Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = baculoviruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1480 KB  
Article
Fungal Pathogen Infection by Metarhizium anisopliae Alters Climbing Behavior of Lymantria dispar with Tree-Top Disease Induced by LdMNPV
by Qi Song, Yu-Shan Wei and Dun Wang
Biology 2025, 14(8), 1029; https://doi.org/10.3390/biology14081029 - 11 Aug 2025
Viewed by 308
Abstract
Certain parasites manipulate host behavior following infection to enhance their own dispersal and transmission. Lepidopteran larvae infected with baculoviruses exhibit increased locomotion, ascending to the apex of their host plant where they ultimately die in a characteristic inverted, liquefied posture suspended by their [...] Read more.
Certain parasites manipulate host behavior following infection to enhance their own dispersal and transmission. Lepidopteran larvae infected with baculoviruses exhibit increased locomotion, ascending to the apex of their host plant where they ultimately die in a characteristic inverted, liquefied posture suspended by their prolegs—a phenomenon termed “tree-top disease”. Although numerous studies have investigated the underlying causes of this behavior, the precise mechanism governing tree-top disease formation remains unresolved. In this study, Lymantria dispar larvae were infected with Metarhizium anisopliae and Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV). We compared symptom profiles across infection modes and assessed virulence, demonstrating that M. anisopliae infection alters the hyperactive state induced by LdMNPV in larvae exhibiting tree-top disease. Specifically, M. anisopliae promoted tree-top disease behavior during early infection stages but suppressed it during later stages. Furthermore, the symptomatology of larvae co-infected with both pathogens differed significantly from that observed in larvae infected with either M. anisopliae or LdMNPV alone. Co-infected larvae also exhibited accelerated mortality compared to those infected with a single pathogen. The above findings indicate that L. dispar larvae, when co-infected with LdMNPV and M. anisopliae may change behavioral responses that could further modulate the pathogenesis of LdMNPV-induced tree-top disease. Furthermore, a synergistic interaction between M. anisopliae and LdMNPV was observed in the biocontrol of L. dispar. Full article
(This article belongs to the Special Issue Ecological Regulation of Forest and Grassland Pests)
Show Figures

Figure 1

26 pages, 3619 KB  
Review
Baculovirus-Based Biocontrol: Synergistic and Antagonistic Interactions of PxGV, PxNPV, SeMNPV, and SfMNPV in Integrative Pest Management
by Alberto Margarito García-Munguía, Carlos Alberto García-Munguía, Paloma Lucía Guerra-Ávila, Estefany Alejandra Sánchez-Mendoza, Fabián Alejandro Rubalcava-Castillo, Argelia García-Munguía, María Reyna Robles-López, Luis Fernando Cisneros-Guzmán, María Guadalupe Martínez-Alba, Ernesto Olvera-Gonzalez, Raúl René Robles-de la Torre and Otilio García-Munguía
Viruses 2025, 17(8), 1077; https://doi.org/10.3390/v17081077 - 2 Aug 2025
Viewed by 754
Abstract
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and [...] Read more.
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and biological insecticides to combat Plutella xylostella, Spodoptera exigua, and Spodoptera frugiperda in broccoli, tomato, and maize crops. Notable findings include that both individual Plutella xylostella nucleopolyhedrovirus (PxNPV) and the combination of Plutella xylostella granulovirus (PxGV) and azadirachtin at a low dose effectively control Plutella xylostella; both combinations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) with emamectin benzoate and chlorfenapyr reduced resistance in Spodoptera exigua and increased the efficacy of the insecticides; and the combination of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) and spinetoram is effective against Spodoptera frugiperda. Integrating baculoviruses into pest management strategies offers a promising approach to mitigate the adverse effects of chemical pesticides, such as resistance development, health risks, and environmental damage. However, there remains a broad spectrum of research opportunities regarding the use of baculoviruses in agriculture. Full article
Show Figures

Figure 1

36 pages, 1423 KB  
Review
Baculoviruses as Microbial Pesticides: Potential, Challenges, and Market Overview
by Maider Martínez-Balerdi, Javier Caballero, Eduardo Aguirre, Primitivo Caballero and Inés Beperet
Viruses 2025, 17(7), 917; https://doi.org/10.3390/v17070917 - 27 Jun 2025
Cited by 1 | Viewed by 860
Abstract
Baculoviruses represent a promising group of microbial insecticides for the biological control of agricultural pests, particularly those within the order Lepidoptera. Their high host specificity and environmental safety make them ideal candidates for inclusion in integrated pest management (IPM) programs. This review presents [...] Read more.
Baculoviruses represent a promising group of microbial insecticides for the biological control of agricultural pests, particularly those within the order Lepidoptera. Their high host specificity and environmental safety make them ideal candidates for inclusion in integrated pest management (IPM) programs. This review presents a comprehensive overview of baculovirus biology, highlighting their infection mechanisms, selectivity, and ecological compatibility. Special attention is given to advances in mass production systems—both in vivo and in vitro—and formulation technologies that improve field efficacy and environmental persistence, including UV protectants and microencapsulation. Regulatory aspects are also discussed, comparing international approval pathways and highlighting the disparity between regions with supportive policies (e.g., Latin America, Asia) and those with more restrictive frameworks (e.g., the European Union). Additionally, the current global market landscape for baculovirus-based products is examined, with emphasis on recent growth, commercialized formulations, and challenges such as host resistance and the limited spectrum of action. By synthesizing findings from the scientific literature and industry reports, this review underscores the role of baculoviruses as effective, sustainable alternatives or complements to chemical insecticides in modern agriculture, contributing to the reduction in pesticide residues and environmental impact. Full article
(This article belongs to the Special Issue Insect Viruses and Pest Management, the Third Edition)
Show Figures

Figure 1

20 pages, 3846 KB  
Article
Early to Late VSV-G Expression in AcMNPV BV Enhances Transduction in Mammalian Cells but Does Not Affect Virion Yield in Insect Cells
by Jorge Alejandro Simonin, Franco Uriel Cuccovia Warlet, María del Rosario Bauzá, María del Pilar Plastine, Victoria Alfonso, Fernanda Daniela Olea, Carolina Susana Cerrudo and Mariano Nicolás Belaich
Vaccines 2025, 13(7), 693; https://doi.org/10.3390/vaccines13070693 - 26 Jun 2025
Viewed by 529
Abstract
Background/Objectives: Baculoviruses represent promising gene delivery vectors for mammalian systems, combining high safety profiles with substantial cargo capacity. While pseudotyping with vesicular stomatitis virus G-protein (VSV-G) enhances transduction efficiency, optimal expression strategies during the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection cycle remain unexplored. [...] Read more.
Background/Objectives: Baculoviruses represent promising gene delivery vectors for mammalian systems, combining high safety profiles with substantial cargo capacity. While pseudotyping with vesicular stomatitis virus G-protein (VSV-G) enhances transduction efficiency, optimal expression strategies during the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection cycle remain unexplored. This study investigates how VSV-G expression timing affects pseudotype incorporation into budded virions (BVs) and subsequent transduction efficacy. Methods: Three recombinant AcMNPV constructs were generated, each expressing VSV-G under distinct baculoviral promoters (ie1, gp64, and p10) and GFP via a CMV promoter. VSV-G incorporation was verified by Western blot, while transduction efficiency was quantified in mammalian cell lines (fluorescence microscopy/flow cytometry) and rat hind limbs. Viral productivity was assessed through production kinetics and plaque assays. Results: All the pseudotyped viruses showed significantly enhanced transduction capacity versus controls, strongly correlating with VSV-G incorporation levels. The p10 promoter drove the highest VSV-G expression and transduction efficiency. Crucially, BV production yields and infectivity remained unaffected by VSV-G expression timing. The in vivo results mirrored the cell culture findings, with p10-driven constructs showing greater GFP expression at low doses (104 virions). Conclusions: Strategic VSV-G expression via very late promoters (particularly p10) maximizes baculoviral transduction without compromising production yields. This study establishes a framework for optimizing pseudotyped BV systems, demonstrating that late-phase glycoprotein expression balances high mammalian transduction with preserved insect-cell productivity—a critical advancement for vaccine vector development. Full article
(This article belongs to the Special Issue Viral Vector-Based Vaccines and Therapeutics)
Show Figures

Graphical abstract

35 pages, 520 KB  
Review
Biocontrol in Integrated Pest Management in Fruit and Vegetable Field Production
by Maria Pobożniak and Marta Olczyk
Horticulturae 2025, 11(5), 522; https://doi.org/10.3390/horticulturae11050522 - 13 May 2025
Viewed by 2340
Abstract
The Farm-to-Fork strategy, an essential component of the European Green Deal, aims to establish a sustainable and healthy food system. A crucial aspect of this strategy is reducing synthetic pesticide use by 50% by 2030. In this context, biocontrol is seen as a [...] Read more.
The Farm-to-Fork strategy, an essential component of the European Green Deal, aims to establish a sustainable and healthy food system. A crucial aspect of this strategy is reducing synthetic pesticide use by 50% by 2030. In this context, biocontrol is seen as a vital tool for achieving this goal. However, the upscaling of biocontrol faces several challenges, including technical and socio-economic issues and concerns regarding the legal status of biocontrol products. This article focuses on the Positive List, which includes indigenous and introduced species that have been established for use in EPPO countries and approved biological agents in some OECD countries. This article discusses microbial control agents and active substances derived from microbial metabolites, macro-agents, semi-chemicals, and plant-based compounds. It covers their origins, active substances, mechanisms of action against target pests, application methods, market availability, benefits, and potential environmental side effects. Additionally, it discusses the role of beneficial insects and mites as natural enemies in Integrated Pest Management (IPM) within the context of conservation methods. This article addresses the future of biological control, which largely relies on advancements in science to tackle two critical challenges: enhancing the reliability and effectiveness of biopreparations in field conditions and developing suitable formulations of biopesticides tailored to large-scale cultivation technologies for key crops. Full article
13 pages, 1104 KB  
Article
The Individual and Combined Entomopathogenic Activity of a Spodoptera frugiperda Multiple Nucleopolyhedrovirus and a Type I Spodoptera frugiperda Granulovirus on S. frugiperda Larvae
by Magali Ordóñez-García, Juan Carlos Bustillos-Rodríguez, José de Jesús Ornelas-Paz, Miguel Ángel Salas-Marina, Octavio Jhonathan Cambero-Campos, Carlos Horacio Acosta-Muñiz, David Ignacio Berlanga-Reyes and Claudio Rios-Velasco
Viruses 2025, 17(5), 674; https://doi.org/10.3390/v17050674 - 5 May 2025
Viewed by 662
Abstract
The bioinsecticidal activity of several doses of a Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV-CH-32; LD10, LD50, and LD90) and a Type I Spodoptera frugiperda granulovirus (SfGV-CH13; LD50 and LD90), alone and in co-infection, was evaluated [...] Read more.
The bioinsecticidal activity of several doses of a Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV-CH-32; LD10, LD50, and LD90) and a Type I Spodoptera frugiperda granulovirus (SfGV-CH13; LD50 and LD90), alone and in co-infection, was evaluated on S. frugiperda larvae. In the co-infection assays, one virus was applied at 0 h, and then the second virus was supplied at different times (0, 12, and 24 h) in order to test the effect of the co-infection time on the insecticidal activity of the viruses. The symptoms observed in the co-infected larvae depended on the viral dose supplied at 0 h. The larvae treated with the highest dose (LD90) of SfMNPV-CH32 and co-infected with SfGV-CH13 at LD50 showed symptoms of nucleopolyhedrovirus infection at 14 days post-infection. The larvae initially infected with the highest dose of SfGV-CH13 (LD90) and subsequently co-infected with SfMNPV-CH32 (LD50 and LD10) showed infection symptoms characteristic of both viruses. The insecticidal activity of SfGV-CH13 and SfMNPV-CH32 alone or in combination depended on the viral doses and the time elapsed between the first and second inoculation. An antagonistic effect was observed for most of the treatments tested. A synergistic effect was observed only in treatment 10, where the larvae were first infected with SfMNPV-CH32 at a high dose (LD90) and inoculated 24 h later with SfGV-CH13 (LD50). Full article
(This article belongs to the Special Issue Insect Viruses and Pest Management, the Third Edition)
Show Figures

Figure 1

23 pages, 1995 KB  
Article
Adapting Next-Generation Sequencing to in Process CRISPR-Cas9 Genome Editing of Recombinant AcMNPV Vectors: From Shotgun to Tiled-Amplicon Sequencing
by Madhuja Chakraborty, Lisa Nielsen, Delaney Nash, Jozef I. Nissimov, Trevor C. Charles and Marc G. Aucoin
Viruses 2025, 17(3), 437; https://doi.org/10.3390/v17030437 - 18 Mar 2025
Cited by 2 | Viewed by 759
Abstract
The alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most commonly used virus in the Baculovirus Expression Vector System (BEVS) and has been utilized for the production of many human and veterinary biologics. AcMNPV has a large dsDNA genome that [...] Read more.
The alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most commonly used virus in the Baculovirus Expression Vector System (BEVS) and has been utilized for the production of many human and veterinary biologics. AcMNPV has a large dsDNA genome that remains understudied, and relatively unmodified from the wild-type, especially considering how extensively utilized it is as an expression vector. Previously, our group utilized CRISPR-Cas9 genome engineering that revealed phenotypic changes when baculovirus genes are targeted using either co-expressed sgRNA or transfected sgRNA into a stable insect cell line that produced the Cas9 protein. Here, we describe a pipeline to sequence the recombinant AcMNPV expression vectors using shotgun sequencing, provide a set of primers for tiled-amplicon sequencing, show that untargeted baculovirus vector genomes remain relatively unchanged when amplified in Sf9-Cas9 cells, and confirm that AcMNPV gp64 gene disruption can minimize baculovirus contamination in cell cultures. Our findings provide a robust baseline for analyzing in process genome editing of baculoviruses. Full article
(This article belongs to the Special Issue CRISPR/Cas in Viral Research 2024)
Show Figures

Figure 1

19 pages, 9669 KB  
Article
The Genome Sequences of Baculoviruses from the Tufted Apple Bud Moth, Platynota idaeusalis, Reveal Recombination Between an Alphabaculovirus and a Betabaculovirus from the Same Host
by Robert L. Harrison, Michael A. Jansen, Austin N. Fife and Daniel L. Rowley
Viruses 2025, 17(2), 202; https://doi.org/10.3390/v17020202 - 30 Jan 2025
Viewed by 1001
Abstract
The USDA-ARS collection of insect viruses at Beltsville, MD, USA, contains samples of an alphabaculovirus from larvae of the tufted apple bud moth, Platynota idaeusalis Walker, as well as a presumptive betabaculovirus from the same host species. The viruses in these samples—Platynota idaeusalis [...] Read more.
The USDA-ARS collection of insect viruses at Beltsville, MD, USA, contains samples of an alphabaculovirus from larvae of the tufted apple bud moth, Platynota idaeusalis Walker, as well as a presumptive betabaculovirus from the same host species. The viruses in these samples—Platynota idaeusalis nucleopolyhedrovirus isolate 2680 (PlidNPV-2680) and Platynota idaeusalis granulovirus isolate 2683 (PlidGV-2683)—were characterized by electron microscopy of their occlusion bodies (OBs) and determination and analysis of their genome sequences. Scanning and transmission electron microscopy of the OBs revealed morphologies typical for alphabaculoviruses and betabaculoviruses. Sequencing viral DNA resulted in circular genomes of 121,881 bp and 106,633 bp for PlidNPV-2680 and PlidGV-2683, respectively. Similar numbers of ORFs (128 for PlidNPV-2680, 125 for PlidGV-2683) were annotated, along with ten homologous regions (hrs) in the PlidNPV-2680 genome and five intergenic regions of tandem direct repeats (drs) in the PlidGV genome. Phylogenetic inference from core gene alignments suggested that PlidMNPV-2680 represents a unique lineage within the genus Alphabaculovirus, while PlidGV-2683 was grouped with clade b betabaculoviruses. A comparison of the PlidNPV-2680 and PlidGV-2683 genomes revealed a 1516 bp region in PlidNPV-2680 that exhibited 97.5% sequence identity to a region of the PlidGV-2683 genome, suggesting that recombination had occurred recently between viruses from these lineages. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

19 pages, 1766 KB  
Review
Baculovirus Genetic Diversity and Population Structure
by Miguel López-Ferber, Primitivo Caballero and Trevor Williams
Viruses 2025, 17(2), 142; https://doi.org/10.3390/v17020142 - 22 Jan 2025
Cited by 2 | Viewed by 1519 | Correction
Abstract
Baculoviruses can naturally regulate lepidopteran populations and are used as biological insecticides. The genetic diversity of these viruses affects their survival and efficacy in pest control. For nucleopolyhedroviruses, occlusion-derived virions and the occlusion body facilitate the transmission of groups of genomes, whereas this [...] Read more.
Baculoviruses can naturally regulate lepidopteran populations and are used as biological insecticides. The genetic diversity of these viruses affects their survival and efficacy in pest control. For nucleopolyhedroviruses, occlusion-derived virions and the occlusion body facilitate the transmission of groups of genomes, whereas this is not the case for granuloviruses. We review the evidence for baculovirus genetic diversity in the environment, in the host insect, and in occlusion bodies and virions. Coinfection allows defective genotypes to persist through complementation and results in the pseudotyping of virus progeny that can influence their transmissibility and insecticidal properties. Genetic diversity has marked implications for the development of pest resistance to virus insecticides. We conclude that future research is warranted on the physical segregation of genomes during virus replication and on the independent action of virions during infection. We also identify opportunities for studies on the transmission of genetic diversity and host resistance to viruses. Full article
(This article belongs to the Special Issue Insect Viruses and Pest Management, the Third Edition)
Show Figures

Figure 1

12 pages, 2939 KB  
Article
Bombyx mori Metal Carboxypeptidases12 (BmMCP12) Is Involved in Host Protection Against Viral Infection
by Liang Tang, Qiong-Qiong Wei, Yu Xiao, Ming-Yan Tang, Yan Zhu, Man-Gui Jiang, Peng Chen and Zhi-Xin Pan
Int. J. Mol. Sci. 2024, 25(24), 13536; https://doi.org/10.3390/ijms252413536 - 18 Dec 2024
Viewed by 896
Abstract
Baculoviruses, the largest studied insect viruses, are highly pathogenic to host insects. Bombyx mori nucleopolyhedrovirus (BmNPV) is the main cause of nuclear polyhedrosis of silkworm, a viral disease that causes significant economic losses to the sericulture industry. The anti-BmNPV mechanism of the silkworm [...] Read more.
Baculoviruses, the largest studied insect viruses, are highly pathogenic to host insects. Bombyx mori nucleopolyhedrovirus (BmNPV) is the main cause of nuclear polyhedrosis of silkworm, a viral disease that causes significant economic losses to the sericulture industry. The anti-BmNPV mechanism of the silkworm has not yet been characterized. Carboxypeptidase is an enzyme that is involved in virtually all life activities of animals and plants. Studies have shown that the carboxypeptidase family is related to insect immunity. There are few reports on the role of carboxypeptidase in the defense of silkworms against pathogen invasion. In this study, we identified the homologous gene Bombyx mori metal carboxypeptidases12 (BmMCP12) related to mammalian carboxypeptidase A2 (CPA2) and found that BmMCP12 had a Zn-pept domain. The BmMCP12 gene was primarily located in the cytoplasm and was highly expressed in the midgut of silkworms, and the expression level in BmN-SWU1 cells was upregulated after infection with BmNPV. After overexpression of the BmMCP12 gene, quantitative real-time (qRT)-PCR and Western blots showed that BmMCP12 could inhibit BmNPV replication, whereas knockout of the gene had the opposite effect. In addition, we constructed transgenic silkworm strains with a knockout of BmMCP12, and the transgenic strains had reduced resistance to BmNPV. These findings deepen the functional study of silkworm carboxypeptidase and provide a new target for BmNPV disease prevention in silkworms. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 1642 KB  
Review
Application of the Insect Cell-Baculovirus Expression Vector System in Adeno-Associated Viral Production
by Fei Wang, Jiawen Sun, Wenyan Guo and Yang Wu
Appl. Sci. 2024, 14(23), 10948; https://doi.org/10.3390/app142310948 - 25 Nov 2024
Cited by 3 | Viewed by 4114
Abstract
Insect Cell-Baculovirus Expression Vector System (IC-BEVS) is an efficient protein expression platform, which is famous for its high-level expression of complex protein in insect cells. The system is based on baculoviruses such as Autographa californica multiple nucleopolyhedrovirus (AcMNPV), and the expression efficiency of [...] Read more.
Insect Cell-Baculovirus Expression Vector System (IC-BEVS) is an efficient protein expression platform, which is famous for its high-level expression of complex protein in insect cells. The system is based on baculoviruses such as Autographa californica multiple nucleopolyhedrovirus (AcMNPV), and the expression efficiency of the target proteins has been significantly improved by optimizing the viral vectors and cell lines. In recent years, IC-BEVS have shown great potential for Adeno-Associated Virus (AAV) production, particularly excelling in AAV structural protein expression and recombinant AAV production. The system not only improves the yield and purity of AAV, but also shortens the production cycle, providing an efficient and reliable tool for gene therapy. However, the system also has some challenges, including protein modification differences, limitations in expression levels, and production costs. This paper reviews the development of the insect baculovirus expression system, its application in AAV production, and its prospects in gene therapy, aiming to provide a systematic reference and outlook for research in related fields. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

49 pages, 5210 KB  
Review
Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation
by Alane Beatriz Vermelho, Jean Vinícius Moreira, Ingrid Teixeira Akamine, Veronica S. Cardoso and Felipe R. P. Mansoldo
Plants 2024, 13(19), 2762; https://doi.org/10.3390/plants13192762 - 1 Oct 2024
Cited by 20 | Viewed by 9985
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the [...] Read more.
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin. Full article
(This article belongs to the Special Issue Emerging Topics in Botanical Biopesticides—2nd Edition)
Show Figures

Graphical abstract

16 pages, 3221 KB  
Article
Development of Fusion-Based Assay as a Drug Screening Platform for Nipah Virus Utilizing Baculovirus Expression Vector System
by Indah Permata Sari, Christopher Llynard D. Ortiz, Lee-Wei Yang, Ming-Hsiang Chen, Ming-Der Perng and Tzong-Yuan Wu
Int. J. Mol. Sci. 2024, 25(16), 9102; https://doi.org/10.3390/ijms25169102 - 22 Aug 2024
Viewed by 1514
Abstract
Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a [...] Read more.
Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a therapeutic countermeasure against NiV is urgently needed. As NiV needs to be handled within a Biological Safety Level (BSL) 4 facility, we had developed a safe drug screening platform utilizing a baculovirus expression vector system (BEVS) based on a NiV-induced syncytium formation that could be handled within a BSL-1 facility. To reconstruct the NiV-induced syncytium formation in BEVS, two baculoviruses were generated to express recombinant proteins that are responsible for inducing the syncytium formation, including one baculovirus exhibiting co-expressed NiV fusion protein (NiV-F) and NiV attachment glycoprotein (NiV-G) and another exhibiting human EphrinB2 protein. Interestingly, syncytium formation was observed in infected insect cells when the medium was modified to have a lower pH level and supplemented with cholesterol. Fusion inhibitory properties of several compounds, such as phytochemicals and a polysulfonated naphthylamine compound, were evaluated using this platform. Among these compounds, suramin showed the highest fusion inhibitory activity against NiV-induced syncytium in the baculovirus expression system. Moreover, our in silico results provide a molecular-level glimpse of suramin’s interaction with NiV-G’s central hole and EphrinB2’s G-H loop, which could be the possible reason for its fusion inhibitory activity. Full article
(This article belongs to the Special Issue Infectious Diseases: Focus on Molecular Mechanisms and Future Therapy)
Show Figures

Figure 1

11 pages, 288 KB  
Article
The Biological Activity of an SfMNPV-Based Biopesticide on a Resistant Strain of Spodoptera frugiperda Developing on Transgenic Corn Expressing Cry1A.105 + Cry2Ab2 + Cry1F Insecticidal Protein
by Fernanda Carla Santos Geisler, Liliane Nachtigall Martins, Inessa Emanuelle da Fonseca Machado, Lara Fernandes Matozo, Willian Furtado Lucena, Vanessa Nogueira Soares, Juliano de Bastos Pazini, Ana Paula Schneid Afonso Schneid da Rosa and Daniel Bernardi
Agronomy 2024, 14(8), 1632; https://doi.org/10.3390/agronomy14081632 - 25 Jul 2024
Viewed by 1431
Abstract
Insecticides based on baculoviruses have become an alternative for pest control in different agricultural crops. The aim of this study was to assess the biological activity of the bioinsecticide Cartugen (SfMNPV: Baculoviridae: Alphabaculovirus) on larvae of Spodoptera frugiperda J. E. [...] Read more.
Insecticides based on baculoviruses have become an alternative for pest control in different agricultural crops. The aim of this study was to assess the biological activity of the bioinsecticide Cartugen (SfMNPV: Baculoviridae: Alphabaculovirus) on larvae of Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae) resistant to Bt corn expressing the insecticidal proteins Cry1A.105+Cry2Ab2+Cry1F. In addition, we assessed the efficiency of SfMNPV on S. frugiperda control in the field from natural infestation of the pest during two agricultural seasons. The results showed that no larvae survived 10 days after being inoculated with Bt and non-Bt corn leaves contaminated with 1.50 × 1010 occlusion bodies (OBs)/L (equivalent to the recommended dose of the product). However, when using doses equivalent to 50% (7.50 × 109 OBs/L) and 25% (3.75 × 109 OBs/L), the larval mortality ranged from 21.12% to 46.55%, respectively. Although larvae resistant to the Cry1A.105+Cry2Ab2+Cry1F proteins, when exposed to 50% of the SfMNPV dose (7.50 × 109 OBs/L), showed reductions in larval weight (52 to 67% reduction), pupal weight (32 to 59% reduction), and total fecundity (67 to 86% reduction) compared to the control. Furthermore, doses above 25% (3.75 × 109 OBs/L−1) caused a population decrease in the growth of the species in both Bt and non-Bt corn according to the fertility life table. In the field, at 7 and 10 DAA (days after application), corn plants sprayed with SfMNPV (1.50 × 1010 OBs/L) showed reductions in leaf damage according to the Davis scale. However, from 14 to 21 DAA, there was an increase in leaf damage in corn leaves from both treatments, with or without the application of SfMNPV. This shows that SfMNPV may be an important strategy in the integrated management and resistance management of S. frugiperda. Full article
14 pages, 2568 KB  
Article
Development of a Fully Protective Pandemic Avian Influenza Subunit Vaccine in Insect Pupae
by Ana Falcón, Susana Martínez-Pulgarín, Sergi López-Serrano, Edel Reytor, Miguel Cid, Maria del Carmen Nuñez, Lorena Córdoba, Ayub Darji and José M. Escribano
Viruses 2024, 16(6), 829; https://doi.org/10.3390/v16060829 - 23 May 2024
Viewed by 2857
Abstract
In this study, we pioneered an alternative technology for manufacturing subunit influenza hemagglutinin (HA)-based vaccines. This innovative method involves harnessing the pupae of the Lepidoptera Trichoplusia ni (T. ni) as natural biofactories in combination with baculovirus vectors (using CrisBio® technology). [...] Read more.
In this study, we pioneered an alternative technology for manufacturing subunit influenza hemagglutinin (HA)-based vaccines. This innovative method involves harnessing the pupae of the Lepidoptera Trichoplusia ni (T. ni) as natural biofactories in combination with baculovirus vectors (using CrisBio® technology). We engineered recombinant baculoviruses encoding two versions of the HA protein (trimeric or monomeric) derived from a pandemic avian H7N1 virus A strain (A/chicken/Italy/5093/99). These were then used to infect T. ni pupae, resulting in the production of the desired recombinant antigens. The obtained HA proteins were purified using affinity chromatography, consistently yielding approximately 75 mg/L of insect extract. The vaccine antigen effectively immunized poultry, which were subsequently challenged with a virulent H7N1 avian influenza virus. Following infection, all vaccinated animals survived without displaying any clinical symptoms, while none of the mock-vaccinated control animals survived. The CrisBio®-derived antigens induced high titers of HA-specific antibodies in the vaccinated poultry, demonstrating hemagglutination inhibition activity against avian H7N1 and human H7N9 viruses. These results suggest that the CrisBio® technology platform has the potential to address major industry challenges associated with producing recombinant influenza subunit vaccines, such as enhancing production yields, scalability, and the speed of development, facilitating the global deployment of highly effective influenza vaccines. Full article
(This article belongs to the Special Issue The Application of Viruses to Biotechnology 3.0)
Show Figures

Figure 1

Back to TopTop