Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (836)

Search Parameters:
Keywords = medium of exchange

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5910 KiB  
Article
Applying Structure Exchange to Battery Charging to Enhance Light-Load Efficiency
by Kuo-Ing Hwu, Pei-Ching Tseng and Jenn-Jong Shieh
Energies 2025, 18(11), 2699; https://doi.org/10.3390/en18112699 - 23 May 2025
Viewed by 172
Abstract
A full-bridge DC–DC converter with structure exchange is proposed to simulate battery charging based on an electronic load. The full-bridge phase-shift converter (FBPSC) uses an external resonant inductor and phase-shift control on the primary side to realize zero voltage switching (ZVS) above medium [...] Read more.
A full-bridge DC–DC converter with structure exchange is proposed to simulate battery charging based on an electronic load. The full-bridge phase-shift converter (FBPSC) uses an external resonant inductor and phase-shift control on the primary side to realize zero voltage switching (ZVS) above medium load. However, the energy of the resonant inductor is not enough to carry away the energy of the parasitic capacitance on the switch at light load, leading to the inability of ZVS as well as the circulating current problem due to the long duration of the primary-side circulating current. Consequently, in order to conquer such problems mentioned above, the structure exchange, with only the control strategy changed from the phase-shift control to the two-transistor forward control, is presented to increase the light-load efficiency remarkably. Furthermore, the number of inductors is reduced by using the center-tap structure on the secondary side compared to the current-doubler structure. In addition, the synchronous rectifier on the secondary side is used to further improve the overall efficiency of the converter. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

9 pages, 584 KiB  
Communication
Green Synthesis of Trifluoromethanesulfonyl Fluoride as an Eco-Friendly Alternative to SF6 Gas Insulation and Analysis of Its Acute Inhalation Toxicity
by Shile Wang, Li Dong, Ruichao Peng and Hongding Tang
Molecules 2025, 30(10), 2241; https://doi.org/10.3390/molecules30102241 - 21 May 2025
Viewed by 44
Abstract
This study demonstrates an eco-friendly synthesis of trifluoromethanesulfonyl fluoride (TFSF) as a sustainable SF6 alternative. Optimized halogen exchange reactions using CF3SO2Cl/KF (3:1 ratio) with crown ether catalysis at low temperatures achieved 65% TFSF yield (97.9% purity). Scale-up trials [...] Read more.
This study demonstrates an eco-friendly synthesis of trifluoromethanesulfonyl fluoride (TFSF) as a sustainable SF6 alternative. Optimized halogen exchange reactions using CF3SO2Cl/KF (3:1 ratio) with crown ether catalysis at low temperatures achieved 65% TFSF yield (97.9% purity). Scale-up trials in pressurized reactors showed >50% conversion and >90% selectivity. Acute inhalation tests (OECD standards) on Sprague-Dawley rats revealed transient toxicity at 20,000 ppm (4 h exposure), with survival rates >66% and LC50 exceeding 22,600 ppm—significantly safer than SF6. These findings confirm TFSF’s technical viability and low toxicity, positioning it as a practical insulating medium to curb SF6 emissions. The methodology highlights precision halogen exchange control and systematic safety validation, offering actionable solutions for industrial adoption. Full article
(This article belongs to the Special Issue 5th Anniversary of Applied Chemistry Section)
Show Figures

Figure 1

27 pages, 8225 KiB  
Article
Dynamic Simulation of Solar-Assisted Medium-Depth Ground Heat Exchanger Direct Heating System
by Le Chang, Lingjun Kong, Yangyang Jing, Wenshuo Zhang, Sifang Fu, Xueming Lu, Haiqing Yao, Xiaona Xie and Ping Cui
Buildings 2025, 15(10), 1690; https://doi.org/10.3390/buildings15101690 - 16 May 2025
Viewed by 88
Abstract
The global challenges of rising energy consumption and carbon emissions underscore the urgent need for efficient and sustainable heating solutions in the building sector. The implementation of high-performance buildings that envelope insulation and the increasing adoption of low-temperature radiant heating systems have significantly [...] Read more.
The global challenges of rising energy consumption and carbon emissions underscore the urgent need for efficient and sustainable heating solutions in the building sector. The implementation of high-performance buildings that envelope insulation and the increasing adoption of low-temperature radiant heating systems have significantly reduced the water temperature required from heat sources, enabling greater compatibility with renewable energy systems. In this study, we propose a renewable energy heating system incorporating a solar-assisted medium-depth ground heat exchanger (MDGHE). A dynamic simulation model of the solar-assisted MDGHE system was developed in TRNSYS, featuring a novel MDGHE module specifically developed to improve simulation accuracy. A case study of a residential building in China was conducted to evaluate the performance of the proposed system. The simulation results demonstrate that while the standalone MDGHE covers 71.9% of the building’s heating demand, integrating solar collectors with the MDGHE can increase this coverage to 99.9%, enabling full compliance with heating requirements without relying on conventional heat pumps. The results revealed that the system’s COP reached 9.26. Compared with the traditional medium-depth ground source heat pump system with the COP of 4.84, the energy efficiency of this system has been enhanced by 47.7%. A static payback period of 7 years has been obtained compared with the cost of central heating service for residential buildings. These findings highlight the potential of solar-geothermal hybrid systems as a sustainable alternative to traditional heating methods. Full article
Show Figures

Figure 1

22 pages, 1340 KiB  
Article
Study of Heat Transfer of Filling Body with Composite Phase Change Material in Seasonal Storage of Solar Energy
by Xiaoyan Zhang, Xuan Wang, Qingjiang Liu, Jingyi Sun and Hang Yang
Sustainability 2025, 17(10), 4283; https://doi.org/10.3390/su17104283 - 8 May 2025
Viewed by 199
Abstract
Solar energy is a free and promising renewable energy source. However, due to its intermittent problems, a heat accumulation unit is usually required to balance the seasonal differences between solar energy supply and heat energy demand. The filling technology can be used to [...] Read more.
Solar energy is a free and promising renewable energy source. However, due to its intermittent problems, a heat accumulation unit is usually required to balance the seasonal differences between solar energy supply and heat energy demand. The filling technology can be used to form the heat energy accumulation unit and store or extract solar energy through a heat exchanger. An experiment and a simulation were carried out to study the heat accumulation and discharge process of a filling body with a heat accumulation unit in this study. The effects of the velocity of the heat transfer medium, the beginning temperature of the filling body, the heat accumulation and the discharge temperature, the heat accumulation and the discharge time ratio, and the additional proportion of CPCM on heat transfer performance were analyzed. The results show the following. The beginning temperature of the filling body has a greater impact on the heat accumulation capacity and a smaller impact on the heat discharge capacity. The heat accumulation capacity increases by 141% and the heat discharge capacity decreases by 10.6% when the beginning temperature decreases from 55 °C to 25 °C. The heat accumulation capacity increases with the rise of the heat accumulation temperature, and the heat discharge capacity has a large increase when the heat accumulation temperature is changed from 70 °C to 80 °C. The heat accumulation capacity of the first 200 min accounts for 83.3% of the heat accumulation capacity of the 400 min; in other words, the heat accumulation capacity can reach more than 80% at half of the heat accumulation time. The filling body with 20% additional CPCM stores 93.7% and discharges 55% more heat than the conventional filling body. The research results will provide guidance for the seasonal accumulation of solar energy using underground space and offer significant support for promoting sustainable energy solutions. Full article
21 pages, 11237 KiB  
Article
Investigation of Heat Transfer Enhancement Mechanisms in Elastic Tube Bundles Subjected to Exogenous Self-Excited Fluid Oscillation
by Jing Hu, Lei Guo and Shusheng Zhang
Fluids 2025, 10(5), 122; https://doi.org/10.3390/fluids10050122 - 8 May 2025
Viewed by 207
Abstract
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This [...] Read more.
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This study proposes a novel passive heat transfer enhancement paradigm for elastic tube bundles based on externally induced self-excited oscillations of fluid. By constructing a non-contact energy transfer system, the external oscillation energy is directed into the elastic tube bundle heat exchanger, achieving dynamic stress buffering and breaking through the steady-state flow heat transfer boundary layer. A three-dimensional fluid–structure interaction numerical model is established using Star CCM+2021.3 (16.06.008) to conduct a comparative analysis of the flow characteristics and heat transfer performance between the original structure without an oscillator and the improved structure equipped with a fluid oscillator. The results indicate that the improved structure, through the periodic unsteady jet induced by the fluid oscillator, significantly enhances the turbulence intensity of the shell-side fluid, with the turbulent kinetic energy increasing by over 50%. The radial flow area is notably expanded, thereby reducing the thermal resistance of the boundary layer. At cooling fluid velocities of 6 to 9 m/s, the heat transfer capability of the improved structure is enhanced by more than 50%. Compared with the original structure, the new structure, due to the loading of an external oscillation structure, causes the cold air to present a periodic up and down jet phenomenon. This jet phenomenon, on the one hand, increases the heat exchange area between the cold air and the outer surface of the tube bundle, thereby enhancing the heat exchange capacity. On the other hand, the large-area impact of the fluid reduces the thickness of the boundary layer, lowers the thermal resistance and thereby enhances the heat exchange capacity. Furthermore, this improved structure buffers the mechanical vibrations through self-excited oscillations of the fluid medium, ensuring that the stress levels in the tube bundle remain below the fatigue threshold, effectively mitigating the failure risks associated with traditional active vibration strategies. Full article
Show Figures

Figure 1

25 pages, 5432 KiB  
Article
Optimization of In-Situ Exosome Enrichment Methodology On-a-Chip to Mimic Tumor Microenvironment Induces Cancer Stemness in Glioblastoma Tumor Model
by Saleheh Saffar, Ali Ghiaseddin, Shiva Irani and Amir Ali Hamidieh
Cells 2025, 14(9), 676; https://doi.org/10.3390/cells14090676 - 6 May 2025
Viewed by 393
Abstract
Understanding cancer etiology requires replicating the tumor microenvironment (TME), which significantly differs from standard in vitro cultures due to nutrient limitations, acidic pH, and oxidative stress. To address this, a microfluidic bioreactor (µBR) with an expanded culture surface was designed to optimize exosome [...] Read more.
Understanding cancer etiology requires replicating the tumor microenvironment (TME), which significantly differs from standard in vitro cultures due to nutrient limitations, acidic pH, and oxidative stress. To address this, a microfluidic bioreactor (µBR) with an expanded culture surface was designed to optimize exosome enrichment and glioblastoma cell behavior. Using response surface methodology (RSM), key parameters—including medium exchange volume and interval time—were optimized, leading to about a six-fold increase in exosome concentration without artificial inducers. Characterization techniques (SEM, AFM, DLS, RT-qPCR, and ELISA) confirmed significant alterations in exosome profiles, cancer stemness, and epithelial-mesenchymal transition (EMT)-related markers. Notably, EMT was induced in the µBR system, with a six-fold increase in HIF-1α protein despite normoxic conditions, suggesting activation of compensatory signaling pathways. Molecular analysis showed upregulation of SOX2, OCT4, and Notch1, with SOX2 protein reaching 28 ng/mL, while it was undetectable in traditional culture. Notch1 concentration tripled in the µBR system, correlating with enhanced stemness and phenotypic heterogeneity. Immunofluorescent microscopy confirmed nuclear SOX2 accumulation and co-expression of SOX2 and HIF-1α in dedifferentiated CSC-like cells, demonstrating tumor heterogeneity. These findings highlight the µBR’s ability to enhance stemness and mimic glioblastoma’s aggressive phenotype, establishing it as a valuable platform for tumor modeling and therapeutic development. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Graphical abstract

17 pages, 2391 KiB  
Article
Optimizing Storage and Regeneration of Clonal Propagules of Salix tetrasperma Through Double-Layered Encapsulation
by Zubair Altaf Reshi, Waquar Ahmad, Fohad Mabood Husain, Mehrun Nisha Khanam and Saad Bin Javed
Horticulturae 2025, 11(5), 486; https://doi.org/10.3390/horticulturae11050486 - 30 Apr 2025
Viewed by 217
Abstract
Synthetic seed technology is an innovative in vitro technique that provides improved storage capabilities for vegetative propagules. Its success mostly depends on the encapsulation matrix’s composition and the encapsulation procedure. The present study focuses on optimizing an encapsulation protocol for short-term storage and [...] Read more.
Synthetic seed technology is an innovative in vitro technique that provides improved storage capabilities for vegetative propagules. Its success mostly depends on the encapsulation matrix’s composition and the encapsulation procedure. The present study focuses on optimizing an encapsulation protocol for short-term storage and germplasm exchange using micro-cuttings of Salix tetrasperma. Among the different synthetic seed types evaluated, double-layered synthetic seeds (DLSs) exhibited the highest re-growth (93.6%) on MS medium supplemented with meta-Topolin (mT) (5.0 µM) and α-naphthalene acetic acid (NAA) (0.5 µM) after 8 weeks of culture. Viability assessment of non-embryogenic synthetic seeds during low-temperature storage (4 °C) demonstrated the enhanced resilience of double-layered synthetic seeds (DLSs) compared to their single-layered (SLS) counterparts. Following acclimatization in Soilrite®-filled cups, 82% of the plantlets were successfully established in a greenhouse after four weeks. The increased activity and concentration of antioxidants in DLS-derived plantlets suggest the potential role of the extra layer of alginate in mitigating the effects of low-temperature stress during storage. SCoT molecular analysis confirmed the genetic integrity of the synthetic seed-derived plants. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

15 pages, 6002 KiB  
Article
Effect of Flow Length on Pressure and Measurement of PEMFC Temperature by Using Thin-Film Thermocouples
by Huijin Guo, Zhihui Liu, Xingyu Li, Xingshu Wang, Maopeng Zhang, Shiqi Zhang, Zixi Wang and Wanyu Ding
Micromachines 2025, 16(5), 535; https://doi.org/10.3390/mi16050535 - 29 Apr 2025
Viewed by 210
Abstract
Based on the COMSOL simulation software (v.6.1), this paper systematically investigates the influence law of runner length on the velocity and pressure distribution of cathode and anode gas runners in proton exchange membrane fuel cells (PEMFCs), and experimentally verifies the measurement effect of [...] Read more.
Based on the COMSOL simulation software (v.6.1), this paper systematically investigates the influence law of runner length on the velocity and pressure distribution of cathode and anode gas runners in proton exchange membrane fuel cells (PEMFCs), and experimentally verifies the measurement effect of thin-film thermocouples on the operating temperature of PEMFCs. The simulation results show that the maximum pressure of the cathode and anode increases nonlinearly with the increase in the runner length, while the velocity distribution remains stable; the shortening of the runners significantly reduces the friction loss along the flow path and optimizes the matching of the permeability of the porous medium. In addition, the NiCr/NiSi thin-film thermocouple prepared by magnetron sputtering exhibits high accuracy (Seebeck coefficient of 41.56 μV/°C) in static calibration and successfully captures the dynamic response characteristics of temperature in PEMFC operation. This study provides a theoretical basis and experimental support for the optimization of fuel cell flow channel design and temperature monitoring technology. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

22 pages, 2802 KiB  
Article
Predicting Filter Medium Performances in Chamber Filter Presses with Digital Twins Using Neural Network Technologies
by Dennis Teutscher, Tyll Weber-Carstanjen, Stephan Simonis and Mathias J. Krause
Appl. Sci. 2025, 15(9), 4933; https://doi.org/10.3390/app15094933 - 29 Apr 2025
Viewed by 201
Abstract
Efficient solid–liquid separation is crucial in industries like mining, but traditional chamber filter presses depend heavily on manual monitoring, leading to inefficiencies, downtime, and resource wastage. This paper introduces a machine learning-powered digital twin framework to improve the operational flexibility and predictive control [...] Read more.
Efficient solid–liquid separation is crucial in industries like mining, but traditional chamber filter presses depend heavily on manual monitoring, leading to inefficiencies, downtime, and resource wastage. This paper introduces a machine learning-powered digital twin framework to improve the operational flexibility and predictive control of a traditional chamber filter press. A key challenge addressed is the degradation of the filter medium due to repeated cycles and clogging, which reduces filtration efficiency. To solve this, a neural network-based predictive model was developed to forecast operational parameters, such as pressure and flow rates, under various conditions. This predictive capability allows for optimized filtration cycles, reduced downtime, and improved process efficiency. Additionally, the model predicts the filter medium’s lifespan, aiding in maintenance planning and resource sustainability. The digital twin framework enables seamless data exchange between filter press sensors and the predictive model, ensuring continuous updates to the training data and enhancing accuracy over time. Two neural network architectures, feedforward and recurrent, were evaluated. The recurrent neural network outperformed the feedforward model, demonstrating superior generalization. It achieved a relative L2-norm error of 5% for pressure and 9.3% for flow rate prediction on partially known data. For completely unknown data, the relative errors were 18.4% and 15.4%, respectively. Qualitative analysis showed strong alignment between predicted and measured data, with deviations within a confidence band of 8.2% for pressure and 4.8% for flow rate predictions. This work contributes an accurate predictive model, a new approach to predicting filter medium cycle impacts, and a real-time interface for model updates, ensuring adaptability to changing operational conditions. Full article
Show Figures

Figure 1

18 pages, 6043 KiB  
Article
Impact of Corrugated Fins on Flow and Heat Transfer Performance in Medium-Deep Coaxial Underground Heat Exchangers
by Yan Shi, Chengcheng Liu, Hongxu Chen, Yaoshuai Yue and Mingqi Li
Energies 2025, 18(9), 2212; https://doi.org/10.3390/en18092212 - 26 Apr 2025
Viewed by 324
Abstract
To enhance the efficient development of geothermal energy, this study investigates the heat transfer enhancement mechanisms in medium-depth coaxial underground heat exchangers (CUHEs) integrated with corrugated fins, using computational fluid dynamics (CFD) simulations. Nine distinct corrugated fin geometries were modeled, and the streamlines, [...] Read more.
To enhance the efficient development of geothermal energy, this study investigates the heat transfer enhancement mechanisms in medium-depth coaxial underground heat exchangers (CUHEs) integrated with corrugated fins, using computational fluid dynamics (CFD) simulations. Nine distinct corrugated fin geometries were modeled, and the streamlines, velocity fields, temperature fields, and turbulent kinetic energy were analyzed across Reynolds numbers (Re) ranging from 12,000 to 42,000. The results demonstrate that corrugated fins significantly promote fluid turbulence and mixing, thereby augmenting convective heat transfer. Compared to smooth inner tubes, the Nusselt number (Nu) is enhanced by a factor of 1.43–2.19, while the friction factor (f) increases by a factor of 2.94–6.79. The performance evaluation criterion (PEC) improves with increasing fin width and decreasing fin spacing. The optimal configuration, featuring a fin width of 15 mm, a spacing of 60 mm, and a thickness of 15 mm, achieves a maximum PEC value of 1.34 at Re = 12,000, indicating a substantial improvement in heat transfer performance within acceptable pressure drop limits. This research innovatively explores the performance enhancement of CUHEs at high Re, systematically elucidates the influence of geometric parameters on heat transfer and flow resistance, and employs the PEC index to optimize the structural design. This provides significant theoretical support for the efficient engineering application of CUHEs in geothermal utilization. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 3087 KiB  
Article
Coordinated Scheduling and Operational Characterization of Electricity and District Heating Systems: A Case Study
by Peng Yu, Dianyang Li, Dai Cui, Jing Xu, Chengcheng Li and Huiqing Cao
Energies 2025, 18(9), 2211; https://doi.org/10.3390/en18092211 - 26 Apr 2025
Viewed by 274
Abstract
With the increasing penetration of renewable energy generation in energy systems, power and district heating systems (PHSs) continue to encounter challenges with wind and solar curtailment during scheduling. Further integration of renewable energy generation can be achieved by exploring the flexibility of existing [...] Read more.
With the increasing penetration of renewable energy generation in energy systems, power and district heating systems (PHSs) continue to encounter challenges with wind and solar curtailment during scheduling. Further integration of renewable energy generation can be achieved by exploring the flexibility of existing systems. Therefore, this study systematically explores the deep transfer modifications of a specific thermal power plant based in Liaoning, China, and the operational characteristics of the heating supply system of a particular heating company. In addition, the overall PHS operational performance is analyzed. The results indicate that both absorption heat pumps and solid-state electric thermal storage technologies effectively improve system load regulation capabilities. The temperature decrease in the water medium in the primary network was proportional to the pipeline distance. When the pipeline lengths were 1175 and 14,665 m, the temperature decreased by 0.66 and 3.48 °C, respectively. The heat exchanger effectiveness and logarithmic mean temperature difference (LMTD) were positively correlated with the outdoor temperature. When the outdoor temperature dropped to −18 °C, the heat exchanger efficiency decreased to 60%, and the LMTD decreased to 17.5 °C. The study findings provide practical data analysis support to address the balance between power supply and heating demand. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

20 pages, 6484 KiB  
Article
Cross-Seasonal Storage of Flue Gas Waste Heat from Power Plants Based on Soil Heat Storage Using Buried Pipes: Geotechnical Thermal Response Experiment
by Fan Yang, Ming Liu, Yu Shen, Lijun Zheng, Xinyue Fang and Siming Ma
Energies 2025, 18(9), 2191; https://doi.org/10.3390/en18092191 - 25 Apr 2025
Viewed by 214
Abstract
A large amount of low-grade waste heat (flue gas waste heat) cannot be fully utilized in thermal power plants in non-heating seasons; therefore, this study combines cross-seasonal heat storage technology with the cross-seasonal storage of low-grade waste heat in power plants. We propose [...] Read more.
A large amount of low-grade waste heat (flue gas waste heat) cannot be fully utilized in thermal power plants in non-heating seasons; therefore, this study combines cross-seasonal heat storage technology with the cross-seasonal storage of low-grade waste heat in power plants. We propose a cross-seasonal underground heat storage and gas turbine co-generation coupling system to recover low-grade waste heat and large-scale cross-seasonal space–time migration and utilization. The basic law of soil heat storage and release was elucidated through a geotechnical thermal response experiment. The results show that the initial average temperature of the rock and soil mass within a depth range of 0–300 m in the study area was 16.7 °C, λ was 1.97 W/(m∙K), Cv was 2655 kJ/(m3∙K), and R was 0.353 (m∙K)/W. An increase in the operating share decreases unit heat transfer per linear meter of buried pipe heat exchanger. The heat release per unit linear meter increases with the average temperature of the circulating medium in the heat release mode. Similarly, the heat absorption per unit linear meter increases with the rock and soil temperature in the heat absorption mode. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

19 pages, 7754 KiB  
Article
Artificial Intelligence-Based Techniