Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = aerated extraction method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2841 KB  
Article
Extraction of Rubidium and Cesium Ions by Adsorption–Flotation Separation in Titanosilicate-Hexadecyltrimethylammonium Bromide System
by Dezhen Fang, Haining Liu, Xiushen Ye, Yanping Wang and Wenjie Han
Separations 2025, 12(7), 181; https://doi.org/10.3390/separations12070181 - 7 Jul 2025
Viewed by 582
Abstract
This study centers on the adsorption–flotation coupling extraction of rubidium (Rb+) and cesium (Cs+) within a titanium silicate (CTS)–cetyltrimethylammonium bromide (CTAB) system, systematically investigating the impacts of pH, aeration rate, CTAB concentration, and flotation time on the extraction efficiency [...] Read more.
This study centers on the adsorption–flotation coupling extraction of rubidium (Rb+) and cesium (Cs+) within a titanium silicate (CTS)–cetyltrimethylammonium bromide (CTAB) system, systematically investigating the impacts of pH, aeration rate, CTAB concentration, and flotation time on the extraction efficiency of these elements. Single-factor experiments revealed that the optimal flotation efficiency was achieved when the pH ranged from 6 to 10, the aeration rate was set at 1000 r/min, the CTAB concentration was 0.2 mmol/L, and the flotation duration was 18 min. Under these conditions, the adsorption capacities for Rb+ and Cs+ were recorded as 128.32 mg/g and 185.47 mg/g, respectively. Employing the response surface optimization method to analyze the interactive effects of these four factors, we found that their order of significance was as follows: pH > aeration rate > CTAB concentration > flotation time. The optimized parameters were determined as pH 8.64, bubble formation rate 1121 r/min, CTAB concentration 0.26 mmol/L, and flotation time 18.47 min. Under these refined conditions, the flotation efficiency for both CTS–Rb and CTS–Cs surpassed any single-factor experiment scenario, with the flotation efficiencies for Rb+ and Cs+ reaching 95.05% and 94.82%, respectively. This methodology effectively extracts Rb+ and Cs+ from low-concentration liquid systems, while addressing the challenges of solid–liquid separation for powdered adsorption materials. It holds significant theoretical and practical reference value for enhancing the separation processes of low-grade valuable components and boosting overall separation performance. Full article
(This article belongs to the Special Issue Green and Efficient Separation and Extraction of Salt Lake Resources)
Show Figures

Figure 1

20 pages, 11233 KB  
Article
Capturing Free Surface Dynamics of Flows over a Stepped Spillway Using a Depth Camera
by Megh Raj K C, Brian M. Crookston and Daniel B. Bung
Sensors 2025, 25(8), 2525; https://doi.org/10.3390/s25082525 - 17 Apr 2025
Cited by 1 | Viewed by 771
Abstract
Spatio-temporal measurements of turbulent free surface flows remain challenging with in situ point methods. This study explores the application of an inexpensive depth-sensing RGB-D camera, the Intel® RealSense™ D455, to capture detailed water surface measurements of a highly turbulent, self-aerated flow in [...] Read more.
Spatio-temporal measurements of turbulent free surface flows remain challenging with in situ point methods. This study explores the application of an inexpensive depth-sensing RGB-D camera, the Intel® RealSense™ D455, to capture detailed water surface measurements of a highly turbulent, self-aerated flow in the case of a stepped spillway. Ambient lighting conditions and various sensor settings, including configurations and parameters affecting data capture and quality, were assessed. A free surface profile was extracted from the 3D measurements and compared against phase detection conductivity probe (PDCP) and ultrasonic sensor (USS) measurements. Measurements in the non-aerated region were influenced by water transparency and a lack of detectable surface features, with flow depths consistently smaller than USS measurements (up to 32.5% less). Measurements in the clear water region also resulted in a “no data” region with holes in the depth map due to shiny reflections. In the aerated flow region, the camera effectively detected the dynamic water surface, with mean surface profiles close to characteristic depths measured with PDCP and within one standard deviation of the mean USS flow depths. The flow depths were within 10% of the USS depths and corresponded to depths with 80–90% air concentration levels obtained with the PDCP. Additionally, the depth camera successfully captured temporal fluctuations, allowing for the calculation of time-averaged entrapped air concentration profiles and dimensionless interface frequency distributions. This facilitated a direct comparison with PDCP and USS sensors, demonstrating that this camera sensor is a practical and cost-effective option for detecting free surfaces of high velocity, aerated, and dynamic flows in a stepped chute. Full article
(This article belongs to the Special Issue 3D Reconstruction with RGB-D Cameras and Multi-sensors)
Show Figures

Figure 1

15 pages, 6274 KB  
Article
New Refined Experimental Analysis of Fungal Growth in Degraded Bio-Based Materials
by Dmytro Kosiachevskyi, Kamilia Abahri, Isabelle Trinsoutrot-Gattin, Lisa Castel, Anne Daubresse, Mohend Chaouche and Rachid Bennacer
Processes 2024, 12(10), 2188; https://doi.org/10.3390/pr12102188 - 9 Oct 2024
Viewed by 1273
Abstract
When exposed to different building environmental conditions, bio-composite materials, such as hemp mortars, represent a risk of mold proliferation. This later plays a critical role in the biodeterioration of the materials when their physical properties are locally modified by the natural aging process. [...] Read more.
When exposed to different building environmental conditions, bio-composite materials, such as hemp mortars, represent a risk of mold proliferation. This later plays a critical role in the biodeterioration of the materials when their physical properties are locally modified by the natural aging process. The primary objectives of the present work are first to assess the evolution of the surface of contaminated mortar; second, to investigate an accurate DNA extraction method that could be used for both bio-composite mortars and their fiber sources collected in situ; then, to understand the process of the proliferation of mold strains on both hemp shives and hemp mortar; and finally, to compare mold strains present in these phases to show their relationship to mold contamination and their impact on human health. In situ hemp mortar contamination behavior was investigated in the region of Pau (France) two months after hemp mortar application in extreme conditions (high humidity, low temperature, no aeration), which did not match the standard conditions under which hemp mortar must be used. The SEM observations and FTIR and pH analyses highlighted the decrease in pH level and the presence of organic matter on the mortar surface. DNA sequencing results showed that hemp shives were the main source of fungal contamination of hemp mortar. A mold population analysis showed that the most dominant phylum was Ophistokonta, which represented 83.6% in hemp shives and 99.97% in hemp mortar. The Acrostalagmus genus representatives were the most abundant, with 42% in hemp shives and 96% in hemp mortar. The interconnection between the mold strain characteristics (particularly the ability to grow in extreme environments) and the presence of hemp mortar was emphasized. Full article
(This article belongs to the Topic Advances in Sustainable Materials and Products)
Show Figures

Figure 1

16 pages, 4240 KB  
Article
Rapid Reduction of Phytotoxicity in Green Waste for Use as Peat Substitute: Optimization of Ammonium Incubation Process
by Wenzhong Cui, Juncheng Liu, Qi Bai, Lingyi Wu, Zhiyong Qi and Wanlai Zhou
Plants 2024, 13(17), 2360; https://doi.org/10.3390/plants13172360 - 24 Aug 2024
Viewed by 1208
Abstract
The rapid growth of the horticultural industry has increased demand for soilless cultivation substrates. Peat, valued for its physical and chemical properties, is widely used in soilless cultivation. However, peat is non-renewable, and over-extraction poses serious ecological risks. Therefore, sustainable alternatives are urgently [...] Read more.
The rapid growth of the horticultural industry has increased demand for soilless cultivation substrates. Peat, valued for its physical and chemical properties, is widely used in soilless cultivation. However, peat is non-renewable, and over-extraction poses serious ecological risks. Therefore, sustainable alternatives are urgently needed. Ammonium incubation, a novel method to reduce phytotoxicity, offers the potential for green waste, a significant organic solid waste resource, to substitute peat. This study optimized the ammonium incubation process to reduce green waste phytotoxicity. It systematically examined different nitrogen salts (type and amount) and environmental conditions (temperature, aeration, duration) affecting detoxification efficiency. Results show a significant reduction in phytotoxicity with ammonium bicarbonate, carbonate, and sulfate, especially carbonate, at 1.5%. Optimal conditions were 30 °C for 5 days with regular aeration. Under these conditions, ammonium salt-treated green waste significantly reduced total phenolic content and stabilized germination index (GI) at a non-phytotoxic level (127%). Using treated green waste as a partial peat substitute in lettuce cultivation showed promising results. This low-cost, low-energy method effectively converts green waste into sustainable peat alternatives, promoting eco-friendly horticulture and environmental conservation. Full article
Show Figures

Figure 1

24 pages, 1064 KB  
Review
Filling the Knowledge Gap Regarding Microbial Occupational Exposure Assessment in Waste Water Treatment Plants: A Scoping Review
by Bruna Riesenberger, Margarida Rodriguez, Liliana Marques, Renata Cervantes, Bianca Gomes, Marta Dias, Pedro Pena, Edna Ribeiro and Carla Viegas
Microorganisms 2024, 12(6), 1144; https://doi.org/10.3390/microorganisms12061144 - 4 Jun 2024
Cited by 2 | Viewed by 2401
Abstract
Background: Wastewater treatment plants (WWTPs) are crucial in the scope of European Commission circular economy implementation. However, bioaerosol production may be a hazard for occupational and public health. A scoping review regarding microbial contamination exposure assessment in WWTPs was performed. Methods: This study [...] Read more.
Background: Wastewater treatment plants (WWTPs) are crucial in the scope of European Commission circular economy implementation. However, bioaerosol production may be a hazard for occupational and public health. A scoping review regarding microbial contamination exposure assessment in WWTPs was performed. Methods: This study was performed through PRISMA methodology in PubMed, Scopus and Web of Science. Results: 28 papers were selected for data extraction. The WWTPs’ most common sampled sites are the aeration tank (42.86%), sludge dewatering basin (21.43%) and grit chamber. Air sampling is the preferred sampling technique and culture-based methods were the most frequently employed assays. Staphylococcus sp. (21.43%), Bacillus sp. (7.14%), Clostridium sp. (3.57%), Escherichia sp. (7.14%) and Legionella sp. (3.57%) were the most isolated bacteria and Aspergillus sp. (17.86%), Cladosporium sp. (10.71%) and Alternaria sp. (10.71%) dominated the fungal presence. Conclusions: This study allowed the identification of the following needs: (a) common protocol from the field (sampling campaign) to the lab (assays to employ); (b) standardized contextual information to be retrieved allowing a proper risk control and management; (c) the selection of the most suitable microbial targets to serve as indicators of harmful microbial exposure. Filling these gaps with further studies will help to provide robust science to policy makers and stakeholders. Full article
Show Figures

Figure 1

22 pages, 5117 KB  
Article
Studying Flotation of Gold Microdispersions with Carrier Minerals and Pulp Aeration with a Steam–Air Mixture
by Sergei Ivanovich Evdokimov, Nikolay S. Golikov, Alexey F. Pryalukhin, Viktor V. Kondratiev, Anatolii Mishedchenko, Alexandra Vl. Kuzina, Natalia Nikolaevna Bryukhanova and Antonina I. Karlina
Minerals 2024, 14(1), 108; https://doi.org/10.3390/min14010108 - 19 Jan 2024
Cited by 10 | Viewed by 2054
Abstract
This work is aimed at obtaining new knowledge in the field of interactions of polydisperse hydrophobic surfaces in order to increase the extraction of mineral microdispersions via flotation. The effect of high velocity and the probability of aggregating fine particles with large ones [...] Read more.
This work is aimed at obtaining new knowledge in the field of interactions of polydisperse hydrophobic surfaces in order to increase the extraction of mineral microdispersions via flotation. The effect of high velocity and the probability of aggregating fine particles with large ones are used to increase the extraction of finely dispersed gold in this work. Large particles act as carrier minerals, which are intentionally introduced into a pulp. The novelty of this work lies in the fact that a rougher concentrate is used as the carrier mineral. For this purpose, it is isolated from three parallel pulp streams by mixing the rougher concentrate, isolated from the first stream of raw materials, with an initial feed of the second stream; accordingly, the rougher concentrate of the second stream is mixed with the initial feed of the third stream, and the finished rougher concentrate is obtained. In this mode of extracting the rougher concentrate, the content of the extracted metal increases from stream to stream, which contributes to the growth in its content in the end product. Moreover, in order to supplement forces involved in the separation of minerals with surface forces of structural origin in the third flotation stream, the pulp is aerated for a short time (about 15%–25% of the total) with air bubbles filled with a heat carrier, i.e., hot water vapor. Within this accepted flotation method, the influence that the surface currents occurring in the wetting film have on its thinning and breakthrough kinetics is proposed to be in the form of a correction to a length of a liquid slip in the hydrophobic gap. The value of the correction is expressed as a fraction of the limiting thickness of the wetting film, determined by the condition of its thickness invariability when the streams are equal in an interphase gap: outflowing (due to an action of the downforce) and inflowing (Marangoni flows and a thermo-osmotic stream). Gold flotation experiments are performed on samples of gold-bearing ore obtained from two deposits with conditions that simulate a continuous process. Technological advantages of this developed scheme and a flotation mode of gold microdispersions are shown in comparison with the basic technology. The purpose of this work is to conduct comparative tests on the basic and developed technologies using samples of gold-bearing ore obtained from the Natalka and Olimpiada deposits. Through the use of the developed technology, an increase in gold extraction of 7.99% and in concentrate quality (from 5.09 to 100.3 g/t) is achieved when the yield of the concentrate decreases from 1.86 to 1.30%, which reduces the costs associated with its expensive metallurgical processing. Full article
(This article belongs to the Special Issue Design, Modeling, Optimization and Control of Flotation Process)
Show Figures

Figure 1

15 pages, 1957 KB  
Article
Nutrient Solution from Aqueous Extracts as an Alternative to Fertigation in Hydroponic
by María Carmen Salas-Sanjuán, José Luis Ruíz-Zubiate, Juan Luis Valenzuela and Antonio Xavier Campos
Horticulturae 2023, 9(12), 1281; https://doi.org/10.3390/horticulturae9121281 - 28 Nov 2023
Cited by 1 | Viewed by 3208
Abstract
The reintegration of agro-waste into the same agriculture site fulfils the objective of the European Bio-Economy Strategy: to reduce transport costs, waste volume, and the need for mineral fertilizers. One of the fundamental principles in sustainable agriculture is the recycling of crop residues [...] Read more.
The reintegration of agro-waste into the same agriculture site fulfils the objective of the European Bio-Economy Strategy: to reduce transport costs, waste volume, and the need for mineral fertilizers. One of the fundamental principles in sustainable agriculture is the recycling of crop residues through composting or vermicomposting. From this process, it is possible to obtain organic matter for the production of aqueous extracts (tea) that can be used as a source of nutrients in fertigation as an alternative to mineral fertilizers. The objective of this research was to evaluate the use of an aerated or non-aerated aqueous extract as a recirculating nutrient solution in a hydroponic culture (NFT) of lettuce. For this, the test method was compared to hydroponic cultivation with a conventional nutrient solution. The conventional nutrient solution contained minerals or synthetic fertilizers and the aqueous extracts of vermicompost from vegetal residues of horticultural crops. The evolution of the chemical composition of the nutrient solutions during cultivation was analyzed, obtaining adequate concentrations of NO3, K+, and Ca2+ and taking possible imbalances in nutrients such as P-H2PO4 into consideration. Plants fertigated with an organic and aerated nutrient solution obtained good yields and improvements in quality by having six times less N-NO3 in edible leaves compared to plants exposed to the mineral treatment. The preparation of aqueous extracts as a source of nutrients opens the door to circular agriculture to make processes in intensive production systems more efficient. Full article
(This article belongs to the Special Issue Organic Fertilizers in Horticulture)
Show Figures

Figure 1

12 pages, 4257 KB  
Article
Microbubble Oxidation for Fe2+ Removal from Hydrochloric Acid Laterite Ore Leachate
by Ziyang Xu, Yu Wang, Boyuan Zhu, Guangye Wei, Fei Ma, Zhihui Yu and Jingkui Qu
Materials 2023, 16(21), 6951; https://doi.org/10.3390/ma16216951 - 30 Oct 2023
Viewed by 1848
Abstract
After the atmospheric hydrochloric acid leaching method is used to treat laterite ore and initially purify it, the extract that results often contains a significant amount of Fe2+ impurities. A novel metallurgical process has been proposed that utilizes microbubble aeration to oxidize [...] Read more.
After the atmospheric hydrochloric acid leaching method is used to treat laterite ore and initially purify it, the extract that results often contains a significant amount of Fe2+ impurities. A novel metallurgical process has been proposed that utilizes microbubble aeration to oxidize Fe2+ ions in laterite hydrochloric acid lixivium, facilitating subsequent separation and capitalizing on the benefits of microbubble technology, including its expansive specific surface area, negatively charged surface attributes, prolonged stagnation duration, and its capacity to produce active oxygen. The study examined the impacts of aeration aperture, stirring speed, oxygen flow rate, pH value, and reaction temperature. Under optimized experimental conditions, which included an aeration aperture of 0.45 µm, stirring at 500 rpm, a bubbling flow rate of 0.4 L/min, pH level maintained at 3.5, and a temperature range of 75–85 °C, the oxidation efficiency of Fe2+ surpassed 99%. An analysis of the mass transfer process revealed that microbubble aeration markedly enhances the oxygen mass transfer coefficient, measured at 0.051 s−1. The study also confirmed the self-catalytic properties of Fe2+ oxidation and conducted kinetic studies to determine an apparent activation energy of 399 kJ/mol. At pH values below 3.5, the reaction is solely governed by chemical reactions; however, at higher pH values (>3.5), both chemical reactions and oxygen dissolution jointly control the reaction. Full article
(This article belongs to the Special Issue Utilization of Mineral Materials and Metal Leaching/Extraction)
Show Figures

Figure 1

12 pages, 9062 KB  
Article
The Effect of the Aeration Condition on the Liquid–Solid Material Mixing in a Stirred Tank with a Single-Layer Impeller
by Juntong Chen, Man Ge and Lin Li
Appl. Sci. 2023, 13(15), 9021; https://doi.org/10.3390/app13159021 - 7 Aug 2023
Cited by 5 | Viewed by 2131
Abstract
In order to increase industrial production quality and efficiency, it is essential to understand how the aeration and no-aeration condition affects liquid and solid material mixing in the stirred tank. Due to complicated shear flows, the related mass-transfer mechanism confronts numerous difficulties. This [...] Read more.
In order to increase industrial production quality and efficiency, it is essential to understand how the aeration and no-aeration condition affects liquid and solid material mixing in the stirred tank. Due to complicated shear flows, the related mass-transfer mechanism confronts numerous difficulties. This paper put forward an improved computational fluid dynamics and discrete element method (CFD–DEM) modeling approach to explore the effect mechanism of aeration conditions on liquid–solid material mixing. Firstly, a mass-transfer dynamic model is set up with a volume of fluid and piecewise linear interface construction (VOF–PLIC) coupling strategy to explore flow modes and vorticity evolution trends under aeration control. Then, a self-developed interphase coupling interface is utilized to modify the coupling force and porosity of the porous media model in the DEM module, and random dispersion properties of the particle phase under non-aeration and aeration are obtained. Results show that the aeration and flow-blocking components transform fluid tangential speeds into axial and radial speeds, which can improve the material mixing quality and efficiency. The mixed flow field can reach a greater turbulent process under the impeller rotation, making the particles have an intensive disorder and complex flow patterns. The enhanced motion efficiency of the vortex clusters encourages their nesting courses and improves cross-scale mixed transport. It can serve as some reference for the three-phase flow mixing mechanism, vorticity distribution law, and particle motion solution and has a general significance for battery homogeneous mixing, biopharmaceutical processes, and chemical process extraction. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

27 pages, 8158 KB  
Article
Investigation of the Bimodal Leaching Response of RAM Chip Gold Fingers in Ammonia Thiosulfate Solution
by Peijia Lin, Zulqarnain Ahmad Ali and Joshua Werner
Materials 2023, 16(14), 4940; https://doi.org/10.3390/ma16144940 - 11 Jul 2023
Cited by 7 | Viewed by 2445
Abstract
Oxidative thiosulfate leaching using Cu(II)-NH3 has been explored for both mining and recycling applications as a promising method for Au extraction. This study seeks to understand the dissolution behavior of Au from waste RAM chips using a Cu(II)-NH3-S2O [...] Read more.
Oxidative thiosulfate leaching using Cu(II)-NH3 has been explored for both mining and recycling applications as a promising method for Au extraction. This study seeks to understand the dissolution behavior of Au from waste RAM chips using a Cu(II)-NH3-S2O3 solution. In the course of this work, bimodal leaching and Au loss were observed in a manner that we have not identified in the literature. Identification of the existence of a specific Au-Ni-Cu lamellar structure in the gold fingers from RAM chips by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS) revealed the possibility of interference between Au recovery and the existence of Cu and Ni. During leaching, the co-extraction of Ni was found to predict a negative impact on the Au recovery, as a result of chemical interactions from the Au-Ni-Cu interlayer. Decopperization as a pretreatment was found necessary to remove the pre-existing Cu and promote Au leaching. As part of the study parameters, such as Cu(II) concentration, aeration rates, thiosulfate and ammonia concentrations, particle sizes, and temperatures, were investigated. A satisfactory Au recovery of 98% was achieved using 50 mM Cu(II), 120 mL/min aeration rate, 0.5 M (NH3)2S2O3, and 0.75 M NH4OH (i.e., AT/AH ratio of 0.67) for 4 h residence time at room temperature (25 °C). However, there were several high recoveries prior to Au loss from the lixiviant. It was revealed that the main cause of lower Au recovery was due to a precipitation or cementation reaction that included a sulfur species formation. Because of the bimodal leaching, a composite response comprised of the time to Au loss and maximum recovery was developed, termed leaching proclivity, to facilitate statistical analysis. Furthermore, this study explores the interactions between Au-Ni-Cu and provides suggestions for improving Au thiosulfate leaching under the interference of co-existing metals from waste PCB materials. Full article
(This article belongs to the Special Issue Processing of End-of-Life Materials and Industrial Wastes–Volume 2)
Show Figures

Figure 1

32 pages, 1826 KB  
Review
Bioleaching Techniques for Sustainable Recovery of Metals from Solid Matrices
by Leidy Rendón-Castrillón, Margarita Ramírez-Carmona, Carlos Ocampo-López and Luis Gómez-Arroyave
Sustainability 2023, 15(13), 10222; https://doi.org/10.3390/su151310222 - 28 Jun 2023
Cited by 30 | Viewed by 16408
Abstract
This review paper explores the potential of bioleaching as a sustainable alternative for recovering metals from solid matrices. With over 12 billion tons of solid waste annually worldwide, bioleaching provides a promising opportunity to extract metals from solid waste, avoiding harmful chemical processes. [...] Read more.
This review paper explores the potential of bioleaching as a sustainable alternative for recovering metals from solid matrices. With over 12 billion tons of solid waste annually worldwide, bioleaching provides a promising opportunity to extract metals from solid waste, avoiding harmful chemical processes. It explains bacterial and fungal bioleaching techniques that extract copper, gold, zinc, and other metals from solid matrices. Fungal bioleaching effectively extracts a wide range of valuable metals, including nickel, vanadium, aluminium, molybdenum, cobalt, iron, manganese, silver, platinum, and palladium. The review highlights different solid matrices with metal contents that have the potential to be recovered by bioleaching, presenting promising bioprocess alternatives to current industrially available technologies for metal recovery. The optimal conditions for bioleaching, including pH, temperature, agitation–aeration, and pulp density are also discussed. The review shows that bioleaching has the potential to play a crucial role in the transition to a more sustainable and circular economy by providing an efficient, cost-effective, and environmentally friendly method for metal recovery from solid matrices. Full article
(This article belongs to the Special Issue Interaction of Microorganisms with Metals and Minerals)
Show Figures

Figure 1

13 pages, 4043 KB  
Article
Static Aerated Composting of African Swine Fever Virus-Infected Swine Carcasses with Rice Hulls and Sawdust
by Mark Hutchinson, Hoang Minh Duc, Gary A. Flory, Pham Hong Ngan, Hoang Minh Son, Tran Thi Khanh Hoa, Nguyen Thi Lan, Dale W. Rozeboom, Marta D. Remmenga, Matthew Vuolo, Robert Miknis, Lori P. Miller, Amira Burns and Renée Flory
Pathogens 2023, 12(5), 721; https://doi.org/10.3390/pathogens12050721 - 16 May 2023
Cited by 2 | Viewed by 2866
Abstract
Identifying and ensuring the inactivation of the African Swine Fever virus in deadstock is a gap in the swine industry’s knowledge and response capabilities. The results of our study demonstrate that ASFv in deadstock was inactivated using static aerated composting as the carcass [...] Read more.
Identifying and ensuring the inactivation of the African Swine Fever virus in deadstock is a gap in the swine industry’s knowledge and response capabilities. The results of our study demonstrate that ASFv in deadstock was inactivated using static aerated composting as the carcass disposal method. Replicated compost piles with whole market hogs and two different carbon sources were constructed. In-situ bags containing ASFv-infected spleen tissue were placed alongside each of the carcasses and throughout the pile. The bags were extracted at days 0, 1, 3, 7, 14, 28, 56, and 144 for ASFv detection and isolation. Real-time PCR results showed that DNA of ASFv was detected in all samples tested on day 28. The virus concentration identified through virus isolation was found to be below the detection limit by day 3 in rice hulls and by day 7 in sawdust. Given the slope of the decay, near-zero concentration with 99.9% confidence occurred at 5.0 days in rice hulls and at 6.4 days in sawdust. Additionally, the result of virus isolation also showed that the virus in bone marrow samples collected at 28 days was inactivated. Full article
(This article belongs to the Special Issue An Update on African Swine Fever)
Show Figures

Figure 1

11 pages, 1850 KB  
Article
Physico-Chemical Analysis of Vermicompost Mixtures
by Zinzi Saba, Lembe S. Magwaza, Nkanyiso J. Sithole, Asanda Mditshwa and Alfred O. Odindo
Agronomy 2023, 13(4), 1056; https://doi.org/10.3390/agronomy13041056 - 5 Apr 2023
Cited by 5 | Viewed by 8446
Abstract
The study evaluated the physical and chemical characteristics of vermicompost mixtures to optimize nutrient extraction. Three compost mixtures (chicken plus horse (CH+H), chicken plus cattle (CH+C), and cattle plus horse (C+H)) were selected for quality evaluation at three extraction times: 24, 48, and [...] Read more.
The study evaluated the physical and chemical characteristics of vermicompost mixtures to optimize nutrient extraction. Three compost mixtures (chicken plus horse (CH+H), chicken plus cattle (CH+C), and cattle plus horse (C+H)) were selected for quality evaluation at three extraction times: 24, 48, and 72 h. The results showed differences (p < 0.05) in nutrient concentration of compost teas in different compost mixtures. The interaction between treatments and extraction time showed a significant effect (p < 0.05) on nutrients except in P, K, Ca, and EC. The nutrients were higher at 48 h after extraction. The pH was observed to increase slightly with extraction time. C+H had more percentage of moisture content (44.79%) than other mixtures. This mixture was the most preferred by worms, i.e., it had the greater size and number of worms. The results suggested that the presence of oxygen in extraction and high temperatures affects ammonium availability in compost tea as they trigger nitrifying bacteria. Due to the decrease in some nutrients’ concentration (NO3, P, K, Ca, Mg, Mn, and Cu) at 72 h, it was concluded that 48 h is the best time to extract nutrients from compost mixtures to produce good quality compost using aerobic extraction method. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 3764 KB  
Article
Prediction of Cavity Length Using an Interpretable Ensemble Learning Approach
by Ganggui Guo, Shanshan Li, Yakun Liu, Ze Cao and Yangyu Deng
Int. J. Environ. Res. Public Health 2023, 20(1), 702; https://doi.org/10.3390/ijerph20010702 - 30 Dec 2022
Cited by 4 | Viewed by 1876
Abstract
The cavity length, which is a vital index in aeration and corrosion reduction engineering, is affected by many factors and is challenging to calculate. In this study, 10-fold cross-validation was performed to select the optimal input configuration. Additionally, the hyperparameters of three ensemble [...] Read more.
The cavity length, which is a vital index in aeration and corrosion reduction engineering, is affected by many factors and is challenging to calculate. In this study, 10-fold cross-validation was performed to select the optimal input configuration. Additionally, the hyperparameters of three ensemble learning models—random forest (RF), gradient boosting decision tree (GBDT), and extreme gradient boosting tree (XGBOOST)—were fine-tuned by the Bayesian optimization (BO) algorithm to improve the prediction accuracy and compare the five empirical methods. The XGBOOST method was observed to present the highest prediction accuracy. Further interpretability analysis carried out using the Sobol method demonstrated its ability to reasonably capture the varying relative significance of different input features under different flow conditions. The Sobol sensitivity analysis also observed two patterns of extracting information from the input features in ML models: (1) the main effect of individual features in ensemble learning and (2) the interactive effect between each feature in SVR. From the results, the models obtaining individual information both predict the cavity length more accurately than that using interactive information. Subsequently, the XGBOOST captures more correct information from features, which leads to the varied Sobol index in accordance with outside phenomena; meanwhile, the predicted results fit the experimental points best. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

14 pages, 3597 KB  
Article
Maximizing Recovery of Paenibacillin, a Bacterially Produced Lantibiotic, Using Continuous Foam Separation from Bioreactors
by Emily P. Campbell, David R. Kasler and Ahmed E. Yousef
Foods 2022, 11(15), 2290; https://doi.org/10.3390/foods11152290 - 31 Jul 2022
Viewed by 2414
Abstract
Industrial production of paenibacillin, and similar rare antimicrobial peptides, is hampered by low productivity of the producing microorganisms and lack of efficient methods to recover these peptides from fermentor or bioreactor end products. Preliminary data showed that paenibacillin was preferentially partitioned in foam [...] Read more.
Industrial production of paenibacillin, and similar rare antimicrobial peptides, is hampered by low productivity of the producing microorganisms and lack of efficient methods to recover these peptides from fermentor or bioreactor end products. Preliminary data showed that paenibacillin was preferentially partitioned in foam accumulated during growth of the producer, Paenibacillus polymyxa, in aerated liquid media. This research was initiated to improve the production and recovery of paenibacillin in bioreactors by maximizing partitioning of this antimicrobial agent in the collected foam. This was completed through harvesting foam continuously during paenibacillin production, using modified bioreactor, and optimizing bioreaction conditions through response surface methodology (RSM). During initial screening, the following factors were tested using 400 mL inoculated media in 2 L bioreactors: medium (tryptic soy broth, TSB, with or without added yeast extract), airflow (0 or 0.8 L/min; LPM), stir speed (300 or 500 revolution/min; RPM), incubation temperature (30 or 36 °C), and incubation time (16 or 24 h). Results showed that airflow, time, and stir speed had significant effects (p < 0.05) on paenibacillin recovery in the collected collapsed foam (foamate). These factors were varied together to follow the path of steepest assent to maximize paenibacillin concentration. Once the local maximum was found, RSM was completed with a central composite design to fine-tune the bioreaction parameters. The optimization experiments proved that the significant parameters and their optimal conditions for paenibacillin concentration in the foam were: incubation at 30 °C for 23 h with airflow of 0.95 LPM, and agitation speed of 450 RPM. These conditions increased paenibacillin concentration, predicted by RSM, from 16 µg/mL in bioreaction without foam collection to 743 µg/mL collected in foamate. The optimized conditions also almost doubled the yield of paenibacillin measured in the foam collected from a bioreaction run (12,674 µg/400 mL bioreaction) when compared to that obtained from a run without foam collection (6400 µg/400 mL bioreaction). Results of this study could improve the feasibility of commercial production and downstream processing of paenibacillin and similar novel antimicrobial peptides. Availability of such peptides will eventually help in protecting perishable products against pathogenic and spoilage bacteria. Full article
Show Figures

Figure 1

Back to TopTop