Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = deflagration limit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10787 KB  
Article
Experimental Investigations into the Ignitability of Real Lithium Iron Phosphate (LFP) Battery Vent Gas at Concentrations Below the Theoretical Lower Explosive Limit (LEL)
by Jason Gill, Jonathan E. H. Buston, Gemma E. Howard, Steven L. Goddard, Philip A. P. Reeve and Jack W. Mellor
Batteries 2025, 11(10), 352; https://doi.org/10.3390/batteries11100352 - 27 Sep 2025
Abstract
Lithium iron phosphate (LFP) batteries have become a popular choice for energy storage, electrified mobility, and plants. All lithium-based batteries produce flammable vent gas as a result of failure through thermal runaway. LFP cells produce less gas by volume than nickel-based cells, but [...] Read more.
Lithium iron phosphate (LFP) batteries have become a popular choice for energy storage, electrified mobility, and plants. All lithium-based batteries produce flammable vent gas as a result of failure through thermal runaway. LFP cells produce less gas by volume than nickel-based cells, but the composition of this gas most often contains less carbon dioxide and more hydrogen. However, when LFP cells fail, they generate lower temperatures, so the vent gas is rarely ignited. Therefore, the hazard presented by a LFP cell in thermal runaway is less of a direct battery fire hazard but more of a flammable gas source hazard. This research identified the constituents and components of the vent gas for different sized LFP prismatic cells when overcharged to failure. This data was used to calculate the maximum homogenous concentration of gas that would be released into a 1.73 m3 test rig and the percentage of the lower explosive limit (LEL). Overcharge experiments were conducted using the same type of cells in the test rig in the presence of remote ignition sources. Ignition and deflagration of the vent gas were possible at concentrations below the theoretical LEL of the vent gas if it was homogeneously mixed. Full article
Show Figures

Figure 1

23 pages, 6389 KB  
Article
Virtual Measurement of Explosion-Proof Performance: Application of an Improved RBF-GMSE-Based Surrogate Model to the Safety Performance Characterization of Coal Mine Equipment
by Xusheng Xue, Huahao Wan, Hongkui Zhang, Jianxin Yang, Yan Wang, Wenjuan Yang and Fandong Chen
Appl. Sci. 2025, 15(17), 9765; https://doi.org/10.3390/app15179765 - 5 Sep 2025
Viewed by 578
Abstract
Explosion-proof safety evaluation is critical for coal mine equipment operating in hazardous environments. Traditional methods rely on physical explosion testing, which is time-consuming, costly, and impractical for large-scale or complex systems. We propose a real-time virtual measurement method based on an improved combined [...] Read more.
Explosion-proof safety evaluation is critical for coal mine equipment operating in hazardous environments. Traditional methods rely on physical explosion testing, which is time-consuming, costly, and impractical for large-scale or complex systems. We propose a real-time virtual measurement method based on an improved combined surrogate model to address these limitations. A digital twin framework is constructed by integrating internal explosion transmission data with physical models of gas deflagration and enclosure impact mechanics. A transient multi-physical reduced-order model is developed using Latin hypercube sampling and machine learning. The core prediction model, RBF-GMSE, combines a radial basis function surrogate model and a generalized mean square error model through adaptive weighting. This model is trained on dimension-reduced finite element data and used to predict explosion-induced stress, strain, and displacement in real time. A virtual measurement system is implemented using this framework, enabling accurate, dynamic safety evaluation of explosion-proof equipment. Validation against simulation data shows a maximum prediction error below 1.89% and an average correlation coefficient of 0.9779, confirming the model’s high accuracy and robustness. This approach offers an intelligent solution for efficient and precise acquisition of explosion-proof safety characteristics in coal mine equipment. Full article
Show Figures

Figure 1

35 pages, 3223 KB  
Review
A Review of Safety Measures in Battery Electric Buses
by Edoardo Di Liberto, Romano Borchiellini, Daniel Fruhwirt and Davide Papurello
Fire 2025, 8(4), 159; https://doi.org/10.3390/fire8040159 - 21 Apr 2025
Viewed by 3039
Abstract
Battery electric buses (BEBs) are widely regarded as a safe and sustainable alternative to internal combustion vehicles. However, the lithium-ion batteries that power them present safety risks. This paper provides a comprehensive overview of the safety of battery electric buses, highlighting current challenges, [...] Read more.
Battery electric buses (BEBs) are widely regarded as a safe and sustainable alternative to internal combustion vehicles. However, the lithium-ion batteries that power them present safety risks. This paper provides a comprehensive overview of the safety of battery electric buses, highlighting current challenges, relevant regulations and proposed solutions to enhance safety. There are significant shortcomings in the fire safety regulations for buses, especially concerning qualification methods for bus interiors. Enclosed spaces and structures represent the most critical risks for these transport systems. The presence of large vehicles, such as BEBs, in tunnels could increase the risk of transitioning from deflagration to detonation. Fires involving such vehicles produce more soot than fires from internal combustion engine buses (ICEBs) and have slightly higher toxicity levels. High-pressure water spraying systems are not yet an effective solution, as not all the heat is removed if the thermal runaway has already been triggered for several minutes, and their action remains largely limited to the outside of the battery pack. Another critical issue is cybersecurity. Managing and protecting BEBs from cyber threats is complex and requires robust strategies. Full article
(This article belongs to the Special Issue Photovoltaic and Electrical Fires: 2nd Edition)
Show Figures

Figure 1

35 pages, 13922 KB  
Review
Advances on Deflagration to Detonation Transition Methods in Pulse Detonation Engines
by Zhiwu Wang, Weifeng Qin, Lisi Wei, Zixu Zhang and Yuxiang Hui
Energies 2025, 18(8), 2109; https://doi.org/10.3390/en18082109 - 19 Apr 2025
Cited by 4 | Viewed by 1929
Abstract
Pulse detonation engines (PDEs) have become a transformative technology in the field of aerospace propulsion due to the high thermal efficiency of detonation combustion. However, initiating detonation waves within a limited space and time is key to their engineering application. Direct initiation, though [...] Read more.
Pulse detonation engines (PDEs) have become a transformative technology in the field of aerospace propulsion due to the high thermal efficiency of detonation combustion. However, initiating detonation waves within a limited space and time is key to their engineering application. Direct initiation, though theoretically feasible, requires very high critical energy, making it almost impossible to achieve in engineering applications. Therefore, indirect initiation methods are more practical for triggering detonation waves that produce a deflagration wave through a low-energy ignition source and realizing deflagration to detonation transition (DDT) through flame acceleration and the interaction between flames and shock waves. This review systematically summarizes recent advancements in DDT methods in pulse detonation engines, focusing on the basic principles, influencing factors, technical bottlenecks, and optimization paths of the following: hot jet ignition initiation, obstacle-induced detonation, shock wave focusing initiation, and plasma ignition initiation. The results indicate that hot jet ignition enhances turbulent mixing and energy deposition by injecting energy through high-energy jets using high temperature and high pressure; this can reduce the DDT distance of hydrocarbon fuels by 30–50%. However, this approach faces challenges such as significant jet energy dissipation, flow field instability, and the complexity of the energy supply system. Solid obstacle-induced detonation passively generates turbulence and shock wave reflection through geometric structures to accelerate flame propagation, which has the advantages of having a simple structure and high reliability. However, the problem of large pressure loss and thermal fatigue restricts its long-term application. Fluidic obstacle-induced detonation enhances mixing uniformity through dynamic disturbance to reduce pressure loss. However, its engineering application is constrained by high energy consumption requirements and jet–mainstream coupling instability. Shock wave focusing utilizes concave cavities or annular structures to concentrate shock wave energy, which directly triggers detonation under high ignition efficiency and controllability. However, it is extremely sensitive to geometric parameters and incident shock wave conditions, and the structural thermal load issue is prominent. Plasma ignition generates active particles and instantaneous high temperatures through high-energy discharge, which chemically activates fuel and precisely controls the initiation sequence, especially for low-reactivity fuels. However, critical challenges, such as high energy consumption, electrode ablation, and decreased discharge efficiency under high-pressure environments, need to be addressed urgently. In order to overcome the bottlenecks in energy efficiency, thermal management, and dynamic stability, future research should focus on multi-modal synergistic initiation strategies, the development of high-temperature-resistant materials, and intelligent dynamic control technologies. Additionally, establishing a standardized testing system to quantify DDT distance, energy thresholds, and dynamic stability indicators is essential to promote its transition to engineering applications. Furthermore, exploring the DDT mechanisms of low-carbon fuels is imperative to advance carbon neutrality goals. By summarizing the existing DDT methods and technical bottlenecks, this paper provides theoretical support for the engineering design and application of PDEs, contributing to breakthroughs in the fields of hypersonic propulsion, airspace shuttle systems, and other fields. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

27 pages, 8858 KB  
Review
Review of Pre-Ignition Research in Methanol Engines
by Zhijie Li, Changhui Zhai, Xiaoxiao Zeng, Kui Shi, Xinbo Wu, Tianwei Ma and Yunliang Qi
Energies 2025, 18(1), 133; https://doi.org/10.3390/en18010133 - 31 Dec 2024
Viewed by 1481
Abstract
Methanol can be synthesized using green electricity and carbon dioxide, making it a green, carbon-neutral fuel with significant potential for widespread application in engines. However, due to its low ignition energy and high laminar flame speed, methanol is susceptible to hotspot-induced pre-ignition and [...] Read more.
Methanol can be synthesized using green electricity and carbon dioxide, making it a green, carbon-neutral fuel with significant potential for widespread application in engines. However, due to its low ignition energy and high laminar flame speed, methanol is susceptible to hotspot-induced pre-ignition and even knocking under high-temperature, high-load engine conditions, posing challenges to engine performance and reliability. This paper systematically reviews the manifestations and mechanisms of pre-ignition and knocking in methanol engines. Pre-ignition can be sustained or sporadic. Sustained pre-ignition is caused by overheating of structural components, while sporadic pre-ignition is often linked to oil droplets entering the combustion chamber from the piston crevice. Residual exhaust gas trapped within the spark plug can also initiate pre-ignition. Knocking, characterized by pressure oscillations, arises from the auto-ignition of hotspots in the end-gas or, potentially, from deflagration-to-detonation transition, although the latter requires further experimental validation. Factors influencing pre-ignition and knocking, including engine oil, in-cylinder deposits, structural hotspots, and the reactivity of the air–fuel mixture, are also analyzed. Based on these factors, the paper concludes that the primary approach to suppressing pre-ignition and knocking in methanol engines is controlling the formation of pre-ignition sources and reducing the reactivity of the air–fuel mixture. Furthermore, it addresses existing issues and limitations in current research, such as combustion testing techniques, numerical simulation accuracy, and the mechanisms of methanol–oil interaction, and offers related recommendations. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

18 pages, 4056 KB  
Article
Deflagration Dynamics of Methane–Air Mixtures in Closed Vessels at Elevated Temperatures
by Rafał Porowski, Robert Kowalik, Stanisław Nagy, Tomasz Gorzelnik, Adam Szurlej, Małgorzata Grzmiączka, Katarzyna Zielińska and Arief Dahoe
Energies 2024, 17(12), 2855; https://doi.org/10.3390/en17122855 - 11 Jun 2024
Cited by 2 | Viewed by 2853
Abstract
In this paper, we explore the deflagration combustion of methane–air mixtures through both experimental and numerical analyses. The key parameters defining deflagration combustion dynamics include maximum explosion pressure (Pmax), maximum rate of explosion pressure rise (dP/dt) [...] Read more.
In this paper, we explore the deflagration combustion of methane–air mixtures through both experimental and numerical analyses. The key parameters defining deflagration combustion dynamics include maximum explosion pressure (Pmax), maximum rate of explosion pressure rise (dP/dt)max, deflagration index (KG), and laminar burning velocity (SU). Understanding these parameters enhances the process of safety design across the energy sector, where light-emissive fuels play a crucial role in energy transformation. However, most knowledge on these parameters comes from experiments under standard conditions (P = 1 bar, T = 293.15 K), with limited data on light hydrocarbon fuels at elevated temperatures. Our study provides new insights into methane–air mixture deflagration dynamics at temperatures ranging from 293 to 348 K, addressing a gap in the current process industry knowledge, especially in gas and chemical engineering. We also conduct a comparative analysis of predictive models for the laminar burning velocity of methane mixtures in air, including the Manton, Lewis, and von Elbe, Bradley and Mitcheson, and Dahoe models, alongside various chemical kinetic mechanisms based on experimental findings. Notably, despite their simplicity, the Bradley and Dahoe models exhibit a satisfactory predictive accuracy when compared with numerical simulations from three chemical kinetic models using Cantera v. 3.0.0 code. The findings of this study enrich the fundamental combustion data for methane mixtures at elevated temperatures, vital for advancing research on natural gas as an efficient “bridge fuel” in energy transition. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process II)
Show Figures

Figure 1

13 pages, 6231 KB  
Article
Quantitative Analysis of Lithium-Ion Battery Eruption Behavior in Thermal Runaway
by Yu Xing, Ningning Wei and Minghai Li
Batteries 2024, 10(6), 182; https://doi.org/10.3390/batteries10060182 - 26 May 2024
Viewed by 2501
Abstract
With the widespread adoption of battery technology in electric vehicles, there has been significant attention drawn to the increasing frequency of battery fire incidents. However, the jetting behavior and expansion force during the thermal runaway (TR) of batteries represent highly dynamic phenomena, which [...] Read more.
With the widespread adoption of battery technology in electric vehicles, there has been significant attention drawn to the increasing frequency of battery fire incidents. However, the jetting behavior and expansion force during the thermal runaway (TR) of batteries represent highly dynamic phenomena, which lack comprehensive quantitative description. This study addresses this gap by employing an enhanced experimental setup that synchronizes the video timing of cameras with a signal acquisition system, enabling the multidimensional quantification of signals, such as images, temperature, voltage, and pressure. It also provides a detailed description of the jetting behavior and expansion force characteristics over time for Li(Ni0.8Co0.1Mn0.1)O2 batteries undergoing thermal runaway in an open environment. The results from three experiments effectively identify key temporal features, including the timing of the initial jetting spark, maximum jetting velocity, jetting duration, explosion duration, and patterns of flame volume variation. This quantitative analytical approach proves effective across various battery types and conditions. The findings could offer scientific foundations and experimental strategies for parameter identification in fire prevention and thermal runaway model development. Full article
(This article belongs to the Special Issue Battery Thermal Performance and Management: Advances and Challenges)
Show Figures

