Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = double pipe heat exchanger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4586 KiB  
Article
In the Study of the Effects of the Pipe Design of a Heat Exchanger on the Thermo-Fluid Characteristics and Exergy Destruction
by Sadra Rostami and Nima Ahmadi
Processes 2025, 13(3), 835; https://doi.org/10.3390/pr13030835 - 12 Mar 2025
Viewed by 489
Abstract
This study investigates the effects of novel pipe cross-section designs on the thermal, hydraulic, and exergetic performance of a double-pipe heat exchanger, aiming to identify the most efficient design for industrial applications. Four novel cross-sections are proposed: Case 1 (rounded square), Case 2 [...] Read more.
This study investigates the effects of novel pipe cross-section designs on the thermal, hydraulic, and exergetic performance of a double-pipe heat exchanger, aiming to identify the most efficient design for industrial applications. Four novel cross-sections are proposed: Case 1 (rounded square), Case 2 (hexagonal), Case 3 (triangular), and Case 4 (star-like), all maintaining the same inlet area as the base model (circular). A 3D CFD model using the Finite Volume Method and realizable k-ε turbulence model is employed to analyze performance under turbulent flow conditions (Re = 3000–20,000). Key metrics, including the Nusselt number, overall heat transfer coefficient, pressure drop, and exergy destruction, are evaluated. The results show that Case 2 achieves a 7% increase in the Nusselt number at Re = 3000 and a 2% increase at Re = 20,000, while Case 4 exhibits a 180% improvement in the overall heat transfer coefficient at Re = 13,100. However, Case 4’s higher pressure drop reduces its performance compared to the base model. Case 2 demonstrates the best thermal characteristics, making it the most suitable for industrial applications. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 18181 KiB  
Article
Modeling and Design Aspects of Shallow Geothermal Energy Piles—A Case Study on Large Commercial Building Complex in Zagreb, Croatia
by Marija Macenić and Tomislav Kurevija
Geosciences 2025, 15(3), 90; https://doi.org/10.3390/geosciences15030090 - 1 Mar 2025
Viewed by 459
Abstract
With ambitious targets set by the EU for the reduction of emissions from the energy sector by 2030, there is a need to design and develop more building projects using renewable energy sources. Even though in Europe, heating and cooling share from renewable [...] Read more.
With ambitious targets set by the EU for the reduction of emissions from the energy sector by 2030, there is a need to design and develop more building projects using renewable energy sources. Even though in Europe, heating and cooling share from renewable resources is increasing, and in 2021, the total share in this sector in Croatia was at 38%, the share of heat production by heat pumps is rather low. One possibility to increase this share is to install energy piles when constructing a building, which is becoming an increasingly common practice. This case study focuses on such a system designed for a large, non-residential building in Zagreb, Croatia. The complex was designed as 13 separate dilatations, with central heating and cooling of all facilities, covered by 260 energy piles (130 pairs in serial connection), with a length of the polyethylene pipe of 20 m in a double loop inserted within the pile. The thermo-technical system was designed as a bivalent parallel system, with natural gas covering peak heating loads and a dry cooler covering cooling peak loads when the loads cannot be covered only by ground-source heat pumps. In the parallel bivalent system, the geothermal source will work with a much higher number of working hours at full load than is the case for geothermal systems that are dimensioned to peak consumption. Therefore, the thermal response test was conducted on two energy piles, connected in series, to obtain thermogeological parameters and determine the heat extraction and rejection rates. The established steady-state heat rate defines the long-term ability to extract heat energy during constant thermal load, with the inlet water temperature from the pile completely stabilized, i.e., no significant further sub-cooling is achieved in the function of the geothermal field operation time. Considering the heating and cooling loads of the building, modeling of the system was performed in such a manner that it utilized renewable energy as much as possible by finding a bivalent point where the geothermal system works efficiently. It was concluded that the optimal use of the geothermal field covers total heating needs and 70% for cooling, with dry coolers covering the remaining 30%. Additionally, based on the measured thermogeological parameters, simulations of the thermal response test were conducted to determine heat extraction and rejection rates for energy piles with various geometrical parameters of the heat exchanger pipe and fluid flow variations. Full article
Show Figures

