMDV lead discovery, while 2C inhibitors may serve as an effective therapeutic strategy against other picornaviruses. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

14 pages, 1097 KB  
Review
Sequences and Structures of Viral Proteins Linked to the Genomes (VPg) of RNA Viruses
by Catherine H. Schein
Viruses 2025, 17(5), 645; https://doi.org/10.3390/v17050645 - 29 Apr 2025
Viewed by 1197
Abstract
In the mid-1970s, it was revealed that the 5′ end of the RNA genome of poliovirus (PV) was covalently linked to a peptide called VPg (viral protein, genome-linked). Subsequently, VPgs have been found attached to many other viruses and even phages. This review [...] Read more.
In the mid-1970s, it was revealed that the 5′ end of the RNA genome of poliovirus (PV) was covalently linked to a peptide called VPg (viral protein, genome-linked). Subsequently, VPgs have been found attached to many other viruses and even phages. This review summarizes the patterns of physicochemical properties that are conserved within the VPgs of plus-strand RNA viruses where short-peptide VPgs have been identified. Mutagenesis and structural data indicate the importance of a 5 aa conserved motif at the N-termini of picornaviral VPgs (around the tyrosine 3 residue, which forms a covalent bond to UMP and the RNA). Hidden Markov models have been used to find motifs and VPgs in additional genera of picornaviruses, as well as dicistroviruses in insects and comoviruses in plants. These latter VPgs are bound to the RNA termina through linkages to serine or threonine. The role of free VPg and VPgpU needs clarification, especially in light of multiple genome copies in many of the viruses. Lysine and other positively charged side chains are hallmarks of VPgs. These may contribute to interactions with the viral RNA, polymerase, membranes and cellular proteins. The larger protein VPgs from potyviruses and noroviruses/caliciviruses may also show some areas of similar properties to these small peptides. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

9 pages, 1637 KB  
Communication
Modulation of Ire1-Xbp1 Defense Pathway in Encephalomyocarditis Virus-Infected HeLa Cells
by Anna Shishova, Yury Ivin, Ekaterina Gladneva, Ksenia Fominykh, Ilya Dyugay and Anatoly Gmyl
Viruses 2025, 17(3), 360; https://doi.org/10.3390/v17030360 - 2 Mar 2025
Viewed by 1018
Abstract
A key contributor to the pathogenicity of viruses is their interaction with cellular defense mechanisms, including UPR (unfolded protein response) that counteracts the accumulation of misfolded proteins in the endoplasmic reticulum (known as ER stress). One of the UPR branches is mediated by [...] Read more.
A key contributor to the pathogenicity of viruses is their interaction with cellular defense mechanisms, including UPR (unfolded protein response) that counteracts the accumulation of misfolded proteins in the endoplasmic reticulum (known as ER stress). One of the UPR branches is mediated by the IRE1 (inositol-requiring enzyme 1) protein, which possesses protein kinase and RNase activities that facilitate the unconventional cytoplasmic splicing of XBP1 mRNA, leading to the upregulation of the XBP1 transcription factor. In this study, we demonstrate that Encephalomyocarditis Virus (Cardiovirus rueckerti) is able to suppress IRE1-dependent XBP1 activation. HeLa cells infection with EMCV resulted in the modulation of phosphorylated IRE1 levels throughout the infection cycle. Viral infection did not result in the accumulation of spliced XBP1 mRNA. Moreover, the addition of a chemical inducer of ER stress (dithiothreitol) to infected cells led to a markedly lower accumulation of spliced XBP1 mRNA as compared to the level of this mRNA in inducer-treated mock-infected cells. Thus, our results demonstrate the ability of picornaviruses to modulate another defensive activity of the host cell. Full article
(This article belongs to the Special Issue Host Cell-Virus Interaction, 4th Edition)
Show Figures

Figure 1

18 pages, 3619 KB  
Article
Application of a Sensitive Capture Sequencing Approach to Reservoir Surveillance Detects Novel Viruses in Zambian Wild Rodents
by Lavel C. Moonga, Jones Chipinga, John P. Collins, Vishal Kapoor, Ngonda Saasa, King S. Nalubamba, Bernard M. Hang’ombe, Boniface Namangala, Tapiwa Lundu, Xiang-Jun Lu, Samuel Yingst, J. Kenneth Wickiser and Thomas Briese
Viruses 2024, 16(11), 1754; https://doi.org/10.3390/v16111754 - 9 Nov 2024
Cited by 1 | Viewed by 2597 | Correction
Abstract
We utilized a pan-viral capture sequencing assay, VirCapSeq-VERT, to assess viral diversity in rodents from the Eastern Province of Zambia as a model for pre-pandemic viral reservoir surveillance. We report rodent adeno-, parvo-, paramyxo-, and picornaviruses that represent novel species or isolates, including [...] Read more.
We utilized a pan-viral capture sequencing assay, VirCapSeq-VERT, to assess viral diversity in rodents from the Eastern Province of Zambia as a model for pre-pandemic viral reservoir surveillance. We report rodent adeno-, parvo-, paramyxo-, and picornaviruses that represent novel species or isolates, including murine adenovirus 4, two additional species in the genus Chaphamaparvovirus, two paramyxoviruses distantly related to unclassified viruses in the genus Jeilongvirus, and the first Aichivirus A sequence identified from rodents in Africa. Our results emphasize the importance of rodents as a reservoir for potential zoonotic viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 2493 KB  
Article
Picornavirus Evolution: Genomes Encoding Multiple 2ANPGP Sequences—Biomedical and Biotechnological Utility
by Garry A. Luke, Lauren S. Ross, Yi-Ting Lo, Hsing-Chieh Wu and Martin D. Ryan
Viruses 2024, 16(10), 1587; https://doi.org/10.3390/v16101587 - 9 Oct 2024
Cited by 1 | Viewed by 1400
Abstract
Alignment of picornavirus proteinase/polymerase sequences reveals this family evolved into five ‘supergroups’. Interestingly, the nature of the 2A region of the picornavirus polyprotein is highly correlated with this phylogeny. Viruses within supergroup 4, the Paavivirinae, have complex 2A regions with many viruses [...] Read more.
Alignment of picornavirus proteinase/polymerase sequences reveals this family evolved into five ‘supergroups’. Interestingly, the nature of the 2A region of the picornavirus polyprotein is highly correlated with this phylogeny. Viruses within supergroup 4, the Paavivirinae, have complex 2A regions with many viruses encoding multiple 2ANPGP sequences. In vitro transcription/translation analyses of a synthetic polyprotein comprising green fluorescent protein (GFP) linked to β-glucuronidase (GUS) via individual 2ANPGPs showed two main phenotypes: highly active 2ANPGP sequences—similar to foot-and-mouth disease virus 2ANPGP—and, surprisingly, a novel phenotype of some 2ANPGP sequences which apparently terminate translation at the C-terminus of 2ANPGP without detectable re-initiation of downstream sequences (GUS). Probing databases with the short sequences between 2ANPGPs did not reveal any potential ‘accessory’ functions. The novel, highly active, 2A-like sequences we identified substantially expand the toolbox for biomedical/biotechnological co-expression applications. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

15 pages, 3228 KB  
Article
Exploring Canine Picornavirus Diversity in the USA Using Wastewater Surveillance: From High-Throughput Genomic Sequencing to Immuno-Informatics and Capsid Structure Modeling
by Temitope O. C. Faleye, Peter Skidmore, Amir Elyaderani, Sangeet Adhikari, Nicole Kaiser, Abriana Smith, Allan Yanez, Tyler Perleberg, Erin M. Driver, Rolf U. Halden, Arvind Varsani and Matthew Scotch
Viruses 2024, 16(8), 1188; https://doi.org/10.3390/v16081188 - 24 Jul 2024
Viewed by 2054
Abstract
The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting [...] Read more.
The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting countermeasures (especially for emerging and re-emerging viruses) remain a challenge in many resource-limited settings. Here, we describe a workflow that couples wastewater surveillance, high-throughput sequencing, phylogenetics, immuno-informatics, and virus capsid structure modeling for the genotype-to-serotype characterization of uncultivated picornavirus sequences identified in wastewater. Specifically, we analyzed canine picornaviruses (CanPVs), which are uncultivated and yet-to-be-assigned members of the family Picornaviridae that cause systemic infections in canines. We analyzed 118 archived (stored at −20 °C) wastewater (WW) samples representing a population of ~700,000 persons in southwest USA between October 2019 to March 2020 and October 2020 to March 2021. Samples were pooled into 12 two-liter volumes by month, partitioned (into filter-trapped solids [FTSs] and filtrates) using 450 nm membrane filters, and subsequently concentrated to 2 mL (1000×) using 10,000 Da MW cutoff centrifugal filters. The 24 concentrates were subjected to RNA extraction, CanPV complete capsid single-contig RT-PCR, Illumina sequencing, phylogenetics, immuno-informatics, and structure prediction. We detected CanPVs in 58.3% (14/24) of the samples generated 13,824,046 trimmed Illumina reads and 27 CanPV contigs. Phylogenetic and pairwise identity analyses showed eight CanPV genotypes (intragenotype divergence <14%) belonging to four clusters, with intracluster divergence of <20%. Similarity analysis, immuno-informatics, and virus protomer and capsid structure prediction suggested that the four clusters were likely distinct serological types, with predicted cluster-distinguishing B-cell epitopes clustered in the northern and southern rims of the canyon surrounding the 5-fold axis of symmetry. Our approach allows forgenotype-to-serotype characterization of uncultivated picornavirus sequences by coupling phylogenetics, immuno-informatics, and virus capsid structure prediction. This consequently bypasses a major wet lab-associated bottleneck, thereby allowing resource-limited settings to leapfrog from wastewater-sourced genomic data to valuable immunological insights necessary for the development of prophylaxis and other mitigation measures. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

13 pages, 9740 KB  
Article
VP0 Myristoylation Is Essential for Senecavirus A Replication
by Peiyu Xiao, Liang Meng, Xingyang Cui, Xinran Liu, Lei Qin, Fandan Meng, Xuehui Cai, Dongni Kong, Tongqing An and Haiwei Wang
Pathogens 2024, 13(7), 601; https://doi.org/10.3390/pathogens13070601 - 21 Jul 2024
Cited by 1 | Viewed by 1569
Abstract
Many picornaviruses require the myristoylation of capsid proteins for viral replication. Myristoylation is a site-specific lipidation to the N-terminal G residue of viral proteins, which is catalyzed by the ubiquitous eukaryotic enzyme N-myristoyltransferase (NMT) by allocating the myristoyl group to the N-terminal G [...] Read more.
Many picornaviruses require the myristoylation of capsid proteins for viral replication. Myristoylation is a site-specific lipidation to the N-terminal G residue of viral proteins, which is catalyzed by the ubiquitous eukaryotic enzyme N-myristoyltransferase (NMT) by allocating the myristoyl group to the N-terminal G residue. IMP-1088 and DDD85646 are two inhibitors that can deprive NMT biological functions. Whether Senecavirus A (SVA) uses NMT to modify VP0 and regulate viral replication remains unclear. Here, we found that NMT inhibitors could inhibit SVA replication. NMT1 knock-out in BHK-21 cells significantly suppressed viral replication. In contrast, the overexpression of NMT1 in BHK-21 cells benefited viral replication. These results indicated that VP0 is a potential NMT1 substrate. Moreover, we found that the myristoylation of SVA VP0 was correlated to the subcellular distribution of this protein in the cytoplasm. Further, we evaluated which residues at the N-terminus of VP0 are essential for viral replication. The substitution of N-terminal G residue, the myristoylation site of VP0, produced a nonviable virus. The T residue at the fifth position of the substrates facilitates the binding of the substrates to NMT. And our results showed that the T residue at the fifth position of VP0 played a positive role in SVA replication. Taken together, we demonstrated that SVA VP0 myristoylation plays an essential role in SVA replication. Full article
Show Figures

Figure 1

20 pages, 2420 KB  
Article
Diversity of Picorna-Like Viruses in the Teltow Canal, Berlin, Germany
by Roland Zell, Marco Groth, Lukas Selinka and Hans-Christoph Selinka
Viruses 2024, 16(7), 1020; https://doi.org/10.3390/v16071020 - 25 Jun 2024
Cited by 1 | Viewed by 1977
Abstract
The viromes of freshwater bodies are underexplored. The Picornavirales order, with 371 acknowledged species, is one of the most expansive and diverse groups of eukaryotic RNA viruses. In this study, we add 513 picorna-like viruses to the assemblage of more than 2000 unassigned [...] Read more.
The viromes of freshwater bodies are underexplored. The Picornavirales order, with 371 acknowledged species, is one of the most expansive and diverse groups of eukaryotic RNA viruses. In this study, we add 513 picorna-like viruses to the assemblage of more than 2000 unassigned picorna-like viruses. Our set of the aquatic Picornavirales virome of the Teltow Canal in Berlin, Germany, consists of 239 complete and 274 partial genomes. This urban freshwater body is characterized by the predominance of marna-like viruses (30.8%) and dicistro-like viruses (19.1%), whereas picornaviruses, iflaviruses, solinvi-like viruses, polycipi-like viruses, and nora-like viruses are considerably less prevalent. Caliciviruses and secoviruses were absent in our sample. Although presenting characteristic domains of Picornavirales, more than 100 viruses (20.8%) could not be assigned to any of the 9 Picornavirales families. Thirty-three viruses of the Marnaviridae—mostly locarna-like viruses—exhibit a monocistronic genome layout. Besides a wealth of novel virus sequences, viruses with peculiar features are reported. Among these is a clade of untypeable marna-like viruses with dicistronic genomes, but with the capsid protein-encoding open reading frame located at the 5′ part of their RNA. A virus with a similar genome layout but clustering with dicistroviruses was also observed. We further detected monocistronic viruses with a polymerase gene related to aparaviruses. The detection of Aichi virus and five novel posa-like viruses indicates a slight burden in municipal wastewater. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

16 pages, 3782 KB  
Article
Recombinant Viruses from the Picornaviridae Family Occurring in Racing Pigeons
by Ewa Łukaszuk, Daria Dziewulska and Tomasz Stenzel
Viruses 2024, 16(6), 917; https://doi.org/10.3390/v16060917 - 4 Jun 2024
Cited by 4 | Viewed by 1370
Abstract
Viruses from Picornaviridae family are known pathogens of poultry, although the information on their occurrence and pathogenicity in pigeons is scarce. In this research, efforts are made to broaden the knowledge on Megrivirus B and Pigeon picornavirus B prevalence, phylogenetic relationship with other [...] Read more.
Viruses from Picornaviridae family are known pathogens of poultry, although the information on their occurrence and pathogenicity in pigeons is scarce. In this research, efforts are made to broaden the knowledge on Megrivirus B and Pigeon picornavirus B prevalence, phylogenetic relationship with other avian picornaviruses and their possible connection with enteric disease in racing pigeons. As a result of Oxford Nanopore Sequencing, five Megrivirus and two pigeon picornavirus B-like genome sequences were recovered, among which three recombinant strains were detected. The recombinant fragments represented an average of 10.9% and 25.5% of the genome length of the Pigeon picornavirus B and Megrivirus B reference strains, respectively. The phylogenetic analysis revealed that pigeons are carriers of species-specific picornaviruses. TaqMan qPCR assays revealed 7.8% and 19.0% prevalence of Megrivirus B and 32.2% and 39.7% prevalence of Pigeon picornavirus B in the group of pigeons exhibiting signs of enteropathy and in the group of asymptomatic pigeons, respectively. In turn, digital droplet PCR showed a considerably higher number of genome copies of both viruses in sick than in asymptomatic pigeons. The results of quantitative analysis leave the role of picornaviruses in enteropathies of pigeons unclear. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals and Birds: Volume 5)
Show Figures

Figure 1

22 pages, 4970 KB  
Article
Viral Diversity in Samples of Freshwater Gastropods Benedictia baicalensis (Caenogastropoda: Benedictiidae) Revealed by Total RNA-Sequencing
by Tatyana V. Butina, Tamara I. Zemskaya, Artem N. Bondaryuk, Ivan S. Petrushin, Igor V. Khanaev, Ivan A. Nebesnykh and Yurij S. Bukin
Int. J. Mol. Sci. 2023, 24(23), 17022; https://doi.org/10.3390/ijms242317022 - 30 Nov 2023
Cited by 4 | Viewed by 1772
Abstract
Previously, the main studies were focused on viruses that cause disease in commercial and farmed shellfish and cause damage to food enterprises (for example, Ostreavirusostreidmalaco1, Aurivirus haliotidmalaco1 and Aquabirnavirus tellinae). Advances in high-throughput sequencing technologies have extended the studies to natural [...] Read more.
Previously, the main studies were focused on viruses that cause disease in commercial and farmed shellfish and cause damage to food enterprises (for example, Ostreavirusostreidmalaco1, Aurivirus haliotidmalaco1 and Aquabirnavirus tellinae). Advances in high-throughput sequencing technologies have extended the studies to natural populations of mollusks (and other invertebrates) as unexplored niches of viral diversity and possible sources of emerging diseases. These studies have revealed a huge diversity of mostly previously unknown viruses and filled gaps in the evolutionary history of viruses. In the present study, we estimated the viral diversity in samples of the Baikal endemic gastropod Benedictia baicalensis using metatranscriptomic analysis (total RNA-sequencing); we were able to identify a wide variety of RNA-containing viruses in four samples (pools) of mollusks collected at three stations of Lake Baikal. Most of the identified viral genomes (scaffolds) had only distant similarities to known viruses or (in most cases) to metagenome-assembled viral genomes from various natural samples (mollusks, crustaceans, insects and others) mainly from freshwater ecosystems. We were able to identify viruses similar to those previously identified in mollusks (in particular to the picornaviruses Biomphalaria virus 1 and Biomphalaria virus 3 from the freshwater gastropods); it is possible that picorna-like viruses (as well as a number of other identified viruses) are pathogenic for Baikal gastropods. Our results also suggested that Baikal mollusks, like other species, may bioaccumulate or serve as a reservoir for numerous viruses that infect a variety of organisms (including vertebrates). Full article
(This article belongs to the Special Issue Recent Molecular Research in Virology and Oncology)
Show Figures

Figure 1

18 pages, 4227 KB  
Article
Small Molecules Targeting 3C Protease Inhibit FMDV Replication and Exhibit Virucidal Effect in Cell-Based Assays
by Sirin Theerawatanasirikul, Varanya Lueangaramkul, Achiraya Pantanam, Natjira Mana, Ploypailin Semkum and Porntippa Lekcharoensuk
Viruses 2023, 15(9), 1887; https://doi.org/10.3390/v15091887 - 6 Sep 2023
Cited by 5 | Viewed by 2190
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease in cloven-hoofed animals, caused by the foot-and-mouth disease virus (FMDV). It is endemic in Asia and Africa but spreads sporadically throughout the world, resulting in significant losses in the livestock industry. Effective anti-FMDV therapeutics could [...] Read more.
Foot-and-mouth disease (FMD) is a highly contagious disease in cloven-hoofed animals, caused by the foot-and-mouth disease virus (FMDV). It is endemic in Asia and Africa but spreads sporadically throughout the world, resulting in significant losses in the livestock industry. Effective anti-FMDV therapeutics could be a supportive control strategy. Herein, we utilized computer-aided, structure-based virtual screening to filter lead compounds from the National Cancer Institute (NCI) diversity and mechanical libraries using FMDV 3C protease (3Cpro) as the target. Seven hit compounds were further examined via cell-based antiviral and intracellular protease assays, in which two compounds (NSC116640 and NSC332670) strongly inhibited FMDV, with EC50 values at the micromolar level of 2.88 µM (SI = 73.15) and 5.92 µM (SI = 11.11), respectively. These compounds could inactivate extracellular virus directly in a virucidal assay by reducing 1.00 to 2.27 log TCID50 of the viral titers in 0–60 min. In addition, the time-of-addition assay revealed that NSC116640 inhibited FMDV at the early stage of infection (0–8 h), while NSC332670 diminished virus titers when added simultaneously at infection (0 h). Both compounds showed good FMDV 3Cpro inhibition with IC50 values of 10.85 µM (NSC116640) and 4.21 µM (NSC332670). The molecular docking of the compounds on FMDV 3Cpro showed their specific interactions with amino acids in the catalytic triad of FMDV 3Cpro. Both preferentially reacted with enzymes and proteases in physicochemical and ADME analysis studies. The results revealed two novel small molecules with antiviral activities against FMDV and probably related picornaviruses. Full article
(This article belongs to the Special Issue Novel Antiviral Targets against Emerging Viruses)
Show Figures

Figure 1

17 pages, 3021 KB  
Article
Development of FRET and Stress Granule Dual-Based System to Screen for Viral 3C Protease Inhibitors
by Jingjing Zhang, Yingpei Jiang, Chunxiu Wu, Dan Zhou, Jufang Gong, Tiejun Zhao and Zhigang Jin
Molecules 2023, 28(7), 3020; https://doi.org/10.3390/molecules28073020 - 28 Mar 2023
Cited by 5 | Viewed by 2835
Abstract
3C proteases (3Cpros) of picornaviruses and 3C-like proteases (3CLpros) of coronaviruses and caliciviruses represent a group of structurally and functionally related viral proteases that play pleiotropic roles in supporting the viral life cycle and subverting host antiviral responses. The design and screening for [...] Read more.
3C proteases (3Cpros) of picornaviruses and 3C-like proteases (3CLpros) of coronaviruses and caliciviruses represent a group of structurally and functionally related viral proteases that play pleiotropic roles in supporting the viral life cycle and subverting host antiviral responses. The design and screening for 3C/3CLpro inhibitors may contribute to the development broad-spectrum antiviral therapeutics against viral diseases related to these three families. However, current screening strategies cannot simultaneously assess a compound’s cytotoxicity and its impact on enzymatic activity and protease-mediated physiological processes. The viral induction of stress granules (SGs) in host cells acts as an important antiviral stress response by blocking viral translation and stimulating the host immune response. Most of these viruses have evolved 3C/3CLpro-mediated cleavage of SG core protein G3BP1 to counteract SG formation and disrupt the host defense. Yet, there are no SG-based strategies screening for 3C/3CLpro inhibitors. Here, we developed a fluorescence resonance energy transfer (FRET) and SG dual-based system to screen for 3C/3CLpro inhibitors in living cells. We took advantage of FRET to evaluate the protease activity of poliovirus (PV) 3Cpro and live-monitor cellular SG dynamics to cross-verify its effect on the host antiviral response. Our drug screen uncovered a novel role of Telaprevir and Trifluridine as inhibitors of PV 3Cpro. Moreover, Telaprevir and Trifluridine also modulated 3Cpro-mediated physiological processes, including the cleavage of host proteins, inhibition of the innate immune response, and consequent facilitation of viral replication. Taken together, the FRET and SG dual-based system exhibits a promising potential in the screening for inhibitors of viral proteases that cleave G3BP1. Full article
(This article belongs to the Special Issue Design, Synthesis, and Evaluation of Protease Inhibitors)
Show Figures

Figure 1

Back to TopTop