Figure 1

31 pages, 6231 KB  
Article
Cylindrical Steel Tanks Subjected to Long-Duration and High-Pressure Triangular Blast Load: Current Practice and a Numerical Case Study
by Julia Rosin, Alessandro Stocchi, Norman Bruckhaus, Johanna Heyner, Philipp Weidner and Till Waas
Appl. Sci. 2024, 14(8), 3465; https://doi.org/10.3390/app14083465 - 19 Apr 2024
Cited by 1 | Viewed by 3137
Abstract
This paper presents an investigation into the design of ammonia tanks for long-duration and high-pressure blast loads. The focus is on cylindrical steel tanks that apply as outer pressure-tight containers for double-walled tanks storing refrigerated liquefied gases. Based on limited empirical data, it [...] Read more.
This paper presents an investigation into the design of ammonia tanks for long-duration and high-pressure blast loads. The focus is on cylindrical steel tanks that apply as outer pressure-tight containers for double-walled tanks storing refrigerated liquefied gases. Based on limited empirical data, it is known in the tank industry that these tanks can withstand an explosion pressure up to a peak overpressure of approximately 10 kPa and 100 ms positive load duration. However, there is a growing need to design tanks for higher peak overpressures in order to establish a higher safety standard and accommodate unforeseen future requirements. This paper explores the concept of adapting established steel tank designs to handle high-pressure and long-duration overpressure due to blast events. Numerical analysis is conducted on a representative steel tank geometry subjected to a triangular blast load of 30 kPa with a 300 ms positive load duration. Various load application and calculation options are analyzed numerically. Considering the challenging nature of analyzing tank structures under blast load, the paper addresses controversial aspects discussed in the literature and presents a suitable analysis concept for a deflagration blast scenario for cylindrical tanks. The results provide insights into the expected structural behavior of the tank under high-pressure and long-duration overpressure. The main finding is that the calculation method developed in this study demonstrates the feasibility of utilizing steel tanks in scenarios involving long-duration and high-pressure blast loads. Furthermore, the paper provides recommendations to guide future studies in this area. The findings have implications for the design and construction of tanks in critical infrastructure and offer valuable insights for engineers and researchers in this field, improving safety standards and ensuring adaptability to future utilization concepts. Full article
(This article belongs to the Special Issue Recent Advances in the Effect of Blast Loads on Structures)
Show Figures

Figure 1

14 pages, 3978 KB  
Article
The Effect of CuO on the Thermal Behavior and Combustion Features of Pyrotechnic Compositions with AN/MgAl
by Tlek Ketegenov, Rashid Nadirov, Bagdat Teltayev, Bagdatgul Milikhat, Bakhyt Kalmuratova, Hori Keiichi and Kaster Kamunur
Sustainability 2024, 16(4), 1488; https://doi.org/10.3390/su16041488 - 9 Feb 2024
Cited by 4 | Viewed by 2472
Abstract
Ammonium nitrate (AN) is of considerable interest to researchers in developing new types of energetic mixtures due to the release of environmentally benign gaseous products during burning and thermal decomposition. However, poor ignition and a low burning rate require special additives to speed [...] Read more.
Ammonium nitrate (AN) is of considerable interest to researchers in developing new types of energetic mixtures due to the release of environmentally benign gaseous products during burning and thermal decomposition. However, poor ignition and a low burning rate require special additives to speed up this process. The advantage of this research is the use of high-energy aluminum-based alloys as fuel to compensate for the disadvantages of AN. In addition, the effect of copper oxide (CuO) on the burning kinetics and thermodynamics of the energetic mixture based on ammonium nitrate–magnesium–aluminum alloys (AN/MgAl) is investigated. Alloys based on aluminum were created through a process of high-temperature diffusion welding, conducted in an environment of argon gas. The structure and thermal characteristics of alloys are determined by X-ray diffraction, scanning electron microscopy, and DTA-TG analyses. It has been found that CuO has significant effects on the thermal decomposition of an AN/MgAl-based energetic mixture by shifting the decomposition temperature from 269.33 °C to 261.34 °C and decreasing the activation energy from 91.41 kJ mol−1 to 89.26 kJ mol−1. Adding CuO reduced the pressure deflagration limit from 2 MPa to 1 MPa, and the linear burning rate of the AN/MgAl energetic mixture increased approximately twice (rb = 6.17 mm/s vs. rb = 15.44 mm/s, at a chamber pressure of P0 = 5 MPa). Full article
(This article belongs to the Special Issue Green Materials in Engineering: Application and Recovery)
Show Figures

Figure 1

18 pages, 7979 KB  
Article
Understanding the Factors and Consequences of Gas Deflagration Accident in Metro Shield Tunnel: Site Investigation and Numerical Analysis
by Yi Shen, Shuangchi Sun, Wei Sun, Long Zhou and Zhongkai Huang
Buildings 2024, 14(1), 56; https://doi.org/10.3390/buildings14010056 - 24 Dec 2023
Cited by 2 | Viewed by 2259
Abstract
This study aims to investigate the factors and consequences of gas deflagration accidents in metro shield tunnels based on on-site investigation and numerical analysis. We built a numerical model and detection process for an underground shield tunnel subjected to an internal explosion from [...] Read more.
This study aims to investigate the factors and consequences of gas deflagration accidents in metro shield tunnels based on on-site investigation and numerical analysis. We built a numerical model and detection process for an underground shield tunnel subjected to an internal explosion from an actual accident. The tunnel geometry under consideration is the same as that used for the metro line. Concerning the limitations of research on the failure and recovery mechanism of shield segmental linings under the action of internal explosion load, an explosion accident of a shield segmental lining under construction caused by the shield tunneling machine destroying natural gas pipelines was discussed, in which the structure failure characteristics during the explosion and the structure repair method after the explosion were investigated. An interval repair scheme was proposed, which provides experience for the treatment of similar engineering accidents. To investigate the gas explosion within the tunnel during the accident, the finite element software Ansys LS-DYNA with the arbitrary Lagrangian–Eulerian (ALE) technique was employed to simulate the explosion scenario. Dynamic analyses were carried out to reproduce the blast scenario. The stress distribution within the segmental lining as well as the lining’s deformation were calculated. The potential applications of the treatment and planning of comparable engineering mishaps were discussed in the study. Full article
Show Figures

Figure 1

13 pages, 4154 KB  
Article
Knock Mitigation and Power Enhancement of Hydrogen Spark-Ignition Engine through Ammonia Blending
by Haiwen Ge, Ahmad Hadi Bakir and Peng Zhao
Machines 2023, 11(6), 651; https://doi.org/10.3390/machines11060651 - 16 Jun 2023
Cited by 14 | Viewed by 3377
Abstract
Hydrogen and ammonia are primary carbon-free fuels that have massive production potential. In regard to their flame properties, these two fuels largely represent the two extremes among all fuels. The extremely fast flame speed of hydrogen can lead to an easy deflagration-to-detonation transition [...] Read more.
Hydrogen and ammonia are primary carbon-free fuels that have massive production potential. In regard to their flame properties, these two fuels largely represent the two extremes among all fuels. The extremely fast flame speed of hydrogen can lead to an easy deflagration-to-detonation transition and cause detonation-type engine knock that limits the global equivalence ratio, and consequently the engine power. The very low flame speed and reactivity of ammonia can lead to a low heat release rate and cause difficulty in ignition and ammonia slip. Adding ammonia into hydrogen can effectively modulate flame speed and hence the heat release rate, which in turn mitigates engine knock and retains the zero-carbon nature of the system. However, a key issue that remains unclear is the blending ratio of NH3 that provides the desired heat release rate, emission level, and engine power. In the present work, a 3D computational combustion study is conducted to search for the optimal hydrogen/ammonia mixture that is knock-free and meanwhile allows sufficient power in a typical spark-ignition engine configuration. Parametric studies with varying global equivalence ratios and hydrogen/ammonia blends are conducted. The results show that with added ammonia, engine knock can be avoided, even under stoichiometric operating conditions. Due to the increased global equivalence ratio and added ammonia, the energy content of trapped charge as well as work output per cycle is increased. About 90% of the work output of a pure gasoline engine under the same conditions can be reached by hydrogen/ammonia blends. The work shows great potential of blended fuel or hydrogen/ammonia dual fuel in high-speed SI engines. Full article
(This article belongs to the Special Issue Advances in Combustion Science for Future IC Engines)
Show Figures

Figure 1

21 pages, 6478 KB  
Article
Fast Deflagration-to-Detonation Transition in Helical Tubes
by Igor O. Shamshin, Viktor S. Aksenov, Maxim V. Kazachenko, Pavel A. Gusev and Sergey M. Frolov
Processes 2023, 11(6), 1719; https://doi.org/10.3390/pr11061719 - 4 Jun 2023
Cited by 4 | Viewed by 3066
Abstract
When designing a new type of power plants operating on pulsed detonations of gaseous or liquid fuels, the concept of fast deflagration-to-detonation transition (FDDT) is used. According to the concept, a flame arising from a weak ignition source must accelerate so fast as [...] Read more.
When designing a new type of power plants operating on pulsed detonations of gaseous or liquid fuels, the concept of fast deflagration-to-detonation transition (FDDT) is used. According to the concept, a flame arising from a weak ignition source must accelerate so fast as to form an intense shock wave at a minimum distance from the ignition source so that the intensity of the shock wave is sufficient for fast shock-to-detonation transition by some additional arrangements. Hence, the FDDT concept implies the use of special means for flame acceleration and shock wave amplification. In this work, we study the FDDT using a pulsed detonation tube comprising a Shchelkin spiral and a helical tube section with ten coils as the means for flame acceleration and shock amplification (focusing), respectively. To attain the FDDT at the shortest distances for fuels of significantly different detonability, the diameter of the pulsed detonation tube is taken close to the limiting diameter of detonation propagation for air mixtures of regular hydrocarbon fuels (50 mm). Experiments are conducted with air mixtures of individual gaseous fuels (hydrogen, methane, propane, and ethylene) and binary fuel compositions (methane–hydrogen, propane–hydrogen, and ethylene–hydrogen) at normal pressure and temperature conditions. The use of a helical tube with ten coils is shown to considerably extend the fuel-lean concentration limits of detonation as compared to the straight tube and the tube with a helical section with two coils. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

17 pages, 2382 KB  
Article
Volatile Oil in Pinus yunnanensis Potentially Contributes to Extreme Fire Behavior
by Feng Chen, Liqing Si, Fengjun Zhao and Mingyu Wang
Fire 2023, 6(3), 113; https://doi.org/10.3390/fire6030113 - 12 Mar 2023
Cited by 8 | Viewed by 2691
Abstract
Volatile oils in forest fuel can significantly affect forest fire behavior, especially extreme fire behavior, e.g., deflagration, fire storms, blowups, eruptive fires and crown fires. However, how these oils influence fire behavior remains unclear, as few qualitative studies have been performed globally. In [...] Read more.
Volatile oils in forest fuel can significantly affect forest fire behavior, especially extreme fire behavior, e.g., deflagration, fire storms, blowups, eruptive fires and crown fires. However, how these oils influence fire behavior remains unclear, as few qualitative studies have been performed globally. In the present study, we compared the volatile oil contents and components in live branches and surface dead fuel of Pinus yunnanensis Franch, which is widely distributed in Southwest China, to explore their potential effects on extreme fire behavior. Fifteen samples of live branches and fifteen samples of surface dead fuel were collected. Volatile oils were extracted from the samples using steam distillation, and their components were identified and analyzed using gas chromatography–mass spectrometry (GC-MS). The results show that the volatile oil content in live branches was as high as 8.28 mL·kg−1 (dry weight) and was significantly higher than that in surface dead fuel (3.55 mL·kg−1). The volatile oil content in the P. yunnanensis forest was 126.12 kg per hectare. The main volatile oil components were terpenoids, of which monoterpenes accounted for the highest proportion based on their content (62.63%), followed by sesquiterpenes (22.44%). The terpenoid compounds in live branches were more abundant than those in surface dead fuel. Monoterpenes and sesquiterpenes in volatile oils in forest fuel have low boiling points, high calorific values and a lower explosion limit (LEL; 38.4 g·m−3), which are important characteristics in the manifestation of extreme fire behavior such as deflagration. The analysis results indicate that when heated, the oily gases from P. yunnanensis forest could fill 3284.26 m3 per hectare, with a gas concentration reaching the LEL. We conclude that volatile oil in P. yunnanensis has an important influence on the manifestation of extreme fire behavior, and live branches have a greater effect than surface dead fuel. Full article
(This article belongs to the Special Issue Firefighting Approaches and Extreme Wildfires)
Show Figures

Figure 1

16 pages, 4942 KB  
Article
Deflagration-to-Detonation Transition in a Semi-Confined Slit Combustor Filled with Nitrogen Diluted Ethylene-Oxygen Mixture
by Igor O. Shamshin, Vladislav S. Ivanov, Viktor S. Aksenov, Pavel A. Gusev and Sergey M. Frolov
Energies 2023, 16(3), 1098; https://doi.org/10.3390/en16031098 - 19 Jan 2023
Cited by 4 | Viewed by 1953
Abstract
The conditions for the mild initiation of the detonation of homogeneous stoichiometric ethylene-oxygen mixtures diluted with nitrogen up to ~40%vol. in a planar semi-confined slit-type combustor with a slit 5.0 ± 0.4 mm wide, simulating the annular combustor of a Rotating Detonation Engine [...] Read more.
The conditions for the mild initiation of the detonation of homogeneous stoichiometric ethylene-oxygen mixtures diluted with nitrogen up to ~40%vol. in a planar semi-confined slit-type combustor with a slit 5.0 ± 0.4 mm wide, simulating the annular combustor of a Rotating Detonation Engine (RDE), are determined experimentally using self-luminous high-speed video recording and pressure measurements. To ensure the mild detonation initiation, the fuel mixture in the RDE combustor must be ignited upon reaching a certain limiting (minimal) fill with the mixture and the arising flame must be transformed to a detonation via deflagration-to-detonation transition (DDT). Thus, for mild detonation initiation in a C2H4 + 3O2 mixture filling the slit, the height of the mixture layer must exceed the slit width by approximately 10 times (~50 mm), and for the C2H4 + 3(O2 + 2/5 N2) mixture, by approximately 60 times. The limiting height of the mixture layer required for DDT exhibits a sharp increase at a nitrogen-to-oxygen mole ratio above 0.25. Compared to the height of the detonation waves continuously rotating in the RDE combustor in the steady-state operation mode, for a mild start of the RDE, the fill of the combustor with the explosive mixture to a height of at least four times more is required. Full article
Show Figures

Figure 1

17 pages, 3276 KB  
Article
Experimental Study on Thermal Runaway Behavior of Lithium-Ion Battery and Analysis of Combustible Limit of Gas Production
by Xinwei Yang, Hewu Wang, Minghai Li, Yalun Li, Cheng Li, Yajun Zhang, Siqi Chen, Hengjie Shen, Feng Qian, Xuning Feng and Minggao Ouyang
Batteries 2022, 8(11), 250; https://doi.org/10.3390/batteries8110250 - 21 Nov 2022
Cited by 51 | Viewed by 9665
Abstract
Lithium-ion batteries (LIBs) are widely used in electric vehicles (EV) and energy storage stations (ESS). However, combustion and explosion accidents during the thermal runaway (TR) process limit its further applications. Therefore, it is necessary to investigate the uncontrolled TR exothermic reaction for safe [...] Read more.
Lithium-ion batteries (LIBs) are widely used in electric vehicles (EV) and energy storage stations (ESS). However, combustion and explosion accidents during the thermal runaway (TR) process limit its further applications. Therefore, it is necessary to investigate the uncontrolled TR exothermic reaction for safe battery system design. In this study, different LIBs are tested by lateral heating in a closed experimental chamber filled with nitrogen. Moreover, the relevant thermal characteristic parameters, gas composition, and deflagration limit during the battery TR process are calculated and compared. Results indicate that the TR behavior of NCM batteries is more severe than that of LFP batteries, and the TR reactions becomes more severe with the increase of energy density. Under the inert atmosphere of nitrogen, the primarily generated gases are H2, CO, CO2, and hydrocarbons. The TR gas deflagration limits and characteristic parameter calculations of different cathode materials are refined and summarized, guiding safe battery design and battery selection for power systems. Full article
(This article belongs to the Collection Advances in Battery Energy Storage and Applications)
Show Figures

Figure 1

Back to TopTop