Figure 1

29 pages, 2721 KiB  
Review
Coaxial Pipes Used as Ground Buried Heat Exchangers—A Review of Research in Recent Years
by Geng Wang, Nai Rong, Xuefei Li, Ning Hu, Zhi Zhang, Yuan Zhang and Yuhan Wang
Buildings 2025, 15(2), 243; https://doi.org/10.3390/buildings15020243 - 15 Jan 2025
Viewed by 876
Abstract
The efficient utilization of geothermal energy depends heavily on high-performance ground heat exchangers. Coaxial pipe is a high-efficiency heat exchanger composed of two nested tubes of different diameters. In this paper, the structure and thermal exchange characteristics of coaxial pipe geothermal exchangers are [...] Read more.
The efficient utilization of geothermal energy depends heavily on high-performance ground heat exchangers. Coaxial pipe is a high-efficiency heat exchanger composed of two nested tubes of different diameters. In this paper, the structure and thermal exchange characteristics of coaxial pipe geothermal exchangers are introduced, which are superior to single-U and double-U geothermal exchangers in respect of installation, heat transporting, and deep geothermal application. Thermal test research of coaxial pipe geothermal exchangers is investigated. Relevant studies in recent years on the factors affecting the thermal performance of coaxial pipe ground heat exchangers, including exchanger configurations, circulating fluids, subsurface conditions, flow patterns, and operational modes, are reviewed. In addition, research on the impact of coaxial pipe ground heat exchangers on the ground, as well as applications for coaxial pipe ground heat exchangers, is summarized. Recommendations are made for potential future research on coaxial pipe ground heat exchangers. It is believed that the results of these studies will help to raise awareness of coaxial pipe ground heat exchangers and to continue to promote their application. Full article
(This article belongs to the Special Issue Research on Indoor Air Environment and Energy Conservation)
Show Figures

Figure 1

19 pages, 4713 KiB  
Article
Non-Newtonian Convective Heat Transfer in Annuli: Numerical Investigation on the Effects of Staggered Helical Fins
by Luca Pagliarini, Fabio Bozzoli, Rasoul Fallahzadeh and Sara Rainieri
Fluids 2024, 9(12), 272; https://doi.org/10.3390/fluids9120272 - 21 Nov 2024
Viewed by 853
Abstract
Despite non-Newtonian fluids being involved in many industrial processes, e.g., in food and chemical industries, their thermal treatment still represents a significant challenge due to their generally high apparent viscosity and consequent low heat transfer capability. Heat transfer in heat exchangers can be [...] Read more.
Despite non-Newtonian fluids being involved in many industrial processes, e.g., in food and chemical industries, their thermal treatment still represents a significant challenge due to their generally high apparent viscosity and consequent low heat transfer capability. Heat transfer in heat exchangers can be enhanced by passive systems, such as inserts or fins, to promote boundary layer disruption and fluid recirculation. However, most of the existing configurations cannot significantly improve the heat transfer over pressure drops in deep laminar flows. The present paper presents a numerical investigation on non-Newtonian flows passing through the annulus side of a double-pipe heat exchanger with staggered helical fins. The adopted geometry was conceptualized by merging the beneficial effects of swirling flow devices and boundary layer disruption. The numerical results were first validated against analytical solutions for non-Newtonian flows in annuli under a laminar flow regime. The finned geometry was therefore numerically tested and compared with the bare annulus to quantify the resulting heat transfer augmentation. When compared with the bare annuli, the proposed novel geometry greatly enhanced the heat transfer while mitigating friction losses. Full article
(This article belongs to the Special Issue Pipe Flow: Research and Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 5611 KiB  
Article
New Physically-Based Mathematical Model and Experiments for a Recently Invented Solar Pot
by Márton Rátkai, Gábor Géczi, Richárd Kicsiny and László Székely
Appl. Sci. 2024, 14(15), 6643; https://doi.org/10.3390/app14156643 - 30 Jul 2024
Viewed by 761
Abstract
The studied solar pot is a recent invention, which is made for environmentally friendly cooking or heating (by utilizing solar energy) of foods and liquids. Its structure is similar to a double pipe heat exchanger, it has an outer mantle and an inner [...] Read more.
The studied solar pot is a recent invention, which is made for environmentally friendly cooking or heating (by utilizing solar energy) of foods and liquids. Its structure is similar to a double pipe heat exchanger, it has an outer mantle and an inner cooking tank. The goals of the paper are proposing a new physically-based mathematical model describing the solar pot and carrying out computer experiments with it, assembling an experimental system of the pot connected with a solar collector and performing measurements on it. Based on the results, the solar pot can successfully be used for cooking or sterilizing foods or liquids during the studied time period, in Hungary. In particular, based on measured data, the temperature level needed for heat treatment (75 °C) can be maintained in the cooking tank for several hours (~5 h, on the average) in a typical day in May. Full article
Show Figures

Figure 1

14 pages, 1955 KiB  
Article
Experimental Investigation on Active Heat Transfer Improvement in Double-Pipe Heat Exchangers
by A. Jalali, A. Amiri Delouei, M. R. Zaertaraghi and S. Amiri Tavasoli
Processes 2024, 12(7), 1333; https://doi.org/10.3390/pr12071333 - 27 Jun 2024
Cited by 7 | Viewed by 1359
Abstract
In this research, the effect of ultrasonic waves (UWs) on the heat transfer rate of a water-to-water double-pipe heat exchanger (DPHX) was investigated. To conduct the experiments, four ultrasonic transducers with similar sound frequencies of 40 kHz and a maximum power of 60 [...] Read more.
In this research, the effect of ultrasonic waves (UWs) on the heat transfer rate of a water-to-water double-pipe heat exchanger (DPHX) was investigated. To conduct the experiments, four ultrasonic transducers with similar sound frequencies of 40 kHz and a maximum power of 60 W were utilized. All the transducers were placed on the outer shell of the DPHX. The effects of the hot water flow rate and the temperature level of the hot water inlet, ranging from 40 to 60 °C in the central pipe, both in the absence and presence of UWs, were measured under UWs at different powers from 0 to 240 W. The performed experiments show that UWs increase the heat transfer rate, while the highest heat transfer rate improvement of 104% occurs at an inlet temperature of 60 °C and ultrasonic power level of 240 W. Given the scarcity of information regarding heat transfer behavior in ultrasonic-assisted DPHXs, these findings could illuminate the path for designing such heat exchangers. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

23 pages, 7242 KiB  
Article
A Multiphysics Simulation Study of the Thermomechanical Coupling Response of Energy Piles
by Chang Xu, Yawen Wang, Xiaolin Meng, Qihang Lv, Hui Chen and Qingdong Wu
Buildings 2024, 14(5), 1440; https://doi.org/10.3390/buildings14051440 - 16 May 2024
Viewed by 1165
Abstract
The global demand for energy is on the rise, accompanied by increasing requirements for low-carbon environmental protection. In recent years, China’s “double carbon action” initiative has brought about new development opportunities across various sectors. The concept of energy pile foundation aims to harness [...] Read more.
The global demand for energy is on the rise, accompanied by increasing requirements for low-carbon environmental protection. In recent years, China’s “double carbon action” initiative has brought about new development opportunities across various sectors. The concept of energy pile foundation aims to harness geothermal energy, aligning well with green, low-carbon, and sustainable development principles, thus offering extensive application prospects in engineering. Drawing from existing research globally, this paper delves into four key aspects impacting the thermodynamic properties of energy piles: the design of buried pipes, pile structure, heat storage materials within the pipe core, and soil treatment around the pile using carbon fiber urease mineralization. Leveraging the innovative mineralization technique known as urease-induced carbonate mineralization precipitation (EICP), this study employs COMSOL Multiphysics simulation software to analyze heat transfer dynamics and establish twelve sets of numerical models for energy piles. The buried pipe design encompasses two types, U-shaped and spiral, while the pile structure includes concrete solid energy piles and tubular energy piles. Soil conditions around the pile are classified into undisturbed sand and carbon fiber-infused EICP mineralized sand. Different inner core heat storage materials such as air, water, unaltered sand, and carbon fiber-based EICP mineralized sand are examined within tubular piles. Key findings indicate that spiral buried pipes outperform U-shaped ones, especially when filled with liquid thermal energy storage (TES) materials, enhancing temperature control of energy piles. The carbon fiber urease mineralization technique significantly improves heat exchange between energy piles and surrounding soil, reducing soil porosity to 4.9%. With a carbon fiber content of 1.2%, the ultimate compressive strength reaches 1419.4 kPa. Tubular energy piles mitigate pile stress during summer temperature fluctuations. Pile stress distribution varies under load and temperature stresses, with downward and upward friction observed at different points along the pile length. Overall, this research underscores the efficacy of energy pile technologies in optimizing energy efficiency while aligning with sustainable development goals. Full article
(This article belongs to the Special Issue Trends and Prospects in Civil Engineering Structures)
Show Figures

Figure 1

15 pages, 2366 KiB  
Article
Computational Fluid Dynamics Heat Transfer Analysis of Double Pipe Heat Exchanger and Flow Characteristics Using Nanofluid TiO2 with Water
by Abdulaziz S. Alhulaifi
Designs 2024, 8(3), 39; https://doi.org/10.3390/designs8030039 - 30 Apr 2024
Cited by 2 | Viewed by 2333
Abstract
A device called a heat exchanger is used to exchange heat transfer between two fluids with different temperatures. Because of its durability and ability to handle high-pressure application, the concentric double pipe heat exchangers are widely utilized for numerous industrial applications. To conserve [...] Read more.
A device called a heat exchanger is used to exchange heat transfer between two fluids with different temperatures. Because of its durability and ability to handle high-pressure application, the concentric double pipe heat exchangers are widely utilized for numerous industrial applications. To conserve pumping power energy, many researchers were involved in study of the nanoparticles to be embedded in the fluid, which will enrich the fluid thermal conductivity and surface area. This article demonstrates the flow characteristics and convective heat transfer of nanofluids containing 0.2, 0.4 and 0.6 of vol% TiO2 nanoparticles dispersed in water under turbulent conditions, which mainly can be used for cooling nuclear reactors applications. Reynolds numbers varying from 4000 to 18,000 are examined numerically. The convective heat transfer coefficient results of the nanofluid agree well against experimental data, which are slightly more than that of base water at 1.94%. The results of the numerical model showed that the convective heat transfer coefficient of nanofluids will increase when the Reynolds and volume fraction increases. By increasing the temperature of the annular hot water, the heat transfer rate will increase, showing no major impact to the convective heat transfer coefficient of nanofluids. A generalised solution predicting the convective heat transfer coefficient for extensive nanoparticle materials is proposed. The conclusion of the empirical equation is tested among published data and the results are highly congruent, confirming the strength of the gamma equation. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage)
Show Figures

Figure 1

12 pages, 5076 KiB  
Article
An Experimental Investigation on the Relation between Corrosion and Thermohydraulic Behavior in Heat Exchangers for Geothermal Applications
by Arne Simons, Willem Faes, Tom Depover, Steven Lecompte, Michel De Paepe and Kim Verbeken
Metals 2024, 14(2), 217; https://doi.org/10.3390/met14020217 - 9 Feb 2024
Viewed by 1294
Abstract
The potential use of carbon steel in CO2-saturated brine is studied for its potential use in heat exchangers in geothermal applications. A dedicated setup, including a double-pipe heat exchanger, is developed to study the relation between corrosion and the thermohydraulic behavior [...] Read more.
The potential use of carbon steel in CO2-saturated brine is studied for its potential use in heat exchangers in geothermal applications. A dedicated setup, including a double-pipe heat exchanger, is developed to study the relation between corrosion and the thermohydraulic behavior inside heat exchangers. Hot brine flows inside the inner carbon steel tube, thus corroding the inner surface of this tube. The thermohydraulic behavior of the heat exchanger, i.e., the pressure drop over the pipe and the heat transfer rate through the pipe, are continuously monitored. On the other hand, weight-loss experiments and microscopic analyses are performed on samples that are periodically removed from the setup. The corrosion rate is studied as a function of temperature, i.e., the entrance vs. the exit of the heat-exchanging section, and flow. Therefore, an experiment with static brine and a uniform temperature is used as a reference. The corrosion rate is generally higher in dynamic compared to static conditions. Furthermore, the corrosion rate increases with increasing temperature in dynamic conditions, whereas it decreases with increasing temperature in static conditions. These observations might be explained by the different corrosion products that formed. The corrosion products have no significant effect on the pressure drop over the pipe, but clear fluctuations in the heat transfer coefficient are observed. The origin of these fluctuations should be further studied before the observed heat transfer coefficient can be used as a measure for corrosion. Full article
Show Figures

Figure 1

20 pages, 5266 KiB  
Article
CO2-Free Hydrogen Production by Methane Pyrolysis Utilizing a Portion of the Produced Hydrogen for Combustion
by Takuma Uehara, Makoto Asahara and Takeshi Miyasaka
Energies 2024, 17(2), 367; https://doi.org/10.3390/en17020367 - 11 Jan 2024
Cited by 3 | Viewed by 2293
Abstract
Air pollutants such as carbon dioxide and nitrogen oxides emitted by the combustion of fossil fuels have become the subject of increasing concern. Hydrogen has accordingly emerged as a promising low-emission alternative energy source. Among the various methods for hydrogen production, methane pyrolysis, [...] Read more.
Air pollutants such as carbon dioxide and nitrogen oxides emitted by the combustion of fossil fuels have become the subject of increasing concern. Hydrogen has accordingly emerged as a promising low-emission alternative energy source. Among the various methods for hydrogen production, methane pyrolysis, which produces hydrogen without emitting carbon dioxide, has gained substantial attention. This study evaluated the self-sustainability of a new hydrogen production system based on methane pyrolysis, in which a portion of the hydrogen produced is used as combustion fuel rather than relying on catalysts and electrical heating. Coupled heat transfer and one-dimensional reaction simulations employing two plug-flow reactors of a counterflow double-pipe heat exchanger were conducted to investigate the feasibility and efficiency of the proposed system, as well as the influence of flow conditions on hydrogen production. The results confirmed system viability, informed the estimation of hydrogen production rates, and provided methane conversion rate data emphasizing the critical role of low-flow conditions and residence time in system efficiency. Additionally, the production of carbon constituted a significant aspect of system efficiency. These findings indicate that the proposed system can produce environmentally friendly hydrogen, contributing to its potential utilization as a sustainable energy source. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

17 pages, 4375 KiB  
Article
Numerical Study of Flow and Heat Transfer Characteristics for Al2O3 Nanofluid in a Double-Pipe Helical Coil Heat Exchanger
by Hyeon Taek Nam, Sumin Lee, Minsuk Kong and Seungro Lee
Micromachines 2023, 14(12), 2219; https://doi.org/10.3390/mi14122219 - 9 Dec 2023
Cited by 6 | Viewed by 1699
Abstract
To numerically investigate the flow and heat transfer characteristics of a water/Al2O3 nanofluid in a double-pipe helical coil heat exchanger, we simulated a two-phase Eulerian model to predict the heat transfer coefficient, Nusselt number, and pressure drop at various concentrations [...] Read more.
To numerically investigate the flow and heat transfer characteristics of a water/Al2O3 nanofluid in a double-pipe helical coil heat exchanger, we simulated a two-phase Eulerian model to predict the heat transfer coefficient, Nusselt number, and pressure drop at various concentrations (i.e., volume fraction) and under diverse flow rates at the steady state. In this simulation, we used the k-epsilon turbulence model with an enhanced wall treatment method. The performance factor of the nanofluid was evaluated by accounting for the heat transfer and pressure drop characteristics. As a result, the heat transfer was enhanced by increasing the nanofluid concentration. The 1.0 vol.% nanofluid (i.e., the highest concentration) showed a heat transfer coefficient 1.43 times greater than water and a Nusselt number of 1.38 times greater than water. The pressure drop of nanofluids was greater than that of water due to the increased density and viscosity induced using nanoparticles. Based on the relationship between the Nusselt number and pressure drop, the 1.0 vol.% nanofluid was calculated to have a performance factor of 1.4 relative to water, indicating that the enhancement rate in heat transfer performance was greater than that in the pressure drop. In conclusion, the Al2O3 nanofluid shows potential as an enhanced working fluid in diverse heat transfer applications. Full article
(This article belongs to the Special Issue MEMS Nano/Microfabrication)
Show Figures

Figure 1

19 pages, 3847 KiB  
Article
A Novel Fractional Multi-Order High-Gain Observer Design to Estimate Temperature in a Heat Exchange Process
by Vicente Borja-Jaimes, Manuel Adam-Medina, Jarniel García-Morales, Alan Cruz-Rojas, Alfredo Gil-Velasco and Antonio Coronel-Escamilla
Axioms 2023, 12(12), 1107; https://doi.org/10.3390/axioms12121107 - 8 Dec 2023
Cited by 2 | Viewed by 1462
Abstract
In the present manuscript, we design a fractional multi-order high-gain observer to estimate temperature in a double pipe heat exchange process. For comparison purposes and since we want to prove that when using our novel technique, the estimation is more robust than the [...] Read more.
In the present manuscript, we design a fractional multi-order high-gain observer to estimate temperature in a double pipe heat exchange process. For comparison purposes and since we want to prove that when using our novel technique, the estimation is more robust than the classical approach, we design a non-fractional high-gain observer, and then we compare the performance of both observers. We consider three scenarios: The first one considers the estimation of the system states by measuring only one output with no noise added on it and under ideal conditions. Second, we add noise to the measured output and then reconstruct the system states, and, third, in addition to the noise, we increase the gain parameter in both observers (non-fractional and fractional) due to the fact that we want to prove that the robustness changes in this parameter. The results showed that, using our approach, the estimated states can be recovered under noise circumstances in the measured output and under parameter change in the observer, contrary to using classical (non-fractional) observers where the states cannot be recovered. In all our tests, we used the normalized root-mean-square, integral square error, and integral absolute error indices, resulting in a better performance for our approach than that obtained using the classical approach. We concluded that our fractional multi-order high-gain observer is more robust to input noise than the classical high-gain observer. Full article
(This article belongs to the Special Issue Fractional Calculus: From Fundamentals to Modern Applications)
Show Figures

Figure 1

17 pages, 5389 KiB  
Article
Drilling Deeper in Shallow Geoexchange Heat Pump Systems—Thermogeological, Energy and Hydraulic Benefits and Restraints
by Tomislav Kurevija, Marija Macenić and Martina Tuschl
Energies 2023, 16(18), 6577; https://doi.org/10.3390/en16186577 - 12 Sep 2023
Cited by 1 | Viewed by 1699
Abstract
In the last decade, due to climate change concerns and new environmental regulations in the EU, there was a tremendous rise in installed heat pump systems in new homes and buildings. The majority of these installed units are related to air-source heat pumps, [...] Read more.
In the last decade, due to climate change concerns and new environmental regulations in the EU, there was a tremendous rise in installed heat pump systems in new homes and buildings. The majority of these installed units are related to air-source heat pumps, as they offer a good trade-off between capital and operating expenses. However, when analysing heating and cooling heat pump systems from the primary energy consumption and ecological aspects, groundwater and shallow geothermal heat pump systems offer superior efficiency, compared to all market-available thermo-technical systems today. In the last decade, ground-source systems have seen some technological improvement by employing new borehole heat exchanger designs, such as piping with internal fins and a wider diameter (so called Turbocollector) to enhance the heat transfer between fluid and rock, as well as to reduce the pressure drop in the system. Furthermore, the process of drilling deeper offers higher ground temperatures and consequently higher seasonal performance factors in the heating cycle, due to the effect of the geothermal gradient. Nevertheless, although deeper boreholes provide better heat extraction rates per meter during the heat pump heating cycle, at the same time, it reduces heat rejection rates during the heat pump cooling cycle. The objective of this paper is to analyse and evaluate benefits and downsides of a new approach in the heat pump system design with deeper borehole heat exchangers of up to 300 m, comparing it to the traditional design of double-loop exchangers with 100 m depth. The geothermal borehole grid design simulation model, along with heat extraction and rejection, is performed on a yearly basis. The results are showing that the benefits of shallow geothermal boreholes, from the hydraulic and thermodynamic point of view, still dominate over deeper solutions. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

19 pages, 3996 KiB  
Article
Air-Purge Regenerative Direct Air Capture Using an Externally Heated and Cooled Temperature-Swing Adsorber Packed with Solid Amine
by Heak Vannak, Yugo Osaka, Takuya Tsujiguchi and Akio Kodama
Separations 2023, 10(7), 415; https://doi.org/10.3390/separations10070415 - 21 Jul 2023
Cited by 2 | Viewed by 2698
Abstract
CO2 capture from air is crucial in achieving negative emissions. Based on conventional or newly developed high-enriching processes, we investigated the rough enrichment of CO2 from air via an externally heated or cooled adsorber (temperature-swing adsorption, TSA), along with air purge [...] Read more.
CO2 capture from air is crucial in achieving negative emissions. Based on conventional or newly developed high-enriching processes, we investigated the rough enrichment of CO2 from air via an externally heated or cooled adsorber (temperature-swing adsorption, TSA), along with air purge using double-pipe heat exchangers packed with low-volatility polyamine-loaded silica. A simple adsorption–desorption cycle was attempted in a TSA experiment, by varying the temperature from 20 °C to 60 °C using moist air, yielding an average CO2 concentration of product gas that was ~17 times higher than the feed air, but the CO2 recovery rate was poor. A double-step adsorption process was applied to increase CO2 adsorption and recovery simultaneously. In this process, substantial-CO2-concentration gas was used as the product gas, and the remaining gas was used as the reflux feed gas for adsorber. This method can provide a product gas with ~100 times higher CO2 concentration than raw gas, with a recovery ratio ~60% under the shortest adsorption/desorption time and the longest refluxing time of cycle operation. Therefore, the refluxing step significantly helped to enhance CO2 capture via adsorption from elevated-CO2-concentration recirculating gas. With this CO2 concentration, the product gas can serve as the CO2 supplement for the growing plant processes. Full article
(This article belongs to the Topic Carbon Capture Science & Technology (CCST))
Show Figures

Figure 1

16 pages, 3289 KiB  
Article
Design Optimization of Counter-Flow Double-Pipe Heat Exchanger Using Hybrid Optimization Algorithm
by B. Venkatesh, Mudassir Khan, Bayan Alabduallah, Ajmeera Kiran, J. Chinna Babu, B. Bhargavi and Fatimah Alhayan
Processes 2023, 11(6), 1674; https://doi.org/10.3390/pr11061674 - 31 May 2023
Cited by 11 | Viewed by 3737
Abstract
Double-pipe counter-flow heat exchangers are considered more suitable for heat recovery in the heat transfer industry. Numerous studies have been conducted to develop static tools for optimizing operating parameters of heat exchangers. Using this study, an improved heat exchanger system will be developed. This [...] Read more.
Double-pipe counter-flow heat exchangers are considered more suitable for heat recovery in the heat transfer industry. Numerous studies have been conducted to develop static tools for optimizing operating parameters of heat exchangers. Using this study, an improved heat exchanger system will be developed. This is frequently used to solve optimization problems and find optimal solutions. The Taguchi method determines the critical factor affecting a specific performance parameter of the heat exchanger by identifying the significant level of the factor affecting that parameter. Gray relational analysis was adopted to determine the gray relational grade to represent the multi-factor optimization model, and the heat exchanger gray relation coefficient target values that were predicted have been achieved using ANN with a back propagation model with the Levenberg–Marquardt drive algorithm. The genetic algorithm improved the accuracy of the gray relational grade by assigning gray relational coefficient values as input to the developed effective parameter. This study also demonstrated significant differences between experimental and estimated values. According to the results, selecting the parameters yielded optimal heat exchanger performance. Using a genetic algorithm to solve a double-pipe heat exchanger with counterflow can produce the most efficient heat exchanger. Full article
Show Figures

Figure 1

Back to TopTop