Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Siling Co

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2781 KB  
Article
Changes in the Suitable Habitats of Three Endemic Fishes to Climate Change in Tibet
by Tong Mu, Dekui He, Ren Zhu, Xiaoyun Sui and Yifeng Chen
Biology 2022, 11(12), 1808; https://doi.org/10.3390/biology11121808 - 13 Dec 2022
Cited by 4 | Viewed by 2517
Abstract
As one of the most sensitive regions to global climate change, Tibet is subject to remarkable changes in biota over the past decades, including endemic fish species. However, no study has attempted to predict the changes in the distribution of Tibetan fishes, leaving [...] Read more.
As one of the most sensitive regions to global climate change, Tibet is subject to remarkable changes in biota over the past decades, including endemic fish species. However, no study has attempted to predict the changes in the distribution of Tibetan fishes, leaving a great blank for aquatic conservation in Tibet. Based on the Maximum Entropy model (MaxEnt), this study predicted the changes in the suitable habitats of three endemic fish species, including two species mainly inhabiting the rivers (Glyptosternon maculatum, Oxygymnocypris stewartii) and one species mainly inhabiting lakes (Gymnocypris selincuoensis) in Tibet under two representative concentration pathways (RCP2.6 and RCP8.5) under two future scenarios (2050 and 2090), and explored the impact of the barrier effects of hydropower projects on the suitable habitats of fish. The results showed that under the four scenarios, the net change in the suitable habitats of the G. maculatum was negative (−2.0–−18.8%), while the suitable habitats of the O. stewartii and G. selincuoensis would be expanded, with the net change of 60.0–238.3% and 46.4–56.9%, respectively. Under different scenarios, the suitable habitats of the three species had a tendency to migrate to a higher elevation, and the largest expansion in the range of migration was projected to occur under the 2090-RCP8.5 scenario. In addition, due to the impact of the hydropower projects, the ability of G. maculatum to obtain new suitable habitats from climate change would be reduced by 2.0–8.1%, which was less than the loss induced by climate change (5.5–25.1%), while the suitable habitats of O. stewartii would be reduced by 3.0–9.7%, which was more than the impact of climate change (about 1%). The results of this study have guiding significance for the conservation and management of fish resources diversity in the Yarlung Tsangpo River basin and Siling Co basin of Tibet, and also provide a reference for the coordination and scientific planning of hydropower projects in Tibet. Full article
Show Figures

Figure 1

21 pages, 4923 KB  
Article
Simulation of the Water Storage Capacity of Siling Co Lake on the Tibetan Plateau and Its Hydrological Response to Climate Change
by Yuanzhi Tang, Junjun Huo, Dejun Zhu and Zhe Yuan
Water 2022, 14(19), 3175; https://doi.org/10.3390/w14193175 - 9 Oct 2022
Cited by 7 | Viewed by 2921
Abstract
Due to their special geographical locations and environments, plateau lakes play a key role in maintaining regional water balance, but lake water storage changes are upsetting this balance. Based on data from lakes on the Tibetan Plateau (TP), this study used the Spatial [...] Read more.
Due to their special geographical locations and environments, plateau lakes play a key role in maintaining regional water balance, but lake water storage changes are upsetting this balance. Based on data from lakes on the Tibetan Plateau (TP), this study used the Spatial Processes in Hydrology (SPHY) model to simulate the runoff process in the Siling Co basin from 2000 to 2016 and estimated the changes in water storage of Siling Co and the contribution of each component of runoff into the lake. The results showed that the water storage capacity of Siling Co has increased by 1.2 billion m3/yr, and the lake area continues to expand; declines in precipitation have significantly reduced baseflow (BF), rainfall runoff (RR), and snow runoff (SR), while temperature increases have raised glacier runoff (GR). The simulated average runoff showed that BF, GF, RR, and SR contribute 24%, 22%, 16%, and 38%, respectively, of the flow into Siling Co. Based on hypothetical climate change scenarios and two Shared Socioeconomic Pathways (SSP1-2.6 and SSP3-7.0) from the MRI-ESM2-0 GCMs, this study estimated that a 10% increase in precipitation could lead to a 28% increase in total runoff, while a 1 °C increase in temperature could lead to a 10% decrease in runoff. The average runoff depth of the basin is expected to increase by 30–39 mm, since the temperature and precipitation may increase significantly from 2020 to 2050. The intensification of glacial melting caused by the increase in temperature continues, posing a greater challenge to many water resources management problems caused by the expansion of lakes. Full article
(This article belongs to the Special Issue Climate Changes and Hydrological Processes)
Show Figures

Figure 1

19 pages, 956 KB  
Article
Antibiotic and Metal Resistance in Escherichia coli Isolated from Pig Slaughterhouses in the United Kingdom
by Hongyan Yang, Shao-Hung Wei, Jon L. Hobman and Christine E. R. Dodd
Antibiotics 2020, 9(11), 746; https://doi.org/10.3390/antibiotics9110746 - 28 Oct 2020
Cited by 20 | Viewed by 4865
Abstract
Antimicrobial resistance is currently an important concern, but there are few data on the co-presence of metal and antibiotic resistance in potentially pathogenic Escherichia coli entering the food chain from pork, which may threaten human health. We have examined the phenotypic and genotypic [...] Read more.
Antimicrobial resistance is currently an important concern, but there are few data on the co-presence of metal and antibiotic resistance in potentially pathogenic Escherichia coli entering the food chain from pork, which may threaten human health. We have examined the phenotypic and genotypic resistances to 18 antibiotics and 3 metals (mercury, silver, and copper) of E. coli from pig slaughterhouses in the United Kingdom. The results showed resistances to oxytetracycline, streptomycin, sulphonamide, ampicillin, chloramphenicol, trimethoprim–sulfamethoxazole, ceftiofur, amoxicillin–clavulanic acid, aztreonam, and nitrofurantoin. The top three resistances were oxytetracycline (64%), streptomycin (28%), and sulphonamide (16%). Two strains were resistant to six kinds of antibiotics. Three carried the blaTEM gene. Fifteen strains (18.75%) were resistant to 25 µg/mL mercury and five (6.25%) of these to 50 µg/mL; merA and merC genes were detected in 14 strains. Thirty-five strains (43.75%) showed resistance to silver, with 19 possessing silA, silB, and silE genes. Fifty-five strains (68.75%) were resistant to 8 mM copper or above. Seven contained the pcoE gene. Some strains were multi-resistant to antibiotics, silver, and copper. The results in this study, based on strains isolated between 2007 and 2010, will aid understanding about the effects of strategies to reduce resistance and mechanisms of antimicrobial resistance (AMR). Full article
Show Figures

Figure 1

15 pages, 672 KB  
Article
Delayed Response of Lake Area Change to Climate Change in Siling Co Lake, Tibetan Plateau, from 2003 to 2013
by Guihua Yi and Tingbin Zhang
Int. J. Environ. Res. Public Health 2015, 12(11), 13886-13900; https://doi.org/10.3390/ijerph121113886 - 30 Oct 2015
Cited by 22 | Viewed by 5595
Abstract
The Tibetan Plateau is a key area for research on global environmental changes. During the past 50 years, the climate in the Siling Co lake area has become continuously warmer and wetter, which may have further caused the increase in Siling Co lake [...] Read more.
The Tibetan Plateau is a key area for research on global environmental changes. During the past 50 years, the climate in the Siling Co lake area has become continuously warmer and wetter, which may have further caused the increase in Siling Co lake area. Based on the Siling Co lake area (2003 to 2013) and climate data acquired from the Xainza and Baingoin meteorological stations (covering 1966 to 2013), we analyzed the delayed responses of lake area changes to climate changes through grey relational analysis. The following results were obtained: (1) The Siling Co lake area exhibited a rapid expansion trend from 2003 to 2013. The lake area increased to 2318 km2, with a growth ratio of 14.6% and an annual growth rate of 26.84 km2·year−1; (2) The rate of air temperature increase was different in the different seasons. The rate in the cold season was about 0.41 °C per ten years and 0.32 °C in hot season. Precipitation evidently increased, with a change rate of 17.70 mm per ten years in the hot season and a slight increase with a change rate of 2.36 mm per ten years in the cold season. Pan evaporation exhibited evidently decreasing trends in both the hot and cold seasons, with rates of −33.35 and −14.84 mm per ten years, respectively; (3) An evident delayed response of lake area change to climate change is observed, with a delay time of approximately one to two years. Full article
Show Figures

Figure 1

13 pages, 725 KB  
Article
Temporal and Spatial Aspects of Snow Distribution in the Nam Co Basin on the Tibetan Plateau from MODIS Data
by Jan Kropacek, Chen Feng, Markus Alle, Shichang Kang and Volker Hochschild
Remote Sens. 2010, 2(12), 2700-2712; https://doi.org/10.3390/rs2122700 - 7 Dec 2010
Cited by 24 | Viewed by 8782
Abstract
Large areas of the Tibetan plateau are only covered by a sparse network of ground snow sampling stations, while the snow cover is highly heterogeneously distributed due to wind, topography etc. Nevertheless, the snow accumulation and spatial patterns play an important role [...] Read more.
Large areas of the Tibetan plateau are only covered by a sparse network of ground snow sampling stations, while the snow cover is highly heterogeneously distributed due to wind, topography etc. Nevertheless, the snow accumulation and spatial patterns play an important role in the hydrological cycle. It releases moisture during the dry spring period before the onset of the monsoon season. Widely used MODIS snow cover products have been available globally since 2002. The understanding of the temporal and spatial distribution of snow cover in a given region calls for a comprehensive data representation method. In this paper a method to visualize both spatial and temporal aspects of snow cover distribution from MODIS 8-day composite data is presented. It is based on RGB display of the snow cover data which is grouped according to season. The RGB syntheses of snow cover distribution (RSD) were generated for the Nam Co Basin in the central part of the Tibetan Plateau during the years of 2002–2009. An alternating pattern of monsoon and autumn snow cover was identified in the western part of the basin which corresponds to the biennial character of the variations of the Indian monsoon. Monsoon snow cover was found in RSD images for the years 2002, 2004 and 2008 whereas in years 2003 and 2009 the autumn snow cover is dominant. The eastern part of the basin does not follow this general pattern since it is affected by the so called “lake effect”, which is a snow fall induced by the passing of dry and cold westerlies over the lake surface during the winter months. The years 2002, 2006 and 2007 were identified as years with a particularly strong lake effect from the RSD images. Areas with permanent snow cover and areas that were snow free were both found to be relatively stable. Comparison of the lake effect at Nam Co with nearby Siling Co, where the lake effect is smaller or absent, suggests that the presence of an effective barrier on the opposite side of the lake is a prerequisite for the occurrence of the strong lake effect. Full article
Show Figures

Figure 1

Back to TopTop