Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = electrothermal micromirrors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 22149 KB  
Review
MEMS Micromirror Actuation Techniques: A Comprehensive Review of Trends, Innovations, and Future Prospects
by Mansoor Ahmad, Mohamed Bahri and Mohamad Sawan
Micromachines 2024, 15(10), 1233; https://doi.org/10.3390/mi15101233 - 30 Sep 2024
Cited by 17 | Viewed by 5718
Abstract
Micromirrors have recently emerged as an essential component in optical scanning technology, attracting considerable attention from researchers. Their compact size and versatile capabilities, such as light steering, modulation, and switching, are leading them as potential alternatives to traditional bulky galvanometer scanners. The actuation [...] Read more.
Micromirrors have recently emerged as an essential component in optical scanning technology, attracting considerable attention from researchers. Their compact size and versatile capabilities, such as light steering, modulation, and switching, are leading them as potential alternatives to traditional bulky galvanometer scanners. The actuation of these mirrors is critical in determining their performance, as it contributes to factors such as response time, scanning angle, and power consumption. This article aims to provide a thorough exploration of the actuation techniques used to drive micromirrors, describing the fundamental operating principles. The four primary actuation modalities—electrostatic, electrothermal, electromagnetic, and piezoelectric—are thoroughly investigated. Each type of actuator’s operational principles, key advantages, and their limitations are discussed. Additionally, the discussion extends to hybrid micromirror designs that combine two types of actuation in a single device. A total of 208 closely related papers indexed in Web of Science were reviewed. The findings indicate ongoing advancements in the field, particularly in terms of size, controllability, and field of view, making micromirrors ideal candidates for applications in medical imaging, display projections, and optical communication. With a comprehensive overview of micromirror actuation strategies, this manuscript serves as a compelling resource for researchers and engineers aiming to utilize the appropriate type of micromirror in the field of optical scanning technology. Full article
Show Figures

Figure 1

11 pages, 7519 KB  
Article
A Large-Scan-Range Electrothermal Micromirror Integrated with Thermal Convection-Based Position Sensors
by Anrun Ren, Yingtao Ding, Hengzhang Yang, Teng Pan, Ziyue Zhang and Huikai Xie
Micromachines 2024, 15(8), 1017; https://doi.org/10.3390/mi15081017 - 8 Aug 2024
Cited by 1 | Viewed by 3969
Abstract
This paper presents the design, simulation, fabrication, and characterization of a novel large-scan-range electrothermal micromirror integrated with a pair of position sensors. Note that the micromirror and the sensors can be manufactured within a single MEMS process flow. Thanks to the precise control [...] Read more.
This paper presents the design, simulation, fabrication, and characterization of a novel large-scan-range electrothermal micromirror integrated with a pair of position sensors. Note that the micromirror and the sensors can be manufactured within a single MEMS process flow. Thanks to the precise control of the fabrication of the grid-based large-size Al/SiO2 bimorph actuators, the maximum piston displacement and optical scan angle of the micromirror reach 370 μm and 36° at only 6 Vdc, respectively. Furthermore, the working principle of the sensors is deeply investigated, where the motion of the micromirror is reflected by monitoring the temperature variation-induced resistance change of the thermistors on the substrate during the synchronous movement of the mirror plate and the heaters. The results show that the full-range motion of the micromirror can be recognized by the sensors with sensitivities of 0.3 mV/μm in the piston displacement sensing and 2.1 mV/° in the tip-tilt sensing, respectively. The demonstrated large-scan-range micromirror that can be monitored by position sensors has a promising prospect for the MEMS Fourier transform spectrometers (FTS) systems. Full article
Show Figures

Figure 1

13 pages, 4067 KB  
Article
Modeling of Rapid Pam Systems Based on Electrothermal Micromirror for High-Resolution Facial Angiography
by Yuanlin Xia, Yujie Wang, Tianxiang Liang, Zhen Peng, Liang He and Zhuqing Wang
Sensors 2023, 23(5), 2592; https://doi.org/10.3390/s23052592 - 26 Feb 2023
Cited by 1 | Viewed by 2131
Abstract
In this paper, a portable photoacoustic microscopy (PAM) system is proposed based on a large stroke electrothermal micromirror to achieve high resolution and fast imaging. The crucial micromirror in the system realizes a precise and efficient 2-axis control. Two different designs of electrothermal [...] Read more.
In this paper, a portable photoacoustic microscopy (PAM) system is proposed based on a large stroke electrothermal micromirror to achieve high resolution and fast imaging. The crucial micromirror in the system realizes a precise and efficient 2-axis control. Two different designs of electrothermal actuators with “O” and “Z” shape are evenly located around the four directions of mirror plate. With a symmetrical structure, the actuator realized single direction drive only. The finite element modelling of both two proposed micromirror has realized a large displacement over 550 μm and the scan angle over ±30.43° at 0–10 V DC excitation. In addition, the steady-state and transient-state response show a high linearity and quick response respectively, which can contribute to a fast and stable imaging. Using the Linescan model, the system achieves an effective imaging area of 1 mm × 3 mm in 14 s and 1 mm × 4 mm in 12 s for the “O” and “Z” types, respectively. The proposed PAM systems have advantages in image resolution and control accuracy, indicating a significant potential in the field of facial angiography. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

12 pages, 3005 KB  
Article
Dynamic Response Analysis of an Immersed Electrothermally Actuated MEMS Mirror
by Tailong Liu, Teng Pan, Shuijie Qin, Hui Zhao and Huikai Xie
Actuators 2023, 12(2), 83; https://doi.org/10.3390/act12020083 - 15 Feb 2023
Cited by 2 | Viewed by 2575
Abstract
MEMS mirrors have a wide range of applications, most of which require large field-of-view (FOV). Immersing MEMS mirrors in liquid is an effective way to improve the FOV. However, the increased viscosity, convective heat transfer and thermal conductivity in liquid greatly affect the [...] Read more.
MEMS mirrors have a wide range of applications, most of which require large field-of-view (FOV). Immersing MEMS mirrors in liquid is an effective way to improve the FOV. However, the increased viscosity, convective heat transfer and thermal conductivity in liquid greatly affect the dynamic behaviors of electrothermally actuated micromirrors. In this paper, the complex interactions among the multiple energy domains, including electrical, thermal, mechanical and fluidic, are studied in an immersed electrothermally actuated MEMS mirror. A damping model of the immersed MEMS mirror is built and dimensional analysis is applied to reduce the number of variables and thus significantly simplify the model. The solution of the fluid damping model is solved by using regression analysis. The dynamic response of the MEMS mirror can be calculated easily by using the damping model. The experimental results verify the effectiveness and accuracy of these models. The difference between the model prediction and the measurement is within 4%. The FOV scanned in a liquid is also increased by a factor of 1.6. The model developed in this work can be applied to study the dynamic behaviors of various immersed MEMS actuators. Full article
Show Figures

Figure 1

27 pages, 16459 KB  
Review
Review of Electrothermal Micromirrors
by Yue Tang, Jianhua Li, Lixin Xu, Jeong-Bong Lee and Huikai Xie
Micromachines 2022, 13(3), 429; https://doi.org/10.3390/mi13030429 - 10 Mar 2022
Cited by 30 | Viewed by 6461
Abstract
Electrothermal micromirrors have become an important type of micromirrors due to their large angular scanning range and large linear motion. Typically, electrothermal micromirrors do not have a torsional bar, so they can easily generate linear motion. In this paper, electrothermal micromirrors based on [...] Read more.
Electrothermal micromirrors have become an important type of micromirrors due to their large angular scanning range and large linear motion. Typically, electrothermal micromirrors do not have a torsional bar, so they can easily generate linear motion. In this paper, electrothermal micromirrors based on different thermal actuators are reviewed, and also the mechanisms of those actuators are analyzed, including U-shape, chevron, thermo-pneumatic, thermo-capillary and thermal bimorph-based actuation. Special attention is given to bimorph based-electrothermal micromirrors due to their versatility in tip-tilt-piston motion. The exemplified applications of each type of electrothermal micromirrors are also presented. Moreover, electrothermal micromirrors integrated with electromagnetic or electrostatic actuators are introduced. Full article
(This article belongs to the Special Issue Optical MEMS, Volume III)
Show Figures

