Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = acidification/pressure process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6657 KB  
Article
Mechanisms of Ocean Acidification in Massachusetts Bay: Insights from Modeling and Observations
by Lu Wang, Changsheng Chen, Joseph Salisbury, Siqi Li, Robert C. Beardsley and Jackie Motyka
Remote Sens. 2025, 17(15), 2651; https://doi.org/10.3390/rs17152651 - 31 Jul 2025
Viewed by 476
Abstract
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, [...] Read more.
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, and river discharge, and long-term changes linked to global warming and river flux shifts. These patterns arise from complex nonlinear interactions between physical and biogeochemical processes. To investigate OA variability, we applied the Northeast Biogeochemistry and Ecosystem Model (NeBEM), a fully coupled three-dimensional physical–biogeochemical system, to Massachusetts Bay and Boston Harbor. Numerical simulation was performed for 2016. Assimilating satellite-derived sea surface temperature and sea surface height improved NeBEM’s ability to reproduce observed seasonal and spatial variability in stratification, mixing, and circulation. The model accurately simulated seasonal changes in nutrients, chlorophyll-a, dissolved oxygen, and pH. The model results suggest that nearshore areas were consistently more susceptible to OA, especially during winter and spring. Mechanistic analysis revealed contrasting processes between shallow inner and deeper outer bay waters. In the inner bay, partial pressure of pCO2 (pCO2) and aragonite saturation (Ωa) were influenced by sea temperature, dissolved inorganic carbon (DIC), and total alkalinity (TA). TA variability was driven by nitrification and denitrification, while DIC was shaped by advection and net community production (NCP). In the outer bay, pCO2 was controlled by temperature and DIC, and Ωa was primarily determined by DIC variability. TA changes were linked to NCP and nitrification–denitrification, with DIC also influenced by air–sea gas exchange. Full article
Show Figures

Figure 1

18 pages, 607 KB  
Review
Fungi in Mangrove: Ecological Importance, Climate Change Impacts, and the Role in Environmental Remediation
by Juliana Britto Martins de Oliveira, Dario Corrêa Junior, Cláudio Ernesto Taveira Parente and Susana Frases
Microorganisms 2025, 13(4), 878; https://doi.org/10.3390/microorganisms13040878 - 11 Apr 2025
Cited by 1 | Viewed by 1496
Abstract
Mangroves are coastal ecosystems of great ecological importance, located in transition areas between marine and terrestrial environments, predominantly found in tropical and subtropical regions. In Brazil, these biomes are present along the entire coastline, playing essential environmental roles such as sediment stabilization, coastal [...] Read more.
Mangroves are coastal ecosystems of great ecological importance, located in transition areas between marine and terrestrial environments, predominantly found in tropical and subtropical regions. In Brazil, these biomes are present along the entire coastline, playing essential environmental roles such as sediment stabilization, coastal erosion control, and the filtration of nutrients and pollutants. The unique structure of the roots of some mangrove tree species facilitates sediment deposition and organic matter retention, creating favorable conditions for the development of rich and specialized biodiversity, including fungi, bacteria, and other life forms. Furthermore, mangroves serve as important nurseries for many species of fish, crustaceans, and birds, being fundamental to maintaining trophic networks and the local economy, which relies on fishing resources. However, these ecosystems have been significantly impacted by anthropogenic pressures and global climate change. In recent years, the increase in average global temperatures, rising sea levels, changes in precipitation patterns, and ocean acidification have contributed to the degradation of mangroves. Additionally, human activities such as domestic sewage discharge, pollution from organic and inorganic compounds, and alterations in hydrological regimes have accelerated this degradation process. These factors directly affect the biodiversity present in mangrove sediments, including the fungal community, which plays a crucial role in the decomposition of organic matter and nutrient cycling. Fungi, which include various taxonomic groups such as Ascomycota, Basidiomycota, and Zygomycota, are sensitive to changes in environmental conditions, making the study of their diversity and distribution relevant for understanding the impacts of climate change and pollution. In particular, fungal bioremediation has gained significant attention as an effective strategy for mitigating pollution in these sensitive ecosystems. Fungi possess unique abilities to degrade or detoxify environmental pollutants, including heavy metals and organic contaminants, through processes such as biosorption, bioaccumulation, and enzymatic degradation. This bioremediation potential can help restore the ecological balance of mangrove ecosystems and protect their biodiversity from the adverse effects of pollution. Recent studies suggest that changes in temperature, salinity, and the chemical composition of sediments can drastically modify microbial and fungal communities in these environments, influencing the resilience of the ecosystem. The objective of this narrative synthesis is to point out the diversity of fungi present in mangrove sediments, emphasizing how the impacts of climate change and anthropogenic pollution influence the composition and functionality of these communities. By exploring these interactions, including the role of fungal bioremediation in ecosystem restoration, it is expected that this study would provide a solid scientific basis for the conservation of mangroves and the development of strategies to mitigate the environmental impacts on these valuable ecosystems. Full article
Show Figures

Figure 1

13 pages, 2282 KB  
Review
Nitrogen-Fixing Gamma Proteobacteria Azotobacter vinelandii—A Blueprint for Nitrogen-Fixing Plants?
by Sayre Barron, Florence Mus and John W. Peters
Microorganisms 2024, 12(10), 2087; https://doi.org/10.3390/microorganisms12102087 - 18 Oct 2024
Cited by 4 | Viewed by 3090
Abstract
The availability of fixed nitrogen limits overall agricultural crop production worldwide. The so-called modern “green revolution” catalyzed by the widespread application of nitrogenous fertilizer has propelled global population growth. It has led to imbalances in global biogeochemical nitrogen cycling, resulting in a “nitrogen [...] Read more.
The availability of fixed nitrogen limits overall agricultural crop production worldwide. The so-called modern “green revolution” catalyzed by the widespread application of nitrogenous fertilizer has propelled global population growth. It has led to imbalances in global biogeochemical nitrogen cycling, resulting in a “nitrogen problem” that is growing at a similar trajectory to the “carbon problem”. As a result of the increasing imbalances in nitrogen cycling and additional environmental problems such as soil acidification, there is renewed and increasing interest in increasing the contributions of biological nitrogen fixation to reduce the inputs of nitrogenous fertilizers in agriculture. Interestingly, biological nitrogen fixation, or life’s ability to convert atmospheric dinitrogen to ammonia, is restricted to microbial life and not associated with any known eukaryotes. It is not clear why plants never evolved the ability to fix nitrogen and rather form associations with nitrogen-fixing microorganisms. Perhaps it is because of the large energy demand of the process, the oxygen sensitivity of the enzymatic apparatus, or simply failure to encounter the appropriate selective pressure. Whatever the reason, it is clear that this ability of crop plants, especially cereals, would transform modern agriculture once again. Successfully engineering plants will require creating an oxygen-free niche that can supply ample energy in a tightly regulated manner to minimize energy waste and ensure the ammonia produced is assimilated. Nitrogen-fixing aerobic bacteria can perhaps provide a blueprint for engineering nitrogen-fixing plants. This short review discusses the key features of robust nitrogen fixation in the model nitrogen-fixing aerobe, gamma proteobacteria Azotobacter vinelandii, in the context of the basic requirements for engineering nitrogen-fixing plants. Full article
(This article belongs to the Special Issue Nitrogen-Fixing Microorganisms)
Show Figures

Figure 1

26 pages, 6640 KB  
Article
Packing Incubation and Addition of Rot Fungi Extracts Improve BTEX Elimination from Air in Biotrickling Filters
by Piotr Rybarczyk, Krzysztof Cichon, Karolina Kucharska, Dominik Dobrzyniewski, Bartosz Szulczyński and Jacek Gębicki
Molecules 2024, 29(18), 4431; https://doi.org/10.3390/molecules29184431 - 18 Sep 2024
Cited by 3 | Viewed by 1593
Abstract
The removal of benzene, toluene, ethylbenzene, and xylene (BTEX) from air was investigated in two similar biotrickling filters (BTFs) packed with polyurethane (PU) foam, differing in terms of inoculation procedure (BTF A was packed with pre-incubated PU discs, and BTF B was inoculated [...] Read more.
The removal of benzene, toluene, ethylbenzene, and xylene (BTEX) from air was investigated in two similar biotrickling filters (BTFs) packed with polyurethane (PU) foam, differing in terms of inoculation procedure (BTF A was packed with pre-incubated PU discs, and BTF B was inoculated via the continuous recirculation of a liquid inoculum). The effects of white rot fungi enzyme extract addition and system responses to variable VOC loading, liquid trickling patterns, and pH were studied. Positive effects of both packing incubation and enzyme addition on biotrickling filtration performance were identified. BFF A exhibited a shorter start-up period (approximately 20 days) and lower pressure drop (75 ± 6 mm H2O) than BTF B (30 days; 86 ± 5 mm H2O), indicating the superior effects of packing incubation over inoculum circulation during the biotrickling filter start-up. The novel approach of using white rot fungi extracts resulted in fast system recovery and enhanced process performance after the BTF acidification episode. Average BTEX elimination capacities of 28.8 ± 0.4 g/(m3 h) and 23.1 ± 0.4 g/(m3 h) were reached for BTF A and BTF B, respectively. This study presents new strategies for controlling and improving the abatement of BTEX in biotrickling filters. Full article
Show Figures

Figure 1

36 pages, 16048 KB  
Article
The Recent Environmental History, Attempted Restoration and Future Prospects of a Challenged Lobelia Pond in Northeastern Belgium
by Luc Denys, Jo Packet, An Leyssen and Floris Vanderhaeghe
Diversity 2024, 16(8), 487; https://doi.org/10.3390/d16080487 - 9 Aug 2024
Viewed by 2190
Abstract
Softwater ponds with Lobelia dortmanna (EU habitat type 3110) represent the rarest aquatic habitat in Belgium. As in many other European countries, its unfavourable conservation status necessitates restoration according to the EU Habitats Directive, which is compromised by a range of pressures and [...] Read more.
Softwater ponds with Lobelia dortmanna (EU habitat type 3110) represent the rarest aquatic habitat in Belgium. As in many other European countries, its unfavourable conservation status necessitates restoration according to the EU Habitats Directive, which is compromised by a range of pressures and faces increasing social–economic opposition. To explore appropriate goals and remaining obstacles for its ecological rehabilitation, we investigated the environmental history of a pond, formerly renowned for the occurrence of this habitat. We complemented monitoring data with information inferred from diatoms analysed from old samples, herbarium specimens and surface sediments, vegetation records, physical–chemical analyses and additional observations. This indicated almost circumneutral, slightly buffered and nutrient-poor conditions for the first decades of the 20th century. Deposition of atmospheric pollutants caused gradual acidification from the early 1940s, intensifying into mineral-acidic conditions by the 1970s. More recently, a period of alkalinisation and eutrophication followed despite some restoration efforts. We discuss these changes in the contexts of general setting, external pressures and internal processes. Reflecting upon the prospects for restoring the pond’s emblematic biodiversity, management implications for this and other softwater sites dealing with similar problems are discussed. A new combination in the diatom genus Iconella is proposed. Full article
(This article belongs to the Special Issue Aquatic Plant Diversity, Conservation, and Restoration)
Show Figures

Figure 1

17 pages, 2222 KB  
Article
Phenotypic Characterization of Fermentation Performance and Stress Tolerance in Commercial Ale Yeast Strains
by Anqi Chen, Qiqi Si, Qingyun Xu, Chenwei Pan, Yuhan Cheng and Jian Chen
Fermentation 2024, 10(7), 364; https://doi.org/10.3390/fermentation10070364 - 18 Jul 2024
Viewed by 3705
Abstract
Yeast plays a crucial role in the fermentation industry, particularly in alcoholic beverage production, where robustness and metabolic flexibility are essential. This study aimed to investigate the stress tolerance and metabolic capabilities of seven commercial ale yeast strains under various stress conditions, including [...] Read more.
Yeast plays a crucial role in the fermentation industry, particularly in alcoholic beverage production, where robustness and metabolic flexibility are essential. This study aimed to investigate the stress tolerance and metabolic capabilities of seven commercial ale yeast strains under various stress conditions, including temperature, pH, osmotic pressure, glucose starvation, and ethanol concentration. Detailed growth assays and stress tolerance tests were utilized to evaluate fermentation efficiency, carbon source utilization, and stress adaptation. Significant variability was observed among the strains. ACY169 and ACY150 demonstrated high overall stress tolerance, making them suitable for high-gravity brewing and processes involving extreme temperature fluctuations. ACY10 showed robust performance under acid stress, making it ideal for sour beer production. In contrast, ACY5 exhibited limited adaptability under stress, with longer doubling times and reduced metabolic activity. The study also revealed differences in carbon source utilization, with ACY169 displaying exceptional metabolic versatility by efficiently fermenting various sugars, including glucose, fructose, maltose, and raffinose. ACY10 and ACY150 exhibited balanced fermentation profiles with high ethanol production rates, while ACY9 demonstrated the highest glucose consumption rate but lower ethanol yields and significant acidification. Full article
(This article belongs to the Special Issue Saccharomyces cerevisiae Strains and Fermentation: 2nd Edition)
Show Figures

Figure 1

12 pages, 3022 KB  
Article
Hydraulic Expansion Techniques for Fracture-Cavity Carbonate Rock with Field Applications
by Jiaxue Li, Wenjun Lu and Jie Sun
Appl. Sci. 2024, 14(13), 5851; https://doi.org/10.3390/app14135851 - 4 Jul 2024
Cited by 2 | Viewed by 1467
Abstract
Fracture-cavity carbonate reservoirs provide a large area, fracture development, high productivity, long stable production time, and other characteristics. However, after long-term exploitation, the lack of energy in the formation leads to a rapid decrease in production, and the water content in crude oil [...] Read more.
Fracture-cavity carbonate reservoirs provide a large area, fracture development, high productivity, long stable production time, and other characteristics. However, after long-term exploitation, the lack of energy in the formation leads to a rapid decrease in production, and the water content in crude oil steadily increases, thereby disrupting normal production. To recover normal production, it is necessary to connect the cracks and pores that have not been affected during the original production, so as to allow the crude oil inside to enter the production cracks and replenish energy through methods such as hydraulic expansion of fracture-cavity carbonate rock. Accordingly, we propose hydraulic expansion techniques based on the following four processes for implementation: (1) applying high pressure to prevent a nearby fracture network from opening the seam, (2) connecting a distant fracture-cavity body, (3) breaking through the clay filling section of a natural fracture network, and (4) constructing an injection production well pattern for accelerating injection and producing diversion. Hydraulic fracturing involves closing or partially closing the original high-permeability channels, which usually produce a large amount of water, while opening previously unaffected areas through high pressure to increase crude oil production. We also introduce two composite techniques: (1) temporary plugging of the main deep fractures, followed by hydraulic expansion; and (2) capacity expansion and acidification/pressure processes. Hydraulic expansion allowed us to recover and supplement the formation energy and efficiently increase production. We tested various wells, achieving an effective hydraulic expansion rate of up to 85%. In addition, the productivity of conventional water injection and hydraulic expansion after on-site construction was compared for one well, clearly indicating the effectiveness of water injection and the remarkable crude oil increase after hydraulic expansion. Full article
(This article belongs to the Topic Petroleum and Gas Engineering)
Show Figures

Figure 1

18 pages, 7765 KB  
Article
Study on Optimization of Stimulation Technology of Heterogeneous Porous Carbonate Reservoir
by Kangjia Zhao, Hualei Xu, Jie Wang, Houshun Jiang and Liangjun Zhang
Processes 2024, 12(6), 1191; https://doi.org/10.3390/pr12061191 - 10 Jun 2024
Cited by 1 | Viewed by 1146
Abstract
Mishrif (M) reservoir of Faihaa (F) oilfield in Iraq is a heterogeneous porous carbonate reservoir. The reservoir properties of each reservoir unit differ greatly, and the distribution of porosity and permeability is non-uniform. Some reservoir units have the problem that the expected production [...] Read more.
Mishrif (M) reservoir of Faihaa (F) oilfield in Iraq is a heterogeneous porous carbonate reservoir. The reservoir properties of each reservoir unit differ greatly, and the distribution of porosity and permeability is non-uniform. Some reservoir units have the problem that the expected production cannot be achieved or the production decline rate is too fast after matrix acidification. This work optimized and compared the process of acid fracturing and hydraulic fracturing techniques. The Mishrif B (MB) and Mishrif C (MC) layers are selected as the target units for fracturing and the perforation intervals are optimized. The acid fracturing process adopted the acid fracturing technology of guar gum pad fluid and gelled acid multi-stage injection. According to the wellhead pressure limit and fracture propagation geometry, the pumping rate is optimized. The recommended maximum pumping rate of acid fracturing is 5.0 m3/min, and the optimized acid volume is 256.4 m3. The pressure changes during hydraulic fracturing and acid fracturing are different. It is recommended that the maximum hydraulic fracturing pump rate is 4.5 m3/min for MB and MC layers, and the amount of proppant in MB and MC layers is 37.5 m3 and 43.7 m3, respectively. The production prediction of two optimized processes is carried out. The results showed that the effect of acid fracturing in MB and MC layers is better than hydraulic fracturing, and it is recommended to adopt acid fracturing technology to stimulate MB and MC layers. Acid fracturing operation is carried out in the X-13 well, and better application results are achieved. The results of this study provide optimized reference ideas for reservoir stimulation in heterogeneous porous reservoirs. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

13 pages, 1580 KB  
Article
Study on Rock Interface Stability in the Heat Exchange Channel of the Horizontal Section of U-Shaped Wells in Hot Dry Rock
by Yafei Xue, Bo Xiong, Shejiao Wang, Chaohe Fang, Shaoyuan Mo, Fudong Xin and Yuxi Xian
Appl. Sci. 2024, 14(11), 4388; https://doi.org/10.3390/app14114388 - 22 May 2024
Cited by 1 | Viewed by 1003
Abstract
Enhanced Geothermal Systems (EGS) represent a promising direction for sustainable energy development, yet their efficiency and feasibility often suffer due to suboptimal heat extraction methods and interface instability in U-shaped wells. This study introduces an innovative volume encapsulation technology that aims to address [...] Read more.
Enhanced Geothermal Systems (EGS) represent a promising direction for sustainable energy development, yet their efficiency and feasibility often suffer due to suboptimal heat extraction methods and interface instability in U-shaped wells. This study introduces an innovative volume encapsulation technology that aims to address these challenges. The proposed technology employs a combination of hydraulic fracturing and acidification to prepare the rock interface, followed by encapsulation using high-temperature liquid metal. Low-melting-point alloys are utilized as a heat exchange medium between the horizontal sections of the wells. This study meticulously analyzes the impact of formation stress, thermal shock stress, and liquid metal properties on rock interface stability. Advanced simulation tools and experimental setups were used to test the encapsulation process under various conditions. The application of liquid metal encapsulation demonstrated significant improvements in energy conversion efficiency and rock interface stability. In conditions simulating a dry and hot rock reservoir at depths up to 3000 m and temperature gradients reaching 2200 °C/m, the adjusted depth of horizontal sections and increased pumping pressure contributed to maintaining interface stability. The established failure criteria provide a robust theoretical foundation for the encapsulation process. Volume encapsulation technology using liquid metal not only enhances the operational efficiency of EGS but also stabilizes the rock interface, thereby increasing the feasibility of continuous geothermal energy extraction. This study offers valuable theoretical insights and practical guidance for future research and applications in geothermal energy technologies, creating new pathways for the efficient exploitation of geothermal resources. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

12 pages, 3210 KB  
Article
Improving Ammonia Emission Model of Urea Fertilizer Fluidized Bed Granulation System Using Particle Swarm Optimization for Sustainable Fertilizer Manufacturing Practice
by Norhidayah Mohamad, Nor Azlina Ab. Aziz, Anith Khairunnisa Ghazali and Mohd Rizal Salleh
Processes 2024, 12(5), 1025; https://doi.org/10.3390/pr12051025 - 18 May 2024
Viewed by 2155
Abstract
Granulation is an important class of production processes in food, chemical and pharmaceutical manufacturing industries. In urea fertilizer manufacturing, fluidized beds are often used for the granulation system. However, the granulation processes release ammonia to the environment. Ammonia gas can contribute to eutrophication, [...] Read more.
Granulation is an important class of production processes in food, chemical and pharmaceutical manufacturing industries. In urea fertilizer manufacturing, fluidized beds are often used for the granulation system. However, the granulation processes release ammonia to the environment. Ammonia gas can contribute to eutrophication, which is an oversupply of nitrogen and acidification to the ecosystems. Eutrophication may cause major disruptions of aquatic ecosystems. It is estimated that global ammonia emissions from urea fertilizer processes are approximately at 10 to 12 Tg N/year, which represents 23% of overall ammonia released globally. Therefore, accurate modeling of the ammonia emission by the urea fertilizer fluidized bed granulation system is important. It allows for the system to be operated efficiently and within sustainable condition. This research attempts to optimize the model of the system using the particle swarm optimization (PSO) algorithm. The model takes pressure (Mpa), binder feed rate (rpm) and inlet temperature (°C) as the manipulated variables. The PSO searches for the model’s optimal coefficients. The accuracy of the model is measured using mean square error (MSE) between the model’s simulated value and the actual data of ammonia released which is collected from an experiment. The proposed method reduces the MSE to 0.09727, indicating that the model can accurately simulate the actual system. Full article
Show Figures

Figure 1

16 pages, 4045 KB  
Article
A Method for Evaluating Coalbed Methane Reservoir Productivity Considering Drilling Fluid Damage
by Chen Li, Lichun Sun, Zhigang Zhao, Jian Zhang, Yong Li, Yanjun Meng and Lei Wang
Energies 2024, 17(7), 1686; https://doi.org/10.3390/en17071686 - 1 Apr 2024
Cited by 6 | Viewed by 1303
Abstract
In the process of coalbed methane development, drilling fluid and fracturing fluid cannot achieve absolute compatibility with formation. The incompatibility between the working fluid and reservoir will lead to the intrusion of working fluid into the reservoir and cause reservoir pollution. This is [...] Read more.
In the process of coalbed methane development, drilling fluid and fracturing fluid cannot achieve absolute compatibility with formation. The incompatibility between the working fluid and reservoir will lead to the intrusion of working fluid into the reservoir and cause reservoir pollution. This is a very common phenomenon. There is a large amount of pulverized coal in the coal seam, and the intrusion of working liquid will be combined with the pulverized coal to form cement to block the seepage space in the reservoir. Since pressure relief and fracturing fluid backflow will be performed at the first time after fracturing, the intrusion range of the working fluid is small, generally reaching 10 m to 50 m. Compared with a conventional gas reservoir or shale gas reservoir, the working fluid loss during CBM development will seriously affect the subsequent production project and even make the gas well lose production capacity. On the other hand, in order to avoid this phenomenon, measures such as acidification or volumetric fracturing are sometimes used to improve the seepage environment near the well and near the fracture. The purpose of this study is to quantitatively evaluate the impacts of working fluid filtration and reservoir reconstruction on production. In this study, a single well productivity evaluation model and sensitivity analysis method considering drilling fluid filtration loss, fracturing fluid filtration loss, reservoir reconstruction and other processes is proposed. The formation mechanism of fluid loss during drilling and fracturing is described, and the productivity evaluation model considering fluid loss is combined with the Langmuir isothermal adsorption equation, steady-state diffusion law, Darcy’s seepage law and Duhamel convolution formation. Combined with the distribution of actual gas reservoir flow characteristics, the sensitivity of single well productivity to gas reservoir porosity, gas reservoir permeability, coal seam adsorption coefficient, working fluid filtration loss and reservoir reconstruction measures are analyzed. Through the analysis and fitting of the actual production data on site, the relationship curve can better fit the field production data, and the evaluation results are in line with the drilling and fracturing conditions at that time and the subsequent production conditions, with small errors. The obtained method is suitable for predicting the productivity of fractured vertical wells in different working conditions and provides a basis for the development and productivity prediction of CBM reservoirs in China and in international cooperation. Full article
(This article belongs to the Special Issue Advances in the Development of Unconventional Oil and Gas Resources)
Show Figures

Figure 1

15 pages, 1990 KB  
Article
Life Cycle Assessment of Dried Organic Apple Value Chains Considering Conventional and Heat-Pump-Assisted Drying Processes: The Case of Sweden
by Techane Bosona
Agriculture 2024, 14(3), 461; https://doi.org/10.3390/agriculture14030461 - 12 Mar 2024
Cited by 1 | Viewed by 2767
Abstract
The increasing population pressure and demand for quality food, and the significant burden of agriculture on the environment, impede the sustainable development of the food sector. Understanding the environmental performance of different agricultural technologies and food value chains and identifying improvement opportunities play [...] Read more.
The increasing population pressure and demand for quality food, and the significant burden of agriculture on the environment, impede the sustainable development of the food sector. Understanding the environmental performance of different agricultural technologies and food value chains and identifying improvement opportunities play important roles in the sustainable development of this sector. This article presents the results of an environmental impact assessment of organic dried apples produced and supplied in Sweden, which was conducted using primary and literature-based data. A “cradle-to-consumer gate” life cycle analysis (LCA) method with a functional unit (FU) of 1 ton of fresh organic apples at the farm stage was used while considering conventional drying and heat-pump (HP)-assisted apple-drying techniques. The main environmental impact categories investigated were cumulative energy demand (CED), climate change impact (GWP), acidification potential (AP), and eutrophication potential (EP). The results indicate that the total CED values were 7.29 GJ and 5.12 GJ per FU for the conventional drying and HP-assisted drying methods, respectively, i.e., a reduction of about 30%. Similarly, the GWP values were 130 kg CO2 eq and 120 kg CO2 eq per FU, respectively. These findings highlight the importance of improving energy use and process efficiency to increase the sustainability of dried organic apple value chains. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

19 pages, 6044 KB  
Article
Life Cycle Environmental Assessment of Three Excavated Soil and Rock (ESR) Treatment Methods: A Case Study in Shenzhen City
by Jing Bai, Yi Ma, Qingbin Song, Zhijun Hu, Yanqiu Li and Huabo Duan
Sustainability 2024, 16(5), 2022; https://doi.org/10.3390/su16052022 - 29 Feb 2024
Cited by 1 | Viewed by 1448
Abstract
This study aimed to quantitatively assess the environmental impacts of different methods used for treating excavated soil and rock (ESR) in Shenzhen, namely landfilling, sintering, and non-sintering, using the life cycle assessment (LCA) method. The findings indicate that recycling ESR through sintering or [...] Read more.
This study aimed to quantitatively assess the environmental impacts of different methods used for treating excavated soil and rock (ESR) in Shenzhen, namely landfilling, sintering, and non-sintering, using the life cycle assessment (LCA) method. The findings indicate that recycling ESR through sintering or non-sintering processes offers more sustainable alternatives than landfilling. The recycled products derived from ESR can effectively replace traditional building materials, thereby reducing their environmental impacts. However, when comparing the environmental impacts of sintering and non-sintering processes, the latter demonstrated more significant impacts, particularly in terms of global warming potential (GWP), acidification potential (AP), and eutrophication potential (EP). Furthermore, it is worth noting that the environmental impacts of the sintering processes are influenced by fuel type and exhaust gas emissions, with natural gas combustion yielding more substantial overall environmental benefits. Moreover, ESR landfilling poses constraints on sustainable development and land resource occupation. This study contributes to a better understanding of the environmental impacts associated with ESR landfilling and recycling, provides management departments with optimal ESR management suggestions, and alleviates environmental pressure from urban development. Full article
(This article belongs to the Special Issue Construction and Demolition Waste Management for Carbon Neutrality)
Show Figures

Figure 1

21 pages, 3153 KB  
Article
Seasonal Controls of Seawater CO2 Systems in Subtropical Coral Reefs: A Case Study from the Eastern Coast of Shenzhen, China
by Bo Yang, Zhuo Zhang, Ziqiang Xie, Bogui Chen, Huina Zheng, Baolin Liao, Jin Zhou and Baohua Xiao
Water 2023, 15(23), 4124; https://doi.org/10.3390/w15234124 - 28 Nov 2023
Cited by 2 | Viewed by 1811
Abstract
In situ field investigations coupled with coral culture experiments were carried out in the coral reef waters of the eastern coast of Shenzhen, Da’ao Bay (DAB), Dalu Bay (DLB), and Yangmeikeng Sea Area (YMKSA) to study the dynamics of the carbon dioxide (CO [...] Read more.
In situ field investigations coupled with coral culture experiments were carried out in the coral reef waters of the eastern coast of Shenzhen, Da’ao Bay (DAB), Dalu Bay (DLB), and Yangmeikeng Sea Area (YMKSA) to study the dynamics of the carbon dioxide (CO2) system in seawater and its controlling factors. The results indicated that the CO2 parameters were highly variable over a range of spatiotemporal scales, forced by various physical and biochemical processes. Comprehensively, DAB acted as a sink for atmospheric CO2 with exchange flux of –1.51 ± 0.31 to 0.27 ± 0.50 mmol C m−2 d−1, while DLB and YMKSA acted as a CO2 source with exchange fluxes of –0.42 ± 0.36 to 1.69 ± 0.74 mmol C m−2 d−1 and –0.58 ± 0.48 to 1.69 ± 0.41 mmol C m−2 d−1, respectively. The biological process and mixing effect could be the most important factor for the seasonal variation in total alkalinity (TA). In terms of dissolved inorganic carbon (DIC), in addition to biological process and mixing, its seasonal variation was affected by air–sea exchange and coral metabolism to some extent. Different from the former, the other CO2 parameters, total scale pH (pHT), partial pressure of CO2 (pCO2), and aragonite saturation state (ΩA), were mainly controlled by a combination of the temperature change, biochemical processes, air–sea exchange, and coral metabolism, while water mixing has little effect on them. In addition, our results indicated that coral communities could significantly increase the DIC/TA ratio by reducing the TA concentration and increasing the DIC in the reef waters, which may promote the acidification of local seawater and need attention. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

17 pages, 4253 KB  
Article
Experimental and Simulation Studies for Purification and Etherification of Glycerol from the Biodiesel Industry
by Silvia S. O. Silva, Matheus R. Nascimento, Ricardo J. P. Lima, Francisco Murilo Tavares Luna and Célio Loureiro Cavalcante Júnior
AppliedChem 2023, 3(4), 492-508; https://doi.org/10.3390/appliedchem3040031 - 3 Nov 2023
Cited by 6 | Viewed by 3094
Abstract
In this study, a purification route was applied to crude glycerol and its valorization via etherification was evaluated. Crude glycerol samples were obtained through transesterification reactions of soybean oil with methanol using potassium hydroxide as catalyst. A set of separation steps (acidification, neutralization, [...] Read more.
In this study, a purification route was applied to crude glycerol and its valorization via etherification was evaluated. Crude glycerol samples were obtained through transesterification reactions of soybean oil with methanol using potassium hydroxide as catalyst. A set of separation steps (acidification, neutralization, salt precipitation, evaporation and removal of contaminants using ion-exchange resins) was performed for purification of crude glycerol. The glycerol contents of crude samples were 46% wt., and for purified samples they were above 98% wt. The etherification reactions were carried out with purified samples and different alcohols (ethanol, isopropanol and 3-methyl-1-butanol) placed into a batch reactor, using a small amount of Amberlyst 15 as a catalyst, with autogenous pressure and solvent-free conditions. The glycerol conversion, selectivity and yield to ethers were evaluated. A glycerol conversion of up to 97% wt. was obtained when using ethanol. For isopropanol, the glycerol conversion rate was 85% (97.1% of monoether and 2.8% of diether). However, the selectivity to ethers for 3-methyl-1-butanol was negligible (<3% wt.). A process simulation for the purification and etherification steps integrated with a biodiesel production process was assessed in terms of productivity and energy consumption, considering different scenarios of glycerol/alcohol molar ratios. Finally, main impacts on the overall energy consumption were evaluated for the purification processes (glycerol and ethers). Full article
Show Figures

Graphical abstract

Back to TopTop