Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = amorphous nanocellulose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5210 KB  
Article
Isolation and Characterization of Novel Cellulose Micro/Nanofibers from Lygeum spartum Through a Chemo-Mechanical Process
by Sabrina Ahmima, Nacira Naar, Patryk Jędrzejczak, Izabela Klapiszewska, Łukasz Klapiszewski and Teofil Jesionowski
Polymers 2024, 16(21), 3001; https://doi.org/10.3390/polym16213001 - 25 Oct 2024
Cited by 1 | Viewed by 1340
Abstract
Recent studies have focused on the development of bio-based products from sustainable resources using green extraction approaches, especially nanocellulose, an emerging nanoparticle with impressive properties and multiple applications. Despite the various sources of cellulose nanofibers, the search for alternative resources that replace wood, [...] Read more.
Recent studies have focused on the development of bio-based products from sustainable resources using green extraction approaches, especially nanocellulose, an emerging nanoparticle with impressive properties and multiple applications. Despite the various sources of cellulose nanofibers, the search for alternative resources that replace wood, such as Lygeum spartum, a fast-growing Mediterranean plant, is crucial. It has not been previously investigated as a potential source of nanocellulose. This study investigates the extraction of novel cellulose micro/nanofibers from Lygeum spartum using a two-step method, including both alkali and mechanical treatment as post-treatment with ultrasound, as well as homogenization using water and dilute alkali solution as a solvent. To determine the structural properties of CNFs, a series of characterization techniques was applied. A significant correlation was observed between the Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) results. The FTIR results revealed the elimination of amorphous regions and an increase in the energy of the H-bonding modes, while the XRD results showed that the crystal structure of micro/nanofibers was preserved during the process. In addition, they indicated an increase in the crystallinity index obtained with both methods (deconvolution and Segal). Thermal analysis based on thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed improvement in the thermal properties of the isolated micro/nanofibers. The temperatures of maximum degradation were 335 °C and 347 °C. Morphological analysis using a scanning electron microscope (SEM) and atomic force microscope (AFM) showed the formation of fibers along the axis, with rough and porous surfaces. The findings indicate the potential of Lygeum spartum as a source for producing high-quality micro/nanofibers. A future direction of study is to use the cellulose micro/nanofibers as additives in recycled paper and to evaluate the mechanical properties of the paper sheets, as well as investigate their use in smart paper. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

41 pages, 11168 KB  
Article
Bioactive Hydrogel Formulation Based on Ferulic Acid-Grafted Nano-Chitosan and Bacterial Nanocellulose Enriched with Selenium Nanoparticles from Kombucha Fermentation
by Naomi Tritean, Luminița Dimitriu, Ștefan-Ovidiu Dima, Marius Ghiurea, Bogdan Trică, Cristian-Andi Nicolae, Ionuț Moraru, Alina Nicolescu, Anisoara Cimpean, Florin Oancea and Diana Constantinescu-Aruxandei
J. Funct. Biomater. 2024, 15(7), 202; https://doi.org/10.3390/jfb15070202 - 22 Jul 2024
Cited by 3 | Viewed by 3557
Abstract
Selenium nanoparticles (SeNPs) have specific properties that result from their biosynthesis particularities. Chitosan can prevent pathogenic biofilm development. A wide palette of bacterial nanocellulose (BNC) biological and physical-chemical properties are known. The aim of this study was to develop a hydrogel formulation (SeBNCSFa) [...] Read more.
Selenium nanoparticles (SeNPs) have specific properties that result from their biosynthesis particularities. Chitosan can prevent pathogenic biofilm development. A wide palette of bacterial nanocellulose (BNC) biological and physical-chemical properties are known. The aim of this study was to develop a hydrogel formulation (SeBNCSFa) based on ferulic acid-grafted chitosan and bacterial nanocellulose (BNC) enriched with SeNPs from Kombucha fermentation (SeNPsK), which could be used as an adjuvant for oral implant integration and other applications. The grafted chitosan and SeBNCSFa were characterized by biochemical and physical-chemical methods. The cell viability and proliferation of HGF-1 gingival fibroblasts were investigated, as well as their in vitro antioxidant activity. The inflammatory response was determined by enzyme-linked immunosorbent assay (ELISA) of the proinflammatory mediators (IL-6, TNF-α, and IL-1β) in cell culture medium. Likewise, the amount of nitric oxide released was measured by the Griess reaction. The antimicrobial activity was also investigated. The grafting degree with ferulic acid was approximately 1.780 ± 0.07% of the total chitosan monomeric units, assuming single-site grafting per monomer. Fourier-transform infrared spectroscopy evidenced a convolution of BNC and grafted chitosan spectra, and X-ray diffraction analysis highlighted an amorphous rearrangement of the diffraction patterns, suggesting multiple interactions. The hydrogel showed a high degree of cytocompatibility, and enhanced antioxidant, anti-inflammatory, and antimicrobial potentials. Full article
Show Figures

Graphical abstract

17 pages, 2150 KB  
Article
Integrated Biobased Processes for Nanocellulose Preparation from Rice Straw Cellulose
by Sirirat Jirathampinyo, Warathorn Chumchoochart and Jidapha Tinoi
Processes 2023, 11(4), 1006; https://doi.org/10.3390/pr11041006 - 26 Mar 2023
Cited by 20 | Viewed by 4540
Abstract
High-potential nanomaterials were derived from rice straw using the integrated biobased processes of enzymatic hydrolysis with green organic acid hydrolysis assisted with ultrasonication pretreatment. The optimization condition of nanocellulose preparation by enzymatic hydrolysis via central composite design (CCD) achieved a maximum nanocellulose content [...] Read more.
High-potential nanomaterials were derived from rice straw using the integrated biobased processes of enzymatic hydrolysis with green organic acid hydrolysis assisted with ultrasonication pretreatment. The optimization condition of nanocellulose preparation by enzymatic hydrolysis via central composite design (CCD) achieved a maximum nanocellulose content of 32.37 ± 0.47% using a cellulase concentration of 107.06 U/mL and 0.13% (w/w) of rice straw cellulose. The ultrasonication-assisted pretreatment prior to enzymatic hydrolysis improved nanocellulose preparation to 52.28 ± 1.55%. Integration with oxalic acid hydrolysis increased the nanocellulose content to 64.99 ± 0.16%. Granular nanocellulose was obtained and consisted of a 105–825 nm nanosize with a zeta potential value of −34.5 mV, and nanocellulose suspension showed high stability without aggregation. In addition, the remaining rice straw cellulose after oxalic acid was microcrystalline nanocellulose. All prepared nanocellulose represented a functional group as original cellulose but had a low crystallinity index (CrI) of 15.68% that could be classified as amorphous nanocellulose. Based on their characteristics, all nanocellose could be further applied in food, cosmetics, and pharmaceuticals. Moreover, the results indicated that the rice straw could be an alternative non-edible cellulose source for preparing potential nanocellulose via a controlled hydrolysis process. Full article
Show Figures

Graphical abstract

17 pages, 3523 KB  
Article
Computational Investigation to Design Ofloxacin-Loaded Hybridized Nanocellulose/Lipid Nanogels for Accelerated Skin Repair
by Mona M. AbouSamra, Nada M. El Hoffy, Nahla A. El-Wakil, Ghada E. A. Awad and Rabab Kamel
Gels 2022, 8(9), 593; https://doi.org/10.3390/gels8090593 - 16 Sep 2022
Cited by 7 | Viewed by 2610
Abstract
The pharmaceutical application of biomaterials has attained a great success. Rapid wound healing is an important goal for many researchers. Hence, this work deals with the development of nanocellulose crystals/lipid nanogels loaded with ofloxacin (OFX) to promote skin repair while inhibiting bacterial infection. [...] Read more.
The pharmaceutical application of biomaterials has attained a great success. Rapid wound healing is an important goal for many researchers. Hence, this work deals with the development of nanocellulose crystals/lipid nanogels loaded with ofloxacin (OFX) to promote skin repair while inhibiting bacterial infection. Ofloxacin-loaded hybridized nanocellulose/lipid nanogels (OFX-HNCNs) were prepared and evaluated adopting a computational method based on regression analysis. The optimized nanogels (OFX-HNCN7) showed a spherical outline with an encapsulation efficiency (EE), particle size (PS) and zeta potential (ZP) values of 97.53 ± 1.56%, 200.2 ± 6.74 nm and −26.4 ± 0.50 mV, respectively, with an extended drug release profile. DSC examination of OFX-HNCN7 proved the amorphization of the encapsulated drug into the prepared OFX-HNCNs. Microbiological studies showed the prolonged inhibition of bacterial growth by OFX-HNCN7 compared to the free drug. The cytocompatibility of OFX-HNCN7 was proved by Sulforhodamine B assay. Tissue repair was evaluated using the epidermal scratch assay based on cell migration in human skin fibroblast cell line, and the results depicted that cell treated with OFX-HNCN7 showed a faster and more efficient healing compared to the control. In overall, the obtained findings emphasize the benefits of using the eco-friendly bioactive nanocellulose, hybridized with lipid, to prepare a nanocarrier for skin repair. Full article
Show Figures

Figure 1

15 pages, 2504 KB  
Article
Nanocellulose Extracted from Paraguayan Residual Agro-Industrial Biomass: Extraction Process, Physicochemical and Morphological Characterization
by Maria Edelira Velázquez, Omayra Beatriz Ferreiro, Diego Batista Menezes, Yendry Corrales-Ureña, José Roberto Vega-Baudrit and Juan Daniel Rivaldi
Sustainability 2022, 14(18), 11386; https://doi.org/10.3390/su141811386 - 10 Sep 2022
Cited by 14 | Viewed by 4400
Abstract
Residual biomasses from agro-industries in Paraguay, including soybean hulls (SBHs) and sugarcane bagasse (SCB), were studied as a source for nanocellulose extraction for the first time. For that purpose, both biomasses were delignified in a semi-pilot stainless-steel reactor, and the cellulose pulp was [...] Read more.
Residual biomasses from agro-industries in Paraguay, including soybean hulls (SBHs) and sugarcane bagasse (SCB), were studied as a source for nanocellulose extraction for the first time. For that purpose, both biomasses were delignified in a semi-pilot stainless-steel reactor, and the cellulose pulp was subjected to a bleaching process with NaClO (2.5%, w/v). The nanocellulose (CNC) was obtained after two-step acid hydrolysis. Firstly, the bleached cellulose was hydrolyzed with HCl (17%, w/w) for two hours at 60 °C to obtain microcrystals by removing most of the amorphous fraction. The celluloses were then treated with H2SO4 (65%, w/w) at 45 °C for 45 min to obtain nanocellulose. Physicochemical and morphological properties were analyzed using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction analysis (XRD). The SBHs nanocellulose had a whisker-like form with a 230 ± 42 nm diameter and a 12 ± 2 nm height, and the SCB nanocellulose had a fibril-like form with a 103 ± 30 nm diameter and a height of 6 ± 3 nm. The nanocellulose from SBHs and SCB had good thermal stability as its degradation temperature started at 250 °C. Furthermore, the nanocellulose obtained was negatively charged and formed stable dispersion in water at 0.1 mg/mL concentration and a pH of around 6.5. Full article
(This article belongs to the Special Issue Biomass Treatment Techniques and Sustainable Utilization of Residues)
Show Figures

Graphical abstract

16 pages, 27957 KB  
Article
Fabrication and Properties of Tree-Branched Cellulose Nanofibers (CNFs) via Acid Hydrolysis Assisted with Pre-Disintegration Treatment
by Jun Li, Dongyan Liu, Junsheng Li, Fei Yang, Guoxin Sui and Yu Dong
Nanomaterials 2022, 12(12), 2089; https://doi.org/10.3390/nano12122089 - 17 Jun 2022
Cited by 6 | Viewed by 2920
Abstract
In this paper, the novel morphology of cellulose nanofibers (CNFs) with a unique tree-branched structure was discovered by using acid hydrolysis assisted with pre-disintegration treatment from wood pulps. For comparison, the pulps derived from both softwood and hardwood were utilized to extract nanocellulose [...] Read more.
In this paper, the novel morphology of cellulose nanofibers (CNFs) with a unique tree-branched structure was discovered by using acid hydrolysis assisted with pre-disintegration treatment from wood pulps. For comparison, the pulps derived from both softwood and hardwood were utilized to extract nanocellulose in order to validate the feasibility of proposed material fabrication technique. The morphology, crystalline structures, chemical structures, and thermal stability of nanocellulose were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetric analysis (TGA). Prior to acid hydrolysis, softwood and hardwood pulps underwent the disintegration treatment in the fiber dissociator. It has been found that nanocellulose derived from disintegrated pulps possesses much longer fiber length (approximately 5–6 μm) and more evident tree-branched structures along with lower degree of crystallinity when compared with those untreated counterparts. The maximum mass loss rate of CNFs takes place at the temperature level of approximately 225 °C, and appears to be higher than that of cellulose nanowhiskers (CNWs), which might be attributed to an induced impact of amorphous content. On the other hand, disintegration treatment is quite beneficial to the enhancement of tensile strength of nanocellulose films. This study elaborates a new route of material fabrication toward the development of well-tailored tree-branched CNFs in order to broaden the potential widespread applications of nanocellulose with diverse morphological structures. Full article
(This article belongs to the Special Issue From Biomass to Nanomaterials)
Show Figures

Graphical abstract

21 pages, 3017 KB  
Review
Preparation, Characterization and Application of Amorphized Cellulose—A Review
by Michael Ioelovich
Polymers 2021, 13(24), 4313; https://doi.org/10.3390/polym13244313 - 9 Dec 2021
Cited by 40 | Viewed by 4750
Abstract
This review describes the methods of cellulose amorphization, such as dry grinding, mercerization, treatment with liquid ammonia, swelling in solvents, regeneration from solutions, etc. In addition, the main characteristics and applications of amorphized celluloses are discussed. An optimal method for preparing completely amorphous [...] Read more.
This review describes the methods of cellulose amorphization, such as dry grinding, mercerization, treatment with liquid ammonia, swelling in solvents, regeneration from solutions, etc. In addition, the main characteristics and applications of amorphized celluloses are discussed. An optimal method for preparing completely amorphous cellulose (CAC) via the treatment of original cellulose material with a cold NaOH/Urea-solvent at the solvent to cellulose ratio R ≥ 5 is proposed. Structural studies show that amorphous cellulose contains mesomorphous clusters with a size of 1.85 nm and specific gravity of 1.49 g/cm3. Furthermore, each such cluster consists of about five glucopyranose layers with an average interlayer spacing of 0.45 nm. Amorphous cellulose is characterized by increased hydrophilicity, reactivity, and enzymatic digestibility. Due to its amorphous structure, the CAC can be used as a promising substrate for enzymatic hydrolysis to produce glucose, which can be applied in biotechnology for growing various microorganisms. In addition, the application of CAC in agriculture is described. A waste-free method for producing amorphous nanocellulose is considered, and the main applications of nanosized amorphous cellulose are discussed. Full article
(This article belongs to the Special Issue Hydrophilic and Hydrophobic Natural Polymer Materials)
Show Figures

Figure 1

20 pages, 8779 KB  
Article
Chloramphenicol Loaded Sponges Based on PVA/Nanocellulose Nanocomposites for Topical Wound Delivery
by Evangelia D. Balla, Nikolaos D. Bikiaris, Stavroula G. Nanaki, Chrysanthi Papoulia, Konstantinos Chrissafis, Panagiotis A. Klonos, Apostolos Kyritsis, Margaritis Kostoglou, Alexandra Zamboulis and George Z. Papageorgiou
J. Compos. Sci. 2021, 5(8), 208; https://doi.org/10.3390/jcs5080208 - 6 Aug 2021
Cited by 10 | Viewed by 4176
Abstract
In the present study, polymer sponges based on poly(vinyl alcohol) (PVA) were prepared for the topical wound administration of chloramphenicol (CHL), an antibiotic widely used to treat bacterial infections. Nanocellulose fibrils (CNF) were homogenously dispersed in PVA sponges in three different ratios (2.5, [...] Read more.
In the present study, polymer sponges based on poly(vinyl alcohol) (PVA) were prepared for the topical wound administration of chloramphenicol (CHL), an antibiotic widely used to treat bacterial infections. Nanocellulose fibrils (CNF) were homogenously dispersed in PVA sponges in three different ratios (2.5, 5, and 10 wt %) to improve the mechanical properties of neat PVA sponges. Infrared spectroscopy showed hydrogen bond formation between CNF and PVA, while scanning electron microscopy photos verified the successful dispersion of CNF to PVA sponges. The addition of CNF successfully enhanced the mechanical properties of PVA sponges, exhibiting higher compressive strength as the content of CNF increased. The PVA sponge containing 10 wt % CNF, due to its higher compression strength, was further studied as a matrix for CHL delivery in 10, 20, and 30 wt % concentration of the drug. X-ray diffraction showed that CHL was encapsulated in an amorphous state in the 10 and 20 wt % samples, while some crystallinity was observed in the 30 wt % ratio. In vitro dissolution studies showed enhanced CHL solubility after its incorporation in PVA/10 wt % CNF sponges. Release profiles showed a controlled release lasting three days for the sample containing 10 wt % CHL and 1.5 days for the other two samples. According to modelling, the release is driven by a pseudo-Fickian diffusion. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2021)
Show Figures

Figure 1

14 pages, 2574 KB  
Article
Performance Evaluation of Cellulose Nanofiber with Residual Hemicellulose as a Nanofiller in Polypropylene-Based Nanocomposite
by Mohd Nor Faiz Norrrahim, Hidayah Ariffin, Tengku Arisyah Tengku Yasim-Anuar, Mohd Ali Hassan, Nor Azowa Ibrahim, Wan Md Zin Wan Yunus and Haruo Nishida
Polymers 2021, 13(7), 1064; https://doi.org/10.3390/polym13071064 - 28 Mar 2021
Cited by 55 | Viewed by 4832
Abstract
Residual hemicellulose could enhance cellulose nanofiber (CNF) processing as it impedes the agglomeration of the nanocellulose fibrils and contributes to complete nanofibrillation within a shorter period of time. Its effect on CNF performance as a reinforcement material is unclear, and hence this study [...] Read more.
Residual hemicellulose could enhance cellulose nanofiber (CNF) processing as it impedes the agglomeration of the nanocellulose fibrils and contributes to complete nanofibrillation within a shorter period of time. Its effect on CNF performance as a reinforcement material is unclear, and hence this study seeks to evaluate the performance of CNF in the presence of amorphous hemicellulose as a reinforcement material in a polypropylene (PP) nanocomposite. Two types of CNF were prepared: SHS-CNF, which contained about 11% hemicellulose, and KOH-CNF, with complete hemicellulose removal. Mechanical properties of the PP/SHS-CNF and PP/KOH-CNF showed an almost similar increment in tensile strength (31% and 32%) and flexural strength (28% and 29%) when 3 wt.% of CNF was incorporated in PP, indicating that hemicellulose in SHS-CNF did not affect the mechanical properties of the PP nanocomposite. The crystallinity of both PP/SHS-CNF and PP/KOH-CNF nanocomposites showed an almost similar value at 55–56%. A slight decrement in thermal stability was seen, whereby the decomposition temperature at 10% weight loss (Td10%) of PP/SHS-CNF was 6 °C lower at 381 °C compared to 387 °C for PP/KOH-CNF, which can be explained by the degradation of thermally unstable hemicellulose. The results from this study showed that the presence of some portion of hemicellulose in CNF did not affect the CNF properties, suggesting that complete hemicellulose removal may not be necessary for the preparation of CNF to be used as a reinforcement material in nanocomposites. This will lead to less harsh pretreatment for CNF preparation and, hence, a more sustainable nanocomposite can be produced. Full article
Show Figures

Figure 1

26 pages, 9868 KB  
Article
Nanocellulose from Cotton Waste and Its Glycidyl Methacrylate Grafting and Allylation: Synthesis, Characterization and Adsorption Properties
by Elena Vismara, Giulia Bertolini, Chiara Bongio, Nicolò Massironi, Marco Zarattini, Daniele Nanni, Cesare Cosentino and Giangiacomo Torri
Nanomaterials 2021, 11(2), 476; https://doi.org/10.3390/nano11020476 - 13 Feb 2021
Cited by 12 | Viewed by 3745
Abstract
Nanocellulose (NC) is getting ahead as a renewable, biodegradable and biocompatible biomaterial. The NCs for this study were recovered from industrial cotton waste (CFT) by acid hydrolysis (HNC) and by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) mediated oxidation (ONC). They were functionalized by radical based glycidyl methacrylate [...] Read more.
Nanocellulose (NC) is getting ahead as a renewable, biodegradable and biocompatible biomaterial. The NCs for this study were recovered from industrial cotton waste (CFT) by acid hydrolysis (HNC) and by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) mediated oxidation (ONC). They were functionalized by radical based glycidyl methacrylate (GMA) grafting providing crystalline HNC-GMA and ONC-GMA, and by allylation (ALL) providing amorphous HNC-ALL and ONC-ALL. HNC, ONC and their derivatives were chemically and morphologically characterized. Crystalline NCs were found capable to adsorb, from diluted water solution (2 × 10−3 M), the antibiotics vancomycin (VC), ciprofloxacin (CP), amoxicillin (AM) and the disinfectant chlorhexidine (CHX), while amorphous NCs did not show any significant adsorption properties. Adsorption capability was quantified by measuring the concentration change in function of the contact time. The adsorption kinetics follow the pseudo-second order model and show complex adsorption mechanisms investigated by an intraparticle diffusion model and interpreted by structure-property relationships. ONC and ONC-GMA loaded with VC, and HNC and HNC-GMA loaded with CP were not colonized by Staphylococcus aureus and by Klebsiella pneumonia and suggested long lasting release capability. Our results can envisage developing CFT derived NCs for environmental applications (water remediation) and for biomedical applications (antibacterial NC). Among the future developments, it could also be of interest to take advantage of acidic, glycidyl and allyl groups’ reactivity to provide other NCs from the NC object of this study. Full article
(This article belongs to the Special Issue Nanoparticles from Natural Polymers: Synthesis and Applications)
Show Figures

Figure 1

17 pages, 3386 KB  
Article
Physicochemical Characterization of Bilayer Hybrid Nanocellulose-Collagen as a Potential Wound Dressing
by Kai Shen Ooi, Shafieq Haszman, Yon Nie Wong, Emillia Soidin, Nadhirah Hesham, Muhammad Amirul Arif Mior, Yasuhiko Tabata, Ishak Ahmad, Mh Busra Fauzi and Mohd Heikal Mohd Yunus
Materials 2020, 13(19), 4352; https://doi.org/10.3390/ma13194352 - 30 Sep 2020
Cited by 23 | Viewed by 3964
Abstract
The eminent aim for advance wound management is to provide a great impact on the quality of life. Therefore, an excellent strategy for an ideal wound dressing is being developed that eliminates certain drawbacks while promoting tissue regeneration for the prevention of bacterial [...] Read more.
The eminent aim for advance wound management is to provide a great impact on the quality of life. Therefore, an excellent strategy for an ideal wound dressing is being developed that eliminates certain drawbacks while promoting tissue regeneration for the prevention of bacterial invasion. The aim of this study is to develop a bilayer hybrid biomatrix of natural origin for wound dressing. The bilayer hybrid bioscaffold was fabricated by the combination of ovine tendon collagen type I and palm tree-based nanocellulose. The fabricated biomatrix was then post-cross-linked with 0.1% (w/v) genipin (GNP). The physical characteristics were evaluated based on the microstructure, pore size, porosity, and water uptake capacity followed by degradation behaviour and mechanical strength. Chemical analysis was performed using energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectrophotometry (FTIR), and X-ray diffraction (XRD). The results demonstrated a uniform interconnected porous structure with optimal pore size ranging between 90 and 140 μm, acceptable porosity (>70%), and highwater uptake capacity (>1500%). The biodegradation rate of the fabricated biomatrix was extended to 22 days. Further analysis with EDX identified the main elements of the bioscaffold, which contains carbon (C) 50.28%, nitrogen (N) 18.78%, and oxygen (O) 30.94% based on the atomic percentage. FTIR reported the functional groups of collagen type I (amide A: 3302 cm−1, amide B: 2926 cm−1, amide I: 1631 cm−1, amide II: 1547 cm−1, and amide III: 1237 cm−1) and nanocellulose (pyranose ring), thus confirming the presence of collagen and nanocellulose in the bilayer hybrid scaffold. The XRD demonstrated a smooth wavy wavelength that is consistent with the amorphous material and less crystallinity. The combination of nanocellulose with collagen demonstrated a positive effect with an increase of Young’s modulus. In conclusion, the fabricated bilayer hybrid bioscaffold demonstrated optimum physicochemical and mechanical properties that are suitable for skin wound dressing. Full article
Show Figures

Figure 1

12 pages, 5010 KB  
Article
Dissolution Behavior of Flufenamic Acid in Heated Mixtures with Nanocellulose
by Athanasios Mantas and Albert Mihranyan
Molecules 2020, 25(6), 1277; https://doi.org/10.3390/molecules25061277 - 11 Mar 2020
Cited by 6 | Viewed by 3719
Abstract
Flufenamic acid (FFA) is a problem drug that has up to eight different polymorphs and shows poor solubility. Variability in bioavailability has been reported in the past resulting in limited use of FFA in the oral solid dosage form. The goal of this [...] Read more.
Flufenamic acid (FFA) is a problem drug that has up to eight different polymorphs and shows poor solubility. Variability in bioavailability has been reported in the past resulting in limited use of FFA in the oral solid dosage form. The goal of this article was to investigate the polymorphism and amorphization behavior of FFA in non-heated and heated mixtures with high surface area nanocellulose, i.e., Cladophora cellulose (CLAD). As a benchmark, low surface area microcrystalline cellulose (MCC) was used. The solid-state properties of mixtures were characterized with X-ray diffraction, Fourier-transform infrared spectroscopy, and differential scanning calorimetry. The dissolution behavior of mixtures was studied in three biorelevant media, i.e., fasted state simulated gastric fluid, fasted state simulated intestinal fluid, and fed state simulated intestinal fluid. Additional thermal analysis and dissolution tests were carried out following 4 months of storage at 75% RH and room temperature. Heated mixtures of FFA with CLAD resulted in complete amorphization of the drug, whereas that with MCC produced a mixture of up to four different polymorphs. The amorphous FFA mixture with CLAD exhibited rapid and invariable fasted/fed state dissolution in simulated intestinal fluids, whereas that of MCC mixtures was highly dependent on the biorelevant medium. The storage of the heated FFA-CLAD mixture did not result in recrystallization or changes in dissolution profile, whereas heated FFA-MCC mixture showed polymorphic changes. The straightforward dry powder formulation strategy presented here bears great promise for reformulating a number of problem drugs to enhance their dissolution properties and reduce the fasted/fed state variability. Full article
(This article belongs to the Collection Poorly Soluble Drugs)
Show Figures

Graphical abstract

10 pages, 2537 KB  
Article
Directly Compressed Tablets of Free Acid Ibuprofen with Nanocellulose Featuring Enhanced Dissolution: A Side-by-Side Comparison with Commercial Oral Dosage Forms
by Athanasios Mantas, Marie-Amélie Petit and Albert Mihranyan
Pharmaceutics 2020, 12(1), 71; https://doi.org/10.3390/pharmaceutics12010071 - 17 Jan 2020
Cited by 7 | Viewed by 4288
Abstract
We have previously reported that heated powder mixtures of ibuprofen (IBU) and high surface area nanocellulose exhibit an enhanced dissolution and solubility of the drug due to IBU amorphization. The goal of the present work was to further elaborate the concept and conduct [...] Read more.
We have previously reported that heated powder mixtures of ibuprofen (IBU) and high surface area nanocellulose exhibit an enhanced dissolution and solubility of the drug due to IBU amorphization. The goal of the present work was to further elaborate the concept and conduct side-by-side in vitro drug release comparisons with commercial formulations, including film-coated tablets, soft gel liquid capsules, and IBU-lysine conjugate tablets, in biorelevant media. Directly compressed tablets were produced from heated mixtures of 20% w/w IBU and high surface area Cladophora cellulose (CLAD), with 5% w/w sodium croscarmelose (AcDiSol) as superdisintegrant. The side-by side studies in simulated gastric fluid, fasted-state simulated intestinal fluid, and fed-state simulated intestinal fluid corroborate that the IBU-CLAD tablets show more rapid and less variable release in various media compared to three commercial IBU formulations. On the sidelines of the main work, a possibility of the presence of a new meta-crystalline form of IBU in mixture with nanocellulose is discussed. Full article
(This article belongs to the Special Issue Solubilization and Dissolution Enhancement of Poorly Soluble Drugs)
Show Figures

Graphical abstract

14 pages, 3270 KB  
Article
Immediate-Release Nifedipine Binary Dry Powder Mixtures with Nanocellulose Featuring Enhanced Solubility and Dissolution Rate
by Athanasios Mantas and Albert Mihranyan
Pharmaceutics 2019, 11(1), 37; https://doi.org/10.3390/pharmaceutics11010037 - 18 Jan 2019
Cited by 18 | Viewed by 5524
Abstract
Nifedipine (NIF) is a 1,4-dihydropyridine-based calcium channel blocker with poor solubility, whose bioavailability is highly dependent on the type of formulation. Dry powder mixtures of 20% w/w NIF with microcrystalline cellulose (MCC) and its high surface area nanocellulose analogue, which is [...] Read more.
Nifedipine (NIF) is a 1,4-dihydropyridine-based calcium channel blocker with poor solubility, whose bioavailability is highly dependent on the type of formulation. Dry powder mixtures of 20% w/w NIF with microcrystalline cellulose (MCC) and its high surface area nanocellulose analogue, which is namely Cladophora (CLAD) cellulose, were produced by heating at the melting temperature of the drug for 1 h. Non-heated samples were used as a reference. The solid-state properties of the mixtures were characterized by scanning electron microscopy, differential scanning calorimetry and X-ray diffraction. The drug release was studied in biorelevant media, including simulated gastric fluid (SGF), fasted-state simulated intestinal fluid (FaSIF) and fed-state simulated intestinal fluid (FeSIF). An enhanced apparent solubility and faster dissolution rate of NIF were observed in the heated mixture of NIF with CLAD-H in all tested biorelevant media (i.e., SGF, FaSIF and FeSIF), which was due to NIF amorphization in the high surface area nanocellulose powder. Ordinary MCC, which is essentially non-porous, did not produce an enhancement of a similar magnitude. The results of the study suggest that dry powder formulation using high surface area nanocellulose is a facile new strategy for formulating calcium channel blocker drugs, which could potentially be a viable alternative to currently used soft gel liquid capsules. Full article
Show Figures

Graphical abstract

18 pages, 1019 KB  
Article
Statistical Optimization for Acid Hydrolysis of Microcrystalline Cellulose and Its Physiochemical Characterization by Using Metal Ion Catalyst
by Md. Ziaul Karim, Zaira Zaman Chowdhury, Sharifah Bee Abd Hamid and Md. Eaqub Ali
Materials 2014, 7(10), 6982-6999; https://doi.org/10.3390/ma7106982 - 13 Oct 2014
Cited by 84 | Viewed by 9288
Abstract
Hydrolyzing the amorphous region while keeping the crystalline region unaltered is the key technology for producing nanocellulose. This study investigated if the dissolution properties of the amorphous region of microcrystalline cellulose can be enhanced in the presence of Fe3+ salt in acidic [...] Read more.
Hydrolyzing the amorphous region while keeping the crystalline region unaltered is the key technology for producing nanocellulose. This study investigated if the dissolution properties of the amorphous region of microcrystalline cellulose can be enhanced in the presence of Fe3+ salt in acidic medium. The process parameters, including temperature, time and the concentration of metal chloride catalyst (FeCl3), were optimized by using the response surface methodology (RSM). The experimental observation demonstrated that temperature and time play vital roles in hydrolyzing the amorphous sections of cellulose. This would yield hydrocellulose with higher crystallinity. The factors that were varied for the production of hydrocellulose were the temperature (x1), time (x2) and FeCl3 catalyst concentration (x3). Responses were measured in terms of percentage of crystallinity (y1) and the yield (y2) of the prepared hydrocellulose. Relevant mathematical models were developed. Analysis of variance (ANOVA) was carried out to obtain the most significant factors influencing the responses of the percentage of crystallinity and yield. Under optimum conditions, the percentage of crystallinity and yield were 83.46% and 86.98% respectively, at 90.95 °C, 6 h, with a catalyst concentration of 1 M. The physiochemical characteristics of the prepared hydrocellulose were determined in terms of XRD, SEM, TGA and FTIR analyses. The addition of FeCl3 salt in acid hydrolyzing medium is a novel technique for substantially increasing crystallinity with a significant morphological change. Full article
Show Figures

Figure 1

Back to TopTop