Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = T4-like phage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5654 KB  
Article
Phage Display Reveals VLRB-Mediated Recognition of Minimal Tumor Glycan Antigen Sialyl-Tn
by Mark Rickard N. Angelia, Abigail Joy D. Rodelas-Angelia, Youngrim Kim, Cheolung Yang, Hyeok Jang, Seungpyo Jeong, Jihyun Mun, Kim D. Thompson and Taesung Jung
Curr. Issues Mol. Biol. 2025, 47(10), 802; https://doi.org/10.3390/cimb47100802 - 26 Sep 2025
Viewed by 284
Abstract
Sialyl-Tn (sTn) is a tumor-associated carbohydrate antigen (TACA) abundantly expressed by various types of carcinomas. While conventional antibody-based platforms have traditionally been used for the detection and targeting of sTn, alternative binding scaffolds may offer distinct advantages. Variable lymphocyte receptor B (VLRB), the [...] Read more.
Sialyl-Tn (sTn) is a tumor-associated carbohydrate antigen (TACA) abundantly expressed by various types of carcinomas. While conventional antibody-based platforms have traditionally been used for the detection and targeting of sTn, alternative binding scaffolds may offer distinct advantages. Variable lymphocyte receptor B (VLRB), the immunoglobulin-like molecule of jawless vertebrates, offers a promising alternative for glycan recognition. In this study, a phage-displayed VLRB library was utilized to identify sTn-specific binders. Two candidates, designated as ccombodies A8 and B11, were isolated after four rounds of biopanning. Both were expressed and purified using Ni-affinity and FPLC, yielding proteins with apparent molecular weights of ~27 kDa in SDS-PAGE. Sequence analysis revealed a preference for glycan-binding residues in randomized hypervariable regions, with A8 exhibiting an increased aliphatic content. ELISA confirmed selective binding to sTn and other O-glycans containing the core α-GalNAc, with EC50 values of 18.2 and 14.2 nM for A8 and B11, respectively. Vicia villosa lectin inhibited ccombody binding to sTn, indicating shared epitope recognition. Additionally, both ccombodies bound to sTn-positive glycoproteins and carcinoma cell lines HeLa and LS174T. These findings demonstrate that phage display of VLRBs enables the identification of high-affinity, glycan-specific binders, offering a compelling alternative to immunoglobulin-based platforms for future diagnostic and therapeutic applications targeting tumor-associated glycans. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

28 pages, 2707 KB  
Article
Dark Matter Carried by Sinorhizobium meliloti phiLM21-like Prophages
by Maria E. Vladimirova, Marina L. Roumiantseva, Alla S. Saksaganskaia, Alexandra P. Kozlova, Victoria S. Muntyan and Sergey P. Gaponov
Int. J. Mol. Sci. 2025, 26(17), 8704; https://doi.org/10.3390/ijms26178704 - 6 Sep 2025
Viewed by 1232
Abstract
A comprehensive comparative analysis was conducted on the nucleotide and amino acid sequences of intact phiLM21-like prophages (phiLM21-LPhs), which currently represent the most prevalent prophages in Sinorhizobium meliloti—a symbiotic partner of Fabaceae plants. Remarkably, the nucleotide sequences of 25 phiLM21-LPhs, identified across [...] Read more.
A comprehensive comparative analysis was conducted on the nucleotide and amino acid sequences of intact phiLM21-like prophages (phiLM21-LPhs), which currently represent the most prevalent prophages in Sinorhizobium meliloti—a symbiotic partner of Fabaceae plants. Remarkably, the nucleotide sequences of 25 phiLM21-LPhs, identified across 36 geographically dispersed S. meliloti strains, covered no more than 34% of the phiLM21 phage genome. All prophages were integrated into specific isoacceptor tRNA genes and carried a tyrosine-type integrase gene; however, this integration did not exhibit features of tRNA-dependent lysogeny. Only one-fifth of phiLM21-LPhs encoded the minimal set of regulators for lysogenic/lytic cycle transitions, while the remainder contained either uncharacterized regulatory elements or appeared to be undergoing genomic “anchoring” within the host bacterium. The phiLM21-LPhs harbored open reading frames (ORFs) of diverse origins (phage-derived, bacterial, and unknown), yet over half of these ORFs had undeterminable functions, representing genetic “dark matter”. The observed diversification of intact phiLM21-like prophages likely stems from recombination events involving both virulent/temperate phages and phylogenetically remote bacterial taxa. The evolutionary and biological significance of the substantial genetic “dark matter” within these prophages in soil saprophytic bacteria remains an unresolved question. Full article
(This article belongs to the Special Issue Bacteriophage: Molecular Ecology and Pharmacology, 2nd Edition)
Show Figures

Figure 1

21 pages, 2807 KB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 1085
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

19 pages, 3858 KB  
Article
Flow Virometry in Wastewater Monitoring: Comparison of Virus-like Particles to Coliphage, Pepper Mild Mottle Virus, CrAssphage, and Tomato Brown Rugose Fruit Virus
by Melis M. Johnson, C. Winston Bess, Rachel Olson and Heather N. Bischel
Viruses 2025, 17(4), 575; https://doi.org/10.3390/v17040575 - 16 Apr 2025
Viewed by 1197
Abstract
Flow virometry (FVM) offers a promising approach for monitoring viruses and virus-like particles (VLPs) in environmental samples. This study compares levels of non-specific VLPs across a wastewater treatment plant (WWTP) with levels of somatic coliphage, (F+) specific coliphage, Pepper Mild Mottle Virus (PMMoV), [...] Read more.
Flow virometry (FVM) offers a promising approach for monitoring viruses and virus-like particles (VLPs) in environmental samples. This study compares levels of non-specific VLPs across a wastewater treatment plant (WWTP) with levels of somatic coliphage, (F+) specific coliphage, Pepper Mild Mottle Virus (PMMoV), CrAssphage (CrAss), and Tomato Brown Rugose Fruit Virus (ToBRFV). All targets were quantified in influent, secondary-treated effluent, and tertiary-treated effluent at the University of California, Davis Wastewater Treatment Plant (UCDWWTP) over 11 weeks. We established an FVM-gating boundary for VLPs using bacteriophages T4 and ϕ6 as well as four phages isolated from wastewater. We then utilize T4 alongside three submicron beads as quality controls in the FVM assay. Coliphage was measured by standard plaque assays, and genome copies of PMMoV, CrAss, and ToBRFV were measured by digital droplet (dd)PCR. FVM results for wastewater revealed distinct microbial profiles at each treatment stage. However, correlations between VLPs and targeted viruses were poor. Trends for virus inactivation and removal, observed for targeted viruses during wastewater treatment, were consistent with expectations. Conversely, VLP counts were elevated in the WWTP effluent relative to the influent. Additional sampling revealed a decrease in VLP counts during the filtration treatment step following secondary treatment but a substantial increase in VLPs following ultraviolet disinfection. Defining application boundaries remain crucial to ensuring meaningful data interpretation as flow cytometry and virometry take on greater significance in water quality monitoring. Full article
(This article belongs to the Special Issue Flow Virometry: A New Tool for Studying Viruses)
Show Figures

Figure 1

16 pages, 5313 KB  
Article
The In Situ Structure of T-Series T1 Reveals a Conserved Lambda-Like Tail Tip
by Yuan Chen, Hao Xiao, Junquan Zhou, Zeng Peng, Yuning Peng, Jingdong Song, Jing Zheng and Hongrong Liu
Viruses 2025, 17(3), 351; https://doi.org/10.3390/v17030351 - 28 Feb 2025
Viewed by 1934
Abstract
It is estimated that over 60% of known tailed phages are siphophages, which are characterized by a long, flexible, and non-contractile tail. Nevertheless, entire high-resolution structures of siphophages remain scarce. Using cryo-EM, we resolved the structures of T-series siphophage T1, encompassing its head, [...] Read more.
It is estimated that over 60% of known tailed phages are siphophages, which are characterized by a long, flexible, and non-contractile tail. Nevertheless, entire high-resolution structures of siphophages remain scarce. Using cryo-EM, we resolved the structures of T-series siphophage T1, encompassing its head, connector complex, tail tube, and tail tip, at near-atomic resolution. The density maps enabled us to build the atomic models for the majority of T1 proteins. The T1 head comprises 415 copies of the major capsid protein gp47, arranged into an icosahedron with a triangulation number of seven, decorated with 80 homologous trimers and 60 heterotrimers along the threefold and quasi-threefold axes of the icosahedron. The T1 connector complex is composed of two dodecamers (a portal and an adaptor) and two hexamers (a stopper and a tail terminator). The flexible tail tube comprises approximately 34 hexameric rings of tail tube. The extensive disulfide bond network along the successive tail rings may mediate the flexible bending. The distal tip of T1, which is cone-shaped and assembled by proteins gp33, gp34, gp36, gp37, and gp38, displays structural similarity to that of phage lambda. In conjunction with previous studies of lambda-like siphophages, our structure will facilitate further exploration of the structural and mechanistic aspects of lambda-like siphophages. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

18 pages, 4160 KB  
Article
Expanding the Diversity of Actinobacterial Tectiviridae: A Novel Genus from Microbacterium
by Jacqueline M. Washington, Holly Basta, Angela Bryanne De Jesus, Madison G. Bendele, Steven G. Cresawn and Emily K. Ginser
Viruses 2025, 17(1), 113; https://doi.org/10.3390/v17010113 - 15 Jan 2025
Viewed by 1273
Abstract
Six novel Microbacterium phages belonging to the Tectiviridae family were isolated using Microbacterium testaceum as a host. Phages MuffinTheCat, Badulia, DesireeRose, Bee17, SCoupsA, and LuzDeMundo were purified from environmental samples by students participating in the Science Education Alliance Phage Hunters Advancing Genomics and [...] Read more.
Six novel Microbacterium phages belonging to the Tectiviridae family were isolated using Microbacterium testaceum as a host. Phages MuffinTheCat, Badulia, DesireeRose, Bee17, SCoupsA, and LuzDeMundo were purified from environmental samples by students participating in the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program at Alliance University, New York. The phages have linear dsDNA genomes 15,438–15,636 bp with 112–120 bp inverted terminal repeats. Transmission electron microscopy (TEM) imaging analysis revealed that the six novel phages have six-sided icosahedral double-layered capsids with an internal lipid membrane that occasionally forms protruding nanotubules. Annotation analysis determined that the novel Microbacterium phages all have 32–34 protein-coding genes and no tRNAs. Like other Tectiviridae, the phage genomes are arranged into two segments and include three highly conserved family genes that encode a DNA polymerase, double jelly-roll major capsid protein, and packaging ATPase. Although the novel bacteriophages have 91.6 to 97.5% nucleotide sequence similarity to each other, they are at most 58% similar to previously characterized Tectiviridae genera. Consequently, these novel Microbacterium phages expand the diversity of the Tectiviridae family, and we propose they form the sixth genus, Zetatectivirus. Full article
(This article belongs to the Special Issue Bacteriophage Diversity)
Show Figures

Figure 1

32 pages, 1181 KB  
Review
Skin Microbiota: Mediator of Interactions Between Metabolic Disorders and Cutaneous Health and Disease
by Magdalini Kreouzi, Nikolaos Theodorakis, Maria Nikolaou, Georgios Feretzakis, Athanasios Anastasiou, Konstantinos Kalodanis and Aikaterini Sakagianni
Microorganisms 2025, 13(1), 161; https://doi.org/10.3390/microorganisms13010161 - 14 Jan 2025
Cited by 12 | Viewed by 4544
Abstract
Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier [...] Read more.
Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis. Similarly, obesity-induced dysregulation of sebaceous lipid composition increases saturated fatty acids, favoring pathogenic strains of Cutibacterium acnes, which produce inflammatory metabolites that exacerbate acne. Advances in metabolomics and microbiome sequencing have unveiled critical biomarkers, such as short-chain fatty acids and microbial signatures, predictive of therapeutic outcomes. For example, elevated butyrate levels in psoriasis have been associated with reduced Th17-mediated inflammation, while the presence of specific Lactobacillus strains has shown potential to modulate immune tolerance in atopic dermatitis. Furthermore, machine learning models are increasingly used to integrate multi-omics data, enabling personalized interventions. Emerging therapies, such as probiotics and postbiotics, aim to restore microbial diversity, while phage therapy selectively targets pathogenic bacteria like Staphylococcus aureus without disrupting beneficial flora. Clinical trials have demonstrated significant reductions in inflammatory lesions and improved quality-of-life metrics in patients receiving these microbiota-targeted treatments. This review synthesizes current evidence on the bidirectional interplay between metabolic disorders and skin microbiota, highlighting therapeutic implications and future directions. By addressing systemic metabolic dysfunction and microbiota-mediated pathways, precision strategies are paving the way for improved patient outcomes in dermatologic care. Full article
(This article belongs to the Special Issue Human Skin Microbiota, 2nd Edition)
Show Figures

Figure 1

19 pages, 4063 KB  
Article
Characterization of Broad Spectrum Bacteriophage vB ESM-pEJ01 and Its Antimicrobial Efficacy Against Shiga Toxin-Producing Escherichia coli in Green Juice
by Eun Jeong Park, Seungki Lee, Jong Beom Na, Ye Bin Kim, Kee Man Lee, Seon Young Park and Ji Hyung Kim
Microorganisms 2025, 13(1), 103; https://doi.org/10.3390/microorganisms13010103 - 7 Jan 2025
Cited by 3 | Viewed by 2023
Abstract
Shiga toxin-producing Escherichia coli (STEC) infections have increased in humans, animals, and the food industry, with ready-to-eat (RTE) food products being particularly susceptible to contamination. The prevalence of multidrug-resistant strains has rendered the current control strategies insufficient to effectively control STEC infections. Herein, [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) infections have increased in humans, animals, and the food industry, with ready-to-eat (RTE) food products being particularly susceptible to contamination. The prevalence of multidrug-resistant strains has rendered the current control strategies insufficient to effectively control STEC infections. Herein, we characterized the newly isolated STEC phage vB_ESM-pEJ01, a polyvalent phage capable of infecting Escherichia and Salmonella species, and assessed its efficacy in reducing STEC in vitro and food matrices. The phage, belonging to the Tevenvirinae, exhibits effective bacteriolytic activity, a short latent period, large burst size, and stability under a broad pH range and moderate temperatures. Moreover, the phage demonstrated strong anti-biofilm efficacy even at low concentrations. Genomic analysis revealed that the phage was similar to the well-characterized RB49 phage (T4-like phage) but possesses distinct host-specificity-related genes that potentially contribute to its extensive host range. The efficacy of phage vB_ESM-pEJ01 was evaluated in artificially STEC-inoculated green juice samples, where it significantly reduced STEC and the abundance of Shiga toxin-producing genes at 4 and 25 °C. Therefore, these results suggest that the polyvalent phage vB_ESM-pEJ01 is a promising biocontrol agent for foodborne pathogens in RTE foods such as fresh juices. Full article
Show Figures

Figure 1

17 pages, 3363 KB  
Article
Pharmacodynamic Evaluation of Phage Therapy in Ameliorating ETEC-Induced Diarrhea in Mice Models
by Yangjing Xiong, Lu Xia, Yumin Zhang, Guoqing Zhao, Shidan Zhang, Jingjiao Ma, Yuqiang Cheng, Hengan Wang, Jianhe Sun, Yaxian Yan and Zhaofei Wang
Microorganisms 2024, 12(12), 2532; https://doi.org/10.3390/microorganisms12122532 - 8 Dec 2024
Cited by 2 | Viewed by 2445
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major pathogen causing diarrhea in humans and animals, with increasing antimicrobial resistance posing a growing challenge in recent years. Lytic bacteriophages (phages) offer a targeted and environmentally sustainable approach to combating bacterial infections, particularly in eliminating drug-resistant [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) is a major pathogen causing diarrhea in humans and animals, with increasing antimicrobial resistance posing a growing challenge in recent years. Lytic bacteriophages (phages) offer a targeted and environmentally sustainable approach to combating bacterial infections, particularly in eliminating drug-resistant strains. In this study, ETEC strains were utilized as indicators, and a stable, high-efficiency phage, designated vB_EcoM_JE01 (JE01), was isolated from pig farm manure. The genome of JE01 was a dsDNA molecule, measuring 168.9 kb, and a transmission electron microscope revealed its characteristic T4-like Myoviridae morphology. JE01 effectively lysed multi-drug-resistant ETEC isolates. Stability assays demonstrated that JE01 retained its activity across a temperature range of 20 °C to 50 °C and a pH range of 3–11, showing resilience to ultraviolet radiation and chloroform exposure. Furthermore, JE01 effectively suppressed ETEC adhesion to porcine intestinal epithelial cells (IPEC-J2), mitigating the inflammatory response triggered by ETEC. To investigate the in vivo antibacterial efficacy of phage JE01 preparations, a diarrhea model was established using germ-free mice infected with a drug-resistant ETEC strain. The findings indicated that 12 h post-ETEC inoculation, intragastric administration of phage JE01 significantly reduced mortality, alleviated gastrointestinal lesions, decreased ETEC colonization in the jejunum, and suppressed the expression of the cytokines IL-6 and IL-8. These results demonstrate a therapeutic benefit of JE01 in treating ETEC-induced diarrhea in mice. Additionally, a fluorescent phage incorporating red fluorescent protein (RFP) was engineered, and the pharmacokinetics of phage therapy were preliminarily assessed through intestinal fluorescence imaging in mice. The results showed that the phage localized to ETEC in the jejunum rapidly, within 45 min. Moreover, the pharmacokinetics of the phage were markedly slowed in the presence of its bacterial target in the gut, suggesting sustained bacteriolytic activity in the ETEC-infected intestine. In conclusion, this study establishes a foundation for the development of phage-based therapies against ETEC. Full article
(This article belongs to the Special Issue Advances in Microbial Synthetic Biology)
Show Figures

Figure 1

42 pages, 122020 KB  
Article
Origin, Evolution and Diversity of φ29-like Phages—Review and Bioinformatic Analysis
by Peter Evseev, Daria Gutnik, Alena Evpak, Anastasia Kasimova and Konstantin Miroshnikov
Int. J. Mol. Sci. 2024, 25(19), 10838; https://doi.org/10.3390/ijms251910838 - 9 Oct 2024
Cited by 2 | Viewed by 3862
Abstract
Phage φ29 and related bacteriophages are currently the smallest known tailed viruses infecting various representatives of both Gram-positive and Gram-negative bacteria. They are characterised by genomic content features and distinctive properties that are unique among known tailed phages; their characteristics include protein primer-driven [...] Read more.
Phage φ29 and related bacteriophages are currently the smallest known tailed viruses infecting various representatives of both Gram-positive and Gram-negative bacteria. They are characterised by genomic content features and distinctive properties that are unique among known tailed phages; their characteristics include protein primer-driven replication and a packaging process characteristic of this group. Searches conducted using public genomic databases revealed in excess of 2000 entries, including bacteriophages, phage plasmids and sequences identified as being archaeal that share the characteristic features of phage φ29. An analysis of predicted proteins, however, indicated that the metagenomic sequences attributed as archaeal appear to be misclassified and belong to bacteriophages. An analysis of the translated polypeptides of major capsid proteins (MCPs) of φ29-related phages indicated the dissimilarity of MCP sequences to those of almost all other known Caudoviricetes groups and a possible distant relationship to MCPs of T7-like (Autographiviridae) phages. Sequence searches conducted using HMM revealed the relatedness between the main structural proteins of φ29-like phages and an unusual lactococcal phage, KSY1 (Chopinvirus KSY1), whose genome contains two genes of RNA polymerase that are similar to the RNA polymerases of phages of the Autographiviridae and Schitoviridae (N4-like) families. An analysis of the tail tube proteins of φ29-like phages indicated their dissimilarity of the lower collar protein to tail proteins of all other viral groups, but revealed its possible distant relatedness with proteins of toxin translocation complexes. The combination of the unique features and distinctive origin of φ29-related phages suggests the categorisation of this vast group in a new order or as a new taxon of a higher rank. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies (6th Edition))
Show Figures

Figure 1

16 pages, 7092 KB  
Article
Comparative Ability of Various Immunosuppressants as Adjuvants on the Activity of T1D Vaccine
by Xinyi Wang, Mengxin Xie, Tengjiao Li, Jiandong Shi, Meini Wu, Shihan Zhang, Jing Sun and Yunzhang Hu
Vaccines 2024, 12(10), 1117; https://doi.org/10.3390/vaccines12101117 - 29 Sep 2024
Cited by 1 | Viewed by 1532
Abstract
Background: Type 1 diabetes (T1D) is an autoimmune disorder characterised by the destruction of insulin-producing beta cells in the pancreatic islets, resulting from a breakdown in immunological tolerance. Currently, T1D treatment primarily relies on insulin replacement or immunosuppressive therapies. However, these approaches often [...] Read more.
Background: Type 1 diabetes (T1D) is an autoimmune disorder characterised by the destruction of insulin-producing beta cells in the pancreatic islets, resulting from a breakdown in immunological tolerance. Currently, T1D treatment primarily relies on insulin replacement or immunosuppressive therapies. However, these approaches often have significant drawbacks, including adverse effects, high costs, and limited long-term efficacy. Consequently, there is a pressing need for innovative immunotherapeutic strategies capable of inducing antigen-specific tolerance and protecting beta cells from autoimmune destruction. Among the various antigens, β-cell antigens like 65 kDa glutamic acid decarboxylase (GAD65) have been explored as vaccine candidates for T1D. Despite their potential, their effectiveness in humans remains modest, necessitating the use of appropriate adjuvants to enhance the vaccine’s protective effects. Methods: In this study, we evaluated the therapeutic potential of kynurenine (KYN), dexamethasone (DXMS), tacrolimus (FK506), and aluminium hydroxide (Alum) in combination with the GAD65 phage vaccine as adjuvants. Results: Our findings demonstrate that KYN, when used in conjunction with the GAD65 vaccine, significantly enhances the vaccine’s immunosuppressive effects. Compared to dexamethasone, FK506, and Alum adjuvants, KYN more effectively reduced the incidence and delayed the onset of T1D, preserved β-cell function, and promoted the induction of regulatory T cells and antigen-specific tolerance. These results suggest that KYN combined with vaccines could offer superior preventive and therapeutic benefits for T1D compared to existing treatments. Additionally, we investigated the dose-dependent effects of the GAD65 vaccine by including a low-dose group in our study. The results indicated that reducing the vaccine dose below 1010 plaque-forming units (pfu) did not confer any protective advantage or therapeutic benefit in combination with KYN. This finding underscores that 1010 pfu is the minimum effective dose for the GAD65 vaccine in achieving a protective response. In conclusion, KYN shows considerable promise as an adjuvant for the GAD65 vaccine in T1D therapy, potentially offering a more effective and durable treatment option than current immunosuppressive strategies. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

27 pages, 6135 KB  
Article
Hot Spots of Site-Specific Integration into the Sinorhizobium meliloti Chromosome
by Maria E. Vladimirova, Marina L. Roumiantseva, Alla S. Saksaganskaia, Victoria S. Muntyan, Sergey P. Gaponov and Alessio Mengoni
Int. J. Mol. Sci. 2024, 25(19), 10421; https://doi.org/10.3390/ijms251910421 - 27 Sep 2024
Cited by 1 | Viewed by 1959
Abstract
The diversity of phage-related sequences (PRSs) and their site-specific integration into the genomes of nonpathogenic, agriculturally valuable, nitrogen-fixing root nodule bacteria, such as Sinorhizobium meliloti, were evaluated in this study. A total of 314 PRSs, ranging in size from 3.24 kb to [...] Read more.
The diversity of phage-related sequences (PRSs) and their site-specific integration into the genomes of nonpathogenic, agriculturally valuable, nitrogen-fixing root nodule bacteria, such as Sinorhizobium meliloti, were evaluated in this study. A total of 314 PRSs, ranging in size from 3.24 kb to 88.98 kb, were identified in the genomes of 27 S. meliloti strains. The amount of genetic information foreign to S. meliloti accumulated in all identified PRSs was 6.30 Mb. However, more than 53% of this information was contained in prophages (Phs) and genomic islands (GIs) integrated into genes encoding tRNAs (tRNA genes) located on the chromosomes of the rhizobial strains studied. It was found that phiLM21-like Phs were predominantly abundant in the genomes of S. meliloti strains of distant geographical origin, whereas RR1-A- and 16-3-like Phs were much less common. In addition, GIs predominantly contained fragments of phages infecting bacteria of distant taxa, while rhizobiophage-like sequences were unique. A site-specific integration analysis revealed that not all tRNA genes in S. meliloti are integration sites, but among those in which integration occurred, there were “hot spots” of integration into which either Phs or GIs were predominantly inserted. For the first time, it is shown that at these integration “hot spots”, not only is the homology of attP and attB strictly preserved, but integrases in PRSs similar to those of phages infecting the Proteobacteria genera Azospirillum or Pseudomonas are also present. The data presented greatly expand the understanding of the fate of phage-related sequences in host bacterial genomes and also raise new questions about the role of phages in bacterial–phage coevolution. Full article
(This article belongs to the Special Issue Bacteriophage: Molecular Ecology and Pharmacology, 2nd Edition)
Show Figures

Figure 1

15 pages, 2294 KB  
Article
Biohybrids for Combined Therapies of Skin Wounds: Agglomerates of Mesenchymal Stem Cells with Gelatin Hydrogel Beads Delivering Phages and Basic Fibroblast Growth Factor
by Farzaneh Moghtader, Yasuhiko Tabata and Erdal Karaöz
Gels 2024, 10(8), 493; https://doi.org/10.3390/gels10080493 - 25 Jul 2024
Cited by 2 | Viewed by 1844
Abstract
There is great interest in developing effective therapies for the treatment of skin wounds accompanied by deep tissue losses and severe infections. We have attempted to prepare biohybrids formed of agglomerates of mesenchymal stem cells (MSCs) with gelatin hydrogel beads (GEL beads) delivering [...] Read more.
There is great interest in developing effective therapies for the treatment of skin wounds accompanied by deep tissue losses and severe infections. We have attempted to prepare biohybrids formed of agglomerates of mesenchymal stem cells (MSCs) with gelatin hydrogel beads (GEL beads) delivering bacteriophages (phages) as antibacterial agents and/or basic fibroblast growth factor (bFGF) for faster and better healing, providing combined therapies for these types of skin wounds. The gelatin beads were produced through a two-step process using basic and/or acidic gelatins with different isoelectric points. Escherichia coli (E. coli) and its specific T4 phages were propagated. Phages and/or bFGF were loaded within the GELs and their release rates and modes were obtained. The phage release from the basic GEL beads was quite fast; in contrast, the bFGF release from the acidic GEL beads was sustained, as anticipated. MSCs were isolated from mouse adipose tissues and 2D-cultured. Agglomerates of these MSCs with GEL beads were formed and maturated in 3D cultures, and their time-dependent changes were followed. In these 3D culture experiments, it was observed that the agglomerates with GEL beads were very healthy and the MSCs formed tissue-like structures in 7 days, while the MSC agglomerates were not healthy and shrunk considerably as a result of cell death. Full article
(This article belongs to the Special Issue Functional Gels Applied in Drug Delivery)
Show Figures

Figure 1

17 pages, 17312 KB  
Article
The Structure of Spiroplasma Virus 4: Exploring the Capsid Diversity of the Microviridae
by Mario Mietzsch, Shweta Kailasan, Antonette Bennett, Paul Chipman, Bentley Fane, Juha T. Huiskonen, Ian N. Clarke and Robert McKenna
Viruses 2024, 16(7), 1103; https://doi.org/10.3390/v16071103 - 9 Jul 2024
Cited by 3 | Viewed by 5510
Abstract
Spiroplasma virus 4 (SpV4) is a bacteriophage of the Microviridae, which packages circular ssDNA within non-enveloped T = 1 icosahedral capsids. It infects spiroplasmas, which are known pathogens of honeybees. Here, the structure of the SpV4 virion is determined using cryo-electron microscopy [...] Read more.
Spiroplasma virus 4 (SpV4) is a bacteriophage of the Microviridae, which packages circular ssDNA within non-enveloped T = 1 icosahedral capsids. It infects spiroplasmas, which are known pathogens of honeybees. Here, the structure of the SpV4 virion is determined using cryo-electron microscopy to a resolution of 2.5 Å. A striking feature of the SpV4 capsid is the mushroom-like protrusions at the 3-fold axes, which is common among all members of the subfamily Gokushovirinae. While the function of the protrusion is currently unknown, this feature varies widely in this subfamily and is therefore possibly an adaptation for host recognition. Furthermore, on the interior of the SpV4 capsid, the location of DNA-binding protein VP8 was identified and shown to have low structural conservation to the capsids of other viruses in the family. The structural characterization of SpV4 will aid future studies analyzing the virus–host interaction, to understand disease mechanisms at a molecular level. Furthermore, the structural comparisons in this study, including a low-resolution structure of the chlamydia phage 2, provide an overview of the structural repertoire of the viruses in this family that infect various bacterial hosts, which in turn infect a wide range of animals and plants. Full article
(This article belongs to the Special Issue Structural Biology of Bacteriophages)
Show Figures

Graphical abstract

13 pages, 4292 KB  
Article
Mycobacterium tuberculosis FadD18 Promotes Proinflammatory Cytokine Secretion to Inhibit the Intracellular Survival of Bacillus Calmette–Guérin
by Yongchong Peng, Tian Tang, Qianqian Li, Shiying Zhou, Qin Sun, Xinjun Zhou, Yifan Zhu, Chao Wang, Luiz E. Bermudez, Han Liu, Huanchun Chen, Aizhen Guo and Yingyu Chen
Cells 2024, 13(12), 1019; https://doi.org/10.3390/cells13121019 - 11 Jun 2024
Cited by 2 | Viewed by 1746
Abstract
Mycobacterium tuberculosis causes 6.4 million cases of tuberculosis and claims 1.6 million lives annually. Mycobacterial adhesion, invasion of host cells, and subsequent intracellular survival are crucial for the infection and dissemination process, yet the cellular mechanisms underlying these phenomena remain poorly understood. This [...] Read more.
Mycobacterium tuberculosis causes 6.4 million cases of tuberculosis and claims 1.6 million lives annually. Mycobacterial adhesion, invasion of host cells, and subsequent intracellular survival are crucial for the infection and dissemination process, yet the cellular mechanisms underlying these phenomena remain poorly understood. This study created a Bacillus Calmette–Guérin (BCG) transposon library using a MycomarT7 phage carrying a Himar1 Mariner transposon to identify genes related to mycobacteria adhesion and invasion. Using adhesion and invasion model screening, we found that the mutant strain B2909 lacked adhesion and invasion abilities because of an inactive fadD18 gene, which encodes a fatty-acyl CoA ligase, although the specific function of this gene remains unclear. To investigate the role of FadD18, we constructed a complementary strain and observed that fadD18 expression enhanced the colony size and promoted the formation of a stronger cord-like structure; FadD18 expression also inhibited BCG growth and reduced BCG intracellular survival in macrophages. Furthermore, FadD18 expression elevated levels of the proinflammatory cytokines IL-6, IL-1β, and TNF-α in infected macrophages by stimulating the NF-κB and MAPK signaling pathways. Overall, the FadD18 plays a key role in the adhesion and invasion abilities of mycobacteria while modulating the intracellular survival of BCG by influencing the production of proinflammatory cytokines. Full article
Show Figures

Figure 1

Back to TopTop