Figure 1

18 pages, 12976 KB  
Article
Design, Simulation, Fabrication, and Characterization of an Electrothermal Tip-Tilt-Piston Large Angle Micromirror for High Fill Factor Segmented Optical Arrays
by David Torres, LaVern Starman, Harris Hall, Juan Pastrana and Sarah Dooley
Micromachines 2021, 12(4), 419; https://doi.org/10.3390/mi12040419 - 12 Apr 2021
Cited by 10 | Viewed by 4047
Abstract
Micro-electromechanical system (MEMS) micromirrors have been in development for many years, but the ability to steer beams to angles larger than 20° remains a challenging endeavor. This paper details a MEMS micromirror device capable of achieving large motion for both tip/tilt angles and [...] Read more.
Micro-electromechanical system (MEMS) micromirrors have been in development for many years, but the ability to steer beams to angles larger than 20° remains a challenging endeavor. This paper details a MEMS micromirror device capable of achieving large motion for both tip/tilt angles and piston motion. The device consists of an electrothermal actuation assembly fabricated from a carefully patterned multilayer thin-film stack (SiO2/Al/SiO2) that is epoxy bonded to a 1 mm2 Au coated micromirror fabricated from an SOI wafer. The actuation assembly consists of four identical actuators, each comprised of a series of beams that use the inherent residual stresses and coefficient of thermal expansion (CTE) mismatches of the selected thin films to enable the large, upward, out-of-plane deflections necessary for large-angle beamsteering. Finite element simulations were performed (COMSOL v5.5) to capture initial elevations and tip/tilt motion displacements and achieved <10% variance in comparison to the experiment. The measured performance metrics of the micromirror include tip/tilt angles of ±23°, piston motion of 127 µm at sub-resonance, and dynamics characterization with observed resonant frequencies at ~145 Hz and ~226 Hz, for tip/tilt and piston motion, respectively. This unique single element design can readily be scaled into a full segmented micromirror array exhibiting an optical fill-factor >85%, making it suitable for optical phased array beam control applications. Full article
(This article belongs to the Special Issue Beam Steering via Arrayed Micromachines)
Show Figures

Figure 1

25 pages, 9393 KB  
Review
MEMS Scanning Mirrors for Optical Coherence Tomography
by Christophe Gorecki and Sylwester Bargiel
Photonics 2021, 8(1), 6; https://doi.org/10.3390/photonics8010006 - 30 Dec 2020
Cited by 34 | Viewed by 10822
Abstract
This contribution presents an overview of advances in scanning micromirrors based on MEMS (Micro-electro-mechanical systems) technologies to achieve beam scanning for OCT (Optical Coherence Tomography). The use of MEMS scanners for miniaturized OCT probes requires appropriate optical architectures. Their design involves a suitable [...] Read more.
This contribution presents an overview of advances in scanning micromirrors based on MEMS (Micro-electro-mechanical systems) technologies to achieve beam scanning for OCT (Optical Coherence Tomography). The use of MEMS scanners for miniaturized OCT probes requires appropriate optical architectures. Their design involves a suitable actuation mechanism and an adapted imaging scheme in terms of achievable scan range, scan speed, low power consumption, and acceptable size of the OCT probe. The electrostatic, electromagnetic, and electrothermal actuation techniques are discussed here as well as the requirements that drive the design and fabrication of functional OCT probes. Each actuation mechanism is illustrated by examples of miniature OCT probes demonstrating the effectiveness of in vivo bioimaging. Finally, the design issues are discussed to permit users to select an OCT scanner that is adapted to their specific imaging needs. Full article
(This article belongs to the Special Issue Photonic Microsystems)
Show Figures

Figure 1

12 pages, 19368 KB  
Article
Integrated Optoelectronic Position Sensor for Scanning Micromirrors
by Xiang Cheng, Xinglin Sun, Yan Liu, Lijun Zhu, Xiaoyang Zhang, Liang Zhou and Huikai Xie
Sensors 2018, 18(4), 982; https://doi.org/10.3390/s18040982 - 26 Mar 2018
Cited by 16 | Viewed by 5801
Abstract
Scanning micromirrors have been used in a wide range of areas, but many of them do not have position sensing built in, which significantly limits their application space. This paper reports an integrated optoelectronic position sensor (iOE-PS) that can measure the linear displacement [...] Read more.
Scanning micromirrors have been used in a wide range of areas, but many of them do not have position sensing built in, which significantly limits their application space. This paper reports an integrated optoelectronic position sensor (iOE-PS) that can measure the linear displacement and tilting angle of electrothermal MEMS (Micro-electromechanical Systems) scanning mirrors. The iOE-PS integrates a laser diode and its driving circuits, a quadrant photo-detector (QPD) and its readout circuits, and a band-gap reference all on a single chip, and it has been fabricated in a standard 0.5 μm CMOS (Complementary Metal Oxide Semiconductor) process. The footprint of the iOE-PS chip is 5 mm × 5 mm. Each quadrant of the QPD has a photosensitive area of 500 µm × 500 µm and the spacing between adjacent quadrants is 500 μm. The iOE-PS chip is simply packaged underneath of an electrothermally-actuated MEMS mirror. Experimental results show that the iOE-PS has a linear response when the MEMS mirror plate moves vertically between 2.0 mm and 3.0 mm over the iOE-PS chip or scans from −5 to +5°. Such MEMS scanning mirrors integrated with the iOE-PS can greatly reduce the complexity and cost of the MEMS mirrors-enabled modules and systems. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

22 pages, 13672 KB  
Article
H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems
by Huipeng Chen, Mengyuan Li, Yi Zhang, Huikai Xie, Chang Chen, Zhangming Peng and Shaohui Su
Sensors 2018, 18(2), 508; https://doi.org/10.3390/s18020508 - 8 Feb 2018
Cited by 22 | Viewed by 7027
Abstract
Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan [...] Read more.
Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm−1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions. Full article
(This article belongs to the Special Issue Smart Sensors for Mechatronic and Robotic Systems)
Show Figures

Figure 1

11 pages, 9305 KB  
Article
Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography
by Quentin A. A. Tanguy, Sylwester Bargiel, Huikai Xie, Nicolas Passilly, Magali Barthès, Olivier Gaiffe, Jaroslaw Rutkowski, Philippe Lutz and Christophe Gorecki
Micromachines 2017, 8(5), 146; https://doi.org/10.3390/mi8050146 - 5 May 2017
Cited by 26 | Viewed by 9374
Abstract
This paper introduces an optical 2-axis Micro Electro-Mechanical System (MEMS) micromirror actuated by a pair of electrothermal actuators and a set of passive torsion bars. The actuated element is a dual-reflective circular mirror plate of 1 m m in diameter. This inner mirror [...] Read more.
This paper introduces an optical 2-axis Micro Electro-Mechanical System (MEMS) micromirror actuated by a pair of electrothermal actuators and a set of passive torsion bars. The actuated element is a dual-reflective circular mirror plate of 1 m m in diameter. This inner mirror plate is connected to a rigid frame via a pair of torsion bars in two diametrically opposite ends located on the rotation axis. A pair of electrothermal bimorphs generates a force onto the perpendicular free ends of the mirror plate in the same angular direction. An array of electrothermal bimorph cantilevers deflects the rigid frame around a working angle of 45 for side-view scan. The performed scans reach large mechanical angles of 32 for the frame and 22 for the in-frame mirror. We denote three resonant main modes, pure flexion of the frame at 205 Hz , a pure torsion of the mirror plate at 1.286 kHz and coupled mode of combined flexion and torsion at 1.588 kHz . The micro device was fabricated through successive stacks of materials onto a silicon-on-insulator wafer and the patterned deposition on the back-side of the dual-reflective mirror is achieved through a dry film photoresist photolithography process. Full article
(This article belongs to the Special Issue MEMS Mirrors)
Show Figures

Figure 1

19 pages, 8221 KB  
Article
Multi-Response Optimization of Electrothermal Micromirror Using Desirability Function-Based Response Surface Methodology
by Muhammad Mubasher Saleem, Umar Farooq, Umer Izhar and Umar Shahbaz Khan
Micromachines 2017, 8(4), 107; https://doi.org/10.3390/mi8040107 - 1 Apr 2017
Cited by 8 | Viewed by 7416
Abstract
The design of a micromirror for biomedical applications requires multiple output responses to be optimized, given a set of performance parameters and constraints. This paper presents the parametric design optimization of an electrothermally actuated micromirror for the deflection angle, input power, and micromirror [...] Read more.
The design of a micromirror for biomedical applications requires multiple output responses to be optimized, given a set of performance parameters and constraints. This paper presents the parametric design optimization of an electrothermally actuated micromirror for the deflection angle, input power, and micromirror temperature rise from the ambient for Optical Coherence Tomography (OCT) system. Initially, a screening design matrix based on the Design of Experiments (DOE) technique is developed and the corresponding output responses are obtained using coupled structural-thermal-electric Finite Element Modeling (FEM). The interaction between the significant design factors is analyzed by developing Response Surface Models (RSM) for the output responses. The output responses are optimized by combining the individual responses into a composite function using desirability function approach. A downhill simplex method, based on the heuristic search algorithm, is implemented on the RSM models to find the optimal levels of the design factors. The predicted values of output responses obtained using multi-response optimization are verified by the FEM simulations. Full article
(This article belongs to the Special Issue MEMS Mirrors)
Show Figures

Figure 1

13 pages, 4982 KB  
Article
A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range
by Wei Wang, Jiapin Chen, Aleksandar. S. Zivkovic and Huikai Xie
Sensors 2016, 16(10), 1611; https://doi.org/10.3390/s16101611 - 29 Sep 2016
Cited by 22 | Viewed by 9961
Abstract
A Fourier transform spectrometer (FTS) that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS) micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, [...] Read more.
A Fourier transform spectrometer (FTS) that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS) micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF) bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD) for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work. Full article
(This article belongs to the Collection Modeling, Testing and Reliability Issues in MEMS Engineering)
Show Figures

Figure 1

29 pages, 6632 KB  
Review
Scanning Micromirror Platform Based on MEMS Technology for Medical Application
by Eakkachai Pengwang, Kanty Rabenorosoa, Micky Rakotondrabe and Nicolas Andreff
Micromachines 2016, 7(2), 24; https://doi.org/10.3390/mi7020024 - 6 Feb 2016
Cited by 82 | Viewed by 14326
Abstract
This topical review discusses recent development and trends on scanning micromirrors for biomedical applications. This also includes a biomedical micro robot for precise manipulations in a limited volume. The characteristics of medical scanning micromirror are explained in general with the fundamental of microelectromechanical [...] Read more.
This topical review discusses recent development and trends on scanning micromirrors for biomedical applications. This also includes a biomedical micro robot for precise manipulations in a limited volume. The characteristics of medical scanning micromirror are explained in general with the fundamental of microelectromechanical systems (MEMS) for fabrication processes. Along with the explanations of mechanism and design, the principle of actuation are provided for general readers. In this review, several testing methodology and examples are described based on many types of actuators, such as, electrothermal actuators, electrostatic actuators, electromagnetic actuators, pneumatic actuators, and shape memory alloy. Moreover, this review provides description of the key fabrication processes and common materials in order to be a basic guideline for selecting micro-actuators. With recent developments on scanning micromirrors, performances of biomedical application are enhanced for higher resolution, high accuracy, and high dexterity. With further developments on integrations and control schemes, MEMS-based scanning micromirrors would be able to achieve a better performance for medical applications due to small size, ease in microfabrication, mass production, high scanning speed, low power consumption, mechanical stable, and integration compatibility. Full article
(This article belongs to the Special Issue Micro/Nano Robotics)
Show Figures

Figure 1

12 pages, 3413 KB  
Article
Electrothermally-Actuated Micromirrors with Bimorph Actuators—Bending-Type and Torsion-Type
by Cheng-Hua Tsai, Chun-Wei Tsai, Hsu-Tang Chang, Shih-Hsiang Liu and Jui-Che Tsai
Sensors 2015, 15(6), 14745-14756; https://doi.org/10.3390/s150614745 - 22 Jun 2015
Cited by 17 | Viewed by 7045
Abstract
Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved [...] Read more.
Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop