Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = galvanometer scanner

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7934 KB  
Article
Research on a New Method of Macro–Micro Platform Linkage Processing for Large-Format Laser Precision Machining
by Longjie Xiong, Haifeng Ma, Zheng Sun, Xintian Wang, Yukui Cai, Qinghua Song and Zhanqiang Liu
Micromachines 2025, 16(2), 177; https://doi.org/10.3390/mi16020177 - 31 Jan 2025
Viewed by 1036
Abstract
In recent years, the macro–micro structure (servo platform for macro motion and galvanometer for micro motion) composed of a galvanometer and servo platform has been gradually applied to laser processing in order to address the increasing demand for high-speed, high-precision, and large-format precision [...] Read more.
In recent years, the macro–micro structure (servo platform for macro motion and galvanometer for micro motion) composed of a galvanometer and servo platform has been gradually applied to laser processing in order to address the increasing demand for high-speed, high-precision, and large-format precision machining. The research in this field has evolved from step-and-scan methods to linkage processing methods. Nevertheless, the existing linkage processing methods cannot make full use of the field-of-view (FOV) of the galvanometer. In terms of motion distribution, the existing methods are not suitable for continuous micro segments and generate the problem that the distribution parameter can only be obtained through experience or multiple experiments. In this research, a new laser linkage processing method for global trajectory smoothing of densely discretized paths is proposed. The proposed method can generate a smooth trajectory of the servo platform with bounded acceleration by the finite impulse response (FIR) filter under the global blending error constrained by the galvanometer FOV. Moreover, the trajectory of the galvanometer is generated by vector subtraction, and the motion distribution of macro–micro structure is accurately realized. Experimental verification is carried out on an experimental platform composed of a three-axis servo platform, a galvanometer, and a laser. Simulation experiment results indicate that the processing efficiency of the proposed method is improved by 79% compared with the servo platform processing only and 55% compared with the previous linkage processing method. Furthermore, the method can be successfully utilized on experimental platforms with good tracking performance. In summary, the proposed method adeptly balances efficiency and quality, rendering it particularly suitable for laser precision machining applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

23 pages, 4048 KB  
Article
Universal and Automated Approaches for Optimising the Processing Order of Geometries in a CAM Tool for Redundant Galvanometer Scanner-Based Systems
by Daniel Kurth, Colin Reiff, Yujiao Jiang and Alexander Verl
Automation 2025, 6(1), 1; https://doi.org/10.3390/automation6010001 - 25 Dec 2024
Viewed by 1322
Abstract
The combination of highly dynamic systems with a limited work envelope with a less dynamic system with a larger working envelope promises to combine the advantages of both systems while eliminating the disadvantages. For these systems, separation algorithms determine the trajectories based on [...] Read more.
The combination of highly dynamic systems with a limited work envelope with a less dynamic system with a larger working envelope promises to combine the advantages of both systems while eliminating the disadvantages. For these systems, separation algorithms determine the trajectories based on the target geometries. However, arbitrary processing orders of these result in inefficient trajectories because successive geometries may be geometrically far apart. This causes the dynamic system to operate below its potential. Current planning tools do not optimise the processing order for such redundant systems. The aim is to design and implement a planning tool for the application of laser marking. The tool considers the processing order of the 2D geometries from a geometric point of view. The resulting sequenced path data can then be used by trajectory generation algorithms to make full use of the potential of redundant systems. The approach analyses literature on Travelling Salesman Problems (TSP), which is then transferred to the given application. A heuristic and a genetic algorithm are developed and integrated into a planning tool. The results show the heuristic algorithm being faster while still producing solutions whose total path length is similar to that of the genetic algorithm. Even though the solutions don’t meet any optimality standards, the presented automated approaches are superior to manual approaches and are to be seen as a starting point for further research. Full article
Show Figures

Figure 1

33 pages, 22149 KB  
Review
MEMS Micromirror Actuation Techniques: A Comprehensive Review of Trends, Innovations, and Future Prospects
by Mansoor Ahmad, Mohamed Bahri and Mohamad Sawan
Micromachines 2024, 15(10), 1233; https://doi.org/10.3390/mi15101233 - 30 Sep 2024
Cited by 17 | Viewed by 5492
Abstract
Micromirrors have recently emerged as an essential component in optical scanning technology, attracting considerable attention from researchers. Their compact size and versatile capabilities, such as light steering, modulation, and switching, are leading them as potential alternatives to traditional bulky galvanometer scanners. The actuation [...] Read more.
Micromirrors have recently emerged as an essential component in optical scanning technology, attracting considerable attention from researchers. Their compact size and versatile capabilities, such as light steering, modulation, and switching, are leading them as potential alternatives to traditional bulky galvanometer scanners. The actuation of these mirrors is critical in determining their performance, as it contributes to factors such as response time, scanning angle, and power consumption. This article aims to provide a thorough exploration of the actuation techniques used to drive micromirrors, describing the fundamental operating principles. The four primary actuation modalities—electrostatic, electrothermal, electromagnetic, and piezoelectric—are thoroughly investigated. Each type of actuator’s operational principles, key advantages, and their limitations are discussed. Additionally, the discussion extends to hybrid micromirror designs that combine two types of actuation in a single device. A total of 208 closely related papers indexed in Web of Science were reviewed. The findings indicate ongoing advancements in the field, particularly in terms of size, controllability, and field of view, making micromirrors ideal candidates for applications in medical imaging, display projections, and optical communication. With a comprehensive overview of micromirror actuation strategies, this manuscript serves as a compelling resource for researchers and engineers aiming to utilize the appropriate type of micromirror in the field of optical scanning technology. Full article
Show Figures

Figure 1

20 pages, 4387 KB  
Article
Efficient Assessment of Tumor Vascular Shutdown by Photodynamic Therapy on Orthotopic Pancreatic Cancer Using High-Speed Wide-Field Waterproof Galvanometer Scanner Photoacoustic Microscopy
by Jaeyul Lee, Sangyeob Han, Til Bahadur Thapa Magar, Pallavi Gurung, Junsoo Lee, Daewoon Seong, Sungjo Park, Yong-Wan Kim, Mansik Jeon and Jeehyun Kim
Int. J. Mol. Sci. 2024, 25(6), 3457; https://doi.org/10.3390/ijms25063457 - 19 Mar 2024
Cited by 5 | Viewed by 2570
Abstract
To identify the vascular alteration by photodynamic therapy (PDT), the utilization of high-resolution, high-speed, and wide-field photoacoustic microscopy (PAM) has gained enormous interest. The rapid changes in vasculature during PDT treatment and monitoring of tumor tissue activation in the orthotopic pancreatic cancer model [...] Read more.
To identify the vascular alteration by photodynamic therapy (PDT), the utilization of high-resolution, high-speed, and wide-field photoacoustic microscopy (PAM) has gained enormous interest. The rapid changes in vasculature during PDT treatment and monitoring of tumor tissue activation in the orthotopic pancreatic cancer model have received limited attention in previous studies. Here, a fully two-axes waterproof galvanometer scanner-based photoacoustic microscopy (WGS-PAM) system was developed for in vivo monitoring of dynamic variations in micro blood vessels due to PDT in an orthotopic pancreatic cancer mouse model. The photosensitizer (PS), Chlorin e6 (Ce6), was utilized to activate antitumor reactions in response to the irradiation of a 660 nm light source. Microvasculatures of angiogenesis tissue were visualized on a 40 mm2 area using the WGS-PAM system at 30 min intervals for 3 h after the PDT treatment. The decline in vascular intensity was observed at 24.5% along with a 32.4% reduction of the vascular density at 3 h post-PDT by the analysis of PAM images. The anti-vascularization effect was also identified with fluorescent imaging. Moreover, Ce6-PDT increased apoptotic and necrotic markers while decreasing vascular endothelial growth factor (VEGF) expression in MIA PaCa-2 and BxPC-3 pancreatic cancer cell lines. The approach of the WGS-PAM system shows the potential to investigate PDT effects on the mechanism of angiographic dynamics with high-resolution wide-field imaging modalities. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

9 pages, 3910 KB  
Communication
A Miniaturized Electrothermal-MEMS-Based Optical Coherence Tomography (OCT) Handheld Microscope
by Qian Chen, Hui Zhao, Tingxiang Qi, Hua Wang and Huikai Xie
Photonics 2024, 11(1), 17; https://doi.org/10.3390/photonics11010017 - 26 Dec 2023
Cited by 2 | Viewed by 2440
Abstract
Swept-source optical coherence tomography (SS-OCT), benefiting from its high sensitivity, relatively large penetration depth, and non-contact and non-invasive imaging capability, is ideal for human skin imaging. However, limited by the size and performance of the reported optical galvanometer scanners, existing portable/handheld OCT probes [...] Read more.
Swept-source optical coherence tomography (SS-OCT), benefiting from its high sensitivity, relatively large penetration depth, and non-contact and non-invasive imaging capability, is ideal for human skin imaging. However, limited by the size and performance of the reported optical galvanometer scanners, existing portable/handheld OCT probes are still bulky, which makes continuously handheld imaging difficult. Here, we reported a miniaturized electrothermal-MEMS-based SS-OCT microscope that only weighs about 25 g and has a cylinder with a diameter of 15 mm and a length of 40 mm. This MEMS-based handheld imaging probe can achieve a lateral resolution of 25 μm, a 3D imaging time of 5 s, a penetration depth of up to 3.3 mm, and an effective imaging field of view (FOV) of 3 × 3 mm2. We have carried out both calibration plate and biological tissue imaging experiments to test the imaging performance of this microscope. OCT imaging of leaves, dragonfly, and human skin has been successfully obtained, showing the imaging performance and potential applications of this probe on human skin in the future. Full article
(This article belongs to the Special Issue Technologies and Applications of Biophotonics)
Show Figures

Figure 1

19 pages, 16539 KB  
Article
On the Use of Metal Sinter Powder in Laser Powder Bed Fusion Processing (PBF-LB/M)
by Jan-Simeon Ludger Bernsmann, Simon Hillebrandt, Max Rommerskirchen, Sebastian Bold and Johannes Henrich Schleifenbaum
Materials 2023, 16(16), 5697; https://doi.org/10.3390/ma16165697 - 19 Aug 2023
Cited by 2 | Viewed by 2009
Abstract
Metal Laser Powder Bed Fusion (PBF-LB/M Powder Bed Fusion, Laser-Based/Metal) offers decisive advantages over conventional manufacturing processes. Complex geometries can be produced that cannot, or only to a limited extent, be manufactured with conventional manufacturing processes. One of the main disadvantages of the [...] Read more.
Metal Laser Powder Bed Fusion (PBF-LB/M Powder Bed Fusion, Laser-Based/Metal) offers decisive advantages over conventional manufacturing processes. Complex geometries can be produced that cannot, or only to a limited extent, be manufactured with conventional manufacturing processes. One of the main disadvantages of the process are high investment and operating costs. In order to make the PBF-LB/M process accessible to new research areas, the costs need to be reduced. Therefore, this work investigates whether laser beam sources and motion systems in currently established PBF-LB/M systems can be replaced by more cost-effective components. To reduce the operating costs for PBF-LB/M, the studies are carried out based on previous work with water-atomized, process-foreign sinter powder instead of gas-atomized, spherical PBF-LB/M powders. A cost-efficient, low-alloyed powder is selected (Höganäs HP1) and processed on two different PBF-LB/M machines with a restricted process window using process parameter values that current low-cost machines can achieve. The results show that a multimode fiber laser leads to a more stable process and wider melt pools compared to a single mode fiber laser. In addition, a lower sensitivity of the process with respect to modified process parameters is observed for the multimode laser, resulting in a wider range of stable process windows. A Cartesian motion system (gantry) is suitable for use in PBF-LB/M despite lower scan speeds compared to galvanometer scanners. Beam guidance in the XY-plane offers new possibilities for machine and process design that are not possible with usual scanner systems. Full article
Show Figures

Figure 1

20 pages, 12568 KB  
Article
A Virtual Multi-Ocular 3D Reconstruction System Using a Galvanometer Scanner and a Camera
by Zidong Han and Liyan Zhang
Sensors 2023, 23(7), 3499; https://doi.org/10.3390/s23073499 - 27 Mar 2023
Cited by 8 | Viewed by 3621
Abstract
A novel visual 3D reconstruction system, composed of a two-axis galvanometer scanner, a camera with a lens, and a set of control units, is introduced in this paper. By changing the mirror angles of the galvanometer scanner fixed in front of the camera, [...] Read more.
A novel visual 3D reconstruction system, composed of a two-axis galvanometer scanner, a camera with a lens, and a set of control units, is introduced in this paper. By changing the mirror angles of the galvanometer scanner fixed in front of the camera, the boresight of the camera can be quickly adjusted. With the variable boresight, the camera can serve as a virtual multi-ocular system (VMOS), which captures the object at different perspectives. The working mechanism with a definite physical meaning is presented. A simple and efficient method for calibrating the intrinsic and extrinsic parameters of the VMOS is presented. The applicability of the proposed system for 3D reconstruction is investigated. Owing to the multiple virtual poses of the camera, the VMOS can provide stronger constraints in the object pose estimation than an ordinary perspective camera does. The experimental results demonstrate that the proposed VMOS is able to achieve 3D reconstruction performance competitive with that of a conventional stereovision system with a much more concise hardware configuration. Full article
(This article belongs to the Special Issue Sensing and Processing for 3D Computer Vision: 2nd Edition)
Show Figures

Figure 1

18 pages, 5327 KB  
Article
Enhancement of a Single-Axis Femtosecond Laser Scanning System by Using Two Galvanometers to Improve the Telecentricity and the Effective Scanning Length on Laser Process
by Xuan-Huy Nguyen, Chao-Ming Chen, Hien-Thanh Le and Hsiao-Yi Lee
Appl. Sci. 2022, 12(23), 12434; https://doi.org/10.3390/app122312434 - 5 Dec 2022
Cited by 4 | Viewed by 4606
Abstract
The galvanometer scanning system plays a crucial role in modern laser material processing. With the development of this industry, the requirements for galvanometer scanners are getting higher and higher, especially to overcome the inherent disadvantages that still exist, such as image distortion, marking [...] Read more.
The galvanometer scanning system plays a crucial role in modern laser material processing. With the development of this industry, the requirements for galvanometer scanners are getting higher and higher, especially to overcome the inherent disadvantages that still exist, such as image distortion, marking speed and accuracy in state-of-the-art scanning systems. In this paper, a single-axis optical scanner using two galvanometers in combination with one f-theta telecentric lens and a 343 nm femtosecond pulse laser source is proposed as a new approach for enhancing the precision of laser micromachining technology. The additional second galvanometer is used to manipulate the output laser beam of the first galvanometer to the path with less lens aberration to enhance the telecentricity correction and the effective scanning area. This is based on the international standard regulation ISO (the International Organization for Standardization) 11145:2018 requirements in optics and photonics, in which an important criterion is for the roundness of the focused beam spot to be greater than 87% to determine the effective working length of the proposed scanning system compared to the conventional scanning system. It is demonstrated by optical simulations and real optical experiments that the effective working length can be increased by 3.6 mm, corresponding to 8.1% of the effective scanning field, to achieve a laser material processing system with ISO standard. The damped least squares (DLS) algorithm in optical design software ZEMAX is used to optimize the deflected angle of the two galvanometers to obtain the optimal incident position of the f-theta lens. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

16 pages, 14795 KB  
Article
Fabrication of a Conductive Pattern on a Photo-Polymerized Structure Using Direct Laser Sintering
by Jung-Hoe Jo and Min-Soo Park
Appl. Sci. 2022, 12(21), 11003; https://doi.org/10.3390/app122111003 - 30 Oct 2022
Cited by 4 | Viewed by 2136
Abstract
Three-dimensional (3D)-printed electronic technology is considered to have great potential as it can be utilized to make electronic products with complex 3D shapes. In this study, based on a 3D printer with single UV laser equipment, we continuously performed photo-polymerization (PP) and selective [...] Read more.
Three-dimensional (3D)-printed electronic technology is considered to have great potential as it can be utilized to make electronic products with complex 3D shapes. In this study, based on a 3D printer with single UV laser equipment, we continuously performed photo-polymerization (PP) and selective metal powder sintering to fabricate a conductive pattern. For this, 3D structures were printed at a low energy using a 355 nm DPSS laser with a galvanometer scanner, which are widely used in PP-type 3D printing, and then the selective sintering of metal powders was performed with a high energy. In order to obtain a high-conductivity pattern by laser sintering, a circuit pattern that could actually be operated was fabricated by experimenting with various condition changes from mixing the metal composite resin to the laser process. As a result, it was found that the optimal result was to irradiate a 0.8 W UV laser with a beam spot size of 50 µm to 50 vol% aluminum composite resin. At this time, an optimal conductive pattern with a resistance of 0.33 Ω∙cm−1 was obtained by setting the pulse repetition rate, scan path interval, and scanning speed to 90 kHz, 10 μm, and 50 mm/s, respectively. This suggested process may be of great help in the manufacturing of practical 3D sensors or functional products in the future. Full article
Show Figures

Figure 1

12 pages, 5301 KB  
Article
Origami Inspired Laser Scanner
by Yu-Shin Wu and Shao-Kang Hung
Micromachines 2022, 13(10), 1796; https://doi.org/10.3390/mi13101796 - 21 Oct 2022
Viewed by 2761
Abstract
Diverse origami techniques and various selections of paper open new possibilities to create micromachines. By folding paper, this article proposes an original approach to build laser scanners, which manipulate optical beams precisely and realize valuable applications, including laser marking, cutting, engraving, and displaying. [...] Read more.
Diverse origami techniques and various selections of paper open new possibilities to create micromachines. By folding paper, this article proposes an original approach to build laser scanners, which manipulate optical beams precisely and realize valuable applications, including laser marking, cutting, engraving, and displaying. A prototype has been designed, implemented, actuated, and controlled. The experimental results demonstrate that the angular stroke, repeatability, full scale settling time, and resonant frequency are 20°, 0.849 m°, 330 ms, 68 Hz, respectively. Its durability, more than 35 million cycles, shows the potential to carry out serious tasks. Full article
(This article belongs to the Special Issue Origami Devices: Design and Application)
Show Figures

Figure 1

11 pages, 3528 KB  
Communication
Process Monitoring Using Synchronized Path Infrared Thermography in PBF-LB/M
by Dennis Höfflin, Christian Sauer, Andreas Schiffler and Jürgen Hartmann
Sensors 2022, 22(16), 5943; https://doi.org/10.3390/s22165943 - 9 Aug 2022
Cited by 7 | Viewed by 3003
Abstract
Additive manufacturing processes, particularly Laser-Based Powder Bed Fusion of Metals (PBF-LB/M), enable the development of new application possibilities due to their manufacturing-specific freedom of design. These new fields of application require a high degree of component quality, especially in safety-relevant areas. This is [...] Read more.
Additive manufacturing processes, particularly Laser-Based Powder Bed Fusion of Metals (PBF-LB/M), enable the development of new application possibilities due to their manufacturing-specific freedom of design. These new fields of application require a high degree of component quality, especially in safety-relevant areas. This is currently ensured primarily via a considerable amount of downstream quality control. Suitable process monitoring systems promise to reduce this effort drastically. This paper introduces a novel monitoring method in order to gain process-specific thermal information during the manufacturing process. The Synchronized Path Infrared Thermography (SPIT) method is based on two synchronized galvanometer scanners allowing high-speed and high-resolution observations of the melt pool in the SWIR range. One scanner is used to steer the laser over the building platform, while the second scanner guides the field of view of an IR camera. With this setup, the melting process is observed at different laser powers, scan speeds and at different locations with respect to the laser position, in order to demonstrate the positioning accuracy of the system and to initially gain thermal process data of the melt pool and the heat-affected zone. Therefore, the SPIT system shows a speed independent overall accuracy of ±2 Pixel within the evaluated range. The system further allows detailed thermal observation of the melt pool and the surrounding heat-affected zone. Full article
(This article belongs to the Special Issue Opto-Thermal Sensor Technologies)
Show Figures

Figure 1

15 pages, 4460 KB  
Article
Development of a Laser Scanning Machining System Supporting On-the-Fly Machining and Laser Power Follow-Up Adjustment
by Yisheng Yin, Chengrui Zhang, Tieshuang Zhu, Liangcheng Qu and Geng Chen
Materials 2022, 15(16), 5479; https://doi.org/10.3390/ma15165479 - 9 Aug 2022
Cited by 12 | Viewed by 3076
Abstract
In this study, a laser scanning machining system supporting on-the-fly machining and laser power follow-up adjustment was developed to address the increasing demands for high-speed, wide-area, and high-quality laser scanning machining. The developed laser scanning machining system is based on the two-master and [...] Read more.
In this study, a laser scanning machining system supporting on-the-fly machining and laser power follow-up adjustment was developed to address the increasing demands for high-speed, wide-area, and high-quality laser scanning machining. The developed laser scanning machining system is based on the two-master and multi-slave architecture with synchronization mechanism, and realizes the integrated and synchronous collaborative control of the motion stage or robot, the galvanometer scanner, and the laser over standard industrial ethernet networks. The galvanometer scanner can be connected to the industrial ethernet topology as a node, via the self-developed galvanometer scanner control gateway module, and a “one-transmission and multiple-conversion” approach is proposed to ensure real-time ability and synchronization. The proposal of a laser power follow-up adjustment approach could realize real-time synchronous modulation of the laser power, along with the motion of the galvanometer scanner, which is conducive to ensuring the machining quality. In addition, machining software was developed to realize timesaving and high-quality laser scanning machining. The feasibility and practicability of this laser scanning machining system were verified using specific cases. Results showed that the proposed system overcame the limitation of working field size and isolation between the galvanometer scanner controller with the stage motion controller, and achieved high-speed and efficient laser scanning machining for both large-area consecutively and discontinuously arrayed patterns. Moreover, the integration of laser power follow-up adjustment into the system was conducive to ensuring welding quality and inhibiting welding defects. The proposed system paves the way for high-speed, wide-area, and high-quality laser scanning machining and provides technical convenience and cost advantages for customized laser-processing applications, exhibiting great research value and application potential in the field of material processing engineering. Full article
(This article belongs to the Topic Modern Technologies and Manufacturing Systems, 2nd Volume)
Show Figures

Figure 1

13 pages, 9923 KB  
Article
Low-Cost 3D-Printed Electromagnetically Driven Large-Area 1-DOF Optical Scanners
by Ching-Kai Shen, Yu-Nung Huang, Guan-Yang Liu, Wei-An Tsui, Yi-Wen Cheng, Pin-Hung Yeh and Jui-che Tsai
Photonics 2022, 9(7), 484; https://doi.org/10.3390/photonics9070484 - 11 Jul 2022
Cited by 12 | Viewed by 2680
Abstract
In this paper, we demonstrate 3D-printed 1-DOF (one torsional axis; 1 degree of freedom) optical scanners with large mirror areas (up to 20 × 20 mm2). Each device consists of an aluminum-coated square silicon substrate serving as the mirror, two miniature [...] Read more.
In this paper, we demonstrate 3D-printed 1-DOF (one torsional axis; 1 degree of freedom) optical scanners with large mirror areas (up to 20 × 20 mm2). Each device consists of an aluminum-coated square silicon substrate serving as the mirror, two miniature permanent magnets, an electromagnet, and a 3D-printed structure including the mirror frame, torsion springs, and base. One device can reach a static half optical scan angle of 14.8 deg., i.e., a full optical scan angle of 29.6 deg., at 12 VDC; this particular device exhibits a mechanical resonance frequency of 84 Hz. These scanners can be a potential, low-cost alternative to the expensive conventional galvanometer scanners. Full article
Show Figures

Figure 1

32 pages, 6419 KB  
Article
Optomechanical Analysis and Design of Polygon Mirror-Based Laser Scanners
by Virgil-Florin Duma and Maria-Alexandra Duma
Appl. Sci. 2022, 12(11), 5592; https://doi.org/10.3390/app12115592 - 31 May 2022
Cited by 22 | Viewed by 5585
Abstract
Polygon Mirror (PM)-based scanning heads are one of the fastest and most versatile optomechanical laser scanners. The aim of this work is to develop a multi-parameter opto-mechanical analysis of PMs, from which to extract rules-of-thumbs for the design of such systems. The characteristic [...] Read more.
Polygon Mirror (PM)-based scanning heads are one of the fastest and most versatile optomechanical laser scanners. The aim of this work is to develop a multi-parameter opto-mechanical analysis of PMs, from which to extract rules-of-thumbs for the design of such systems. The characteristic functions and parameters of PMs scanning heads are deduced and studied, considering their constructive and functional parameters. Optical aspects related to the kinematics of emergent laser beams (and of corresponding laser spots on a scanned plane or objective lens) are investigated. The PM analysis (which implies a larger number of parameters) is confronted with the corresponding, but less complex aspects of Galvanometer Scanners (GSs). The issue of the non-linearity of the scanning functions of both PMs and GSs (and, consequently, of their variable scanning velocities) is approached, as well as characteristic angles, the angular and linear Field-of-View (FOV), and the duty cycle. A device with two supplemental mirrors is proposed and designed to increase the distance between the GS or PM and the scanned plane or lens to linearize the scanning function (and thus to achieve an approximately constant scanning velocity). These optical aspects are completed with Finite Element Analyses (FEA) of fast rotational PMs, to assess their structural integrity issues. The study is concluded with an optomechanical design scheme of PM-based scanning heads, which unites optical and mechanical aspects—to allow for a more comprehensive approach of possible issues of such scanners. Such a scheme can be applied to other types of optomechanical scanners, with mirrors or refractive elements, as well. Full article
Show Figures

Figure 1

14 pages, 5900 KB  
Article
Multipoint Wave Measurement in Tuned Liquid Damper Using Laser Doppler Vibrometer and Stepwise Rotating Galvanometer Scanner
by Yoon-Soo Shin and Junhee Kim
Sensors 2021, 21(24), 8211; https://doi.org/10.3390/s21248211 - 8 Dec 2021
Cited by 2 | Viewed by 2744
Abstract
Liquid dampers, such as tuned liquid dampers (TLDs), are employed to improve serviceability by reducing wind-affected building vibrations. In order to maximize the vibration suppression efficiency of the liquid damper, the tuning frequency of the liquid damper should match the natural frequency of [...] Read more.
Liquid dampers, such as tuned liquid dampers (TLDs), are employed to improve serviceability by reducing wind-affected building vibrations. In order to maximize the vibration suppression efficiency of the liquid damper, the tuning frequency of the liquid damper should match the natural frequency of the building. Experimental evaluation of the tuning frequency of a liquid damper performed in a factory prior to installation in a building is a critical task to ensure correct performance, and for this, multipoint measurement of the TLD is required. In this study, a novel liquid level measurement system combining Laser Doppler Vibrometer (LDV) and a stepwise rotating galvanometer scanner was developed to observe liquid sloshing in TLD. The proposed system can measure the liquid level at multiple points simultaneously with a single laser point. In the experimental phase, the liquid damper’s natural frequency and mode shape are experimentally evaluated utilizing the developed system. The performance of the proposed system was verified by comparison with the video sensing system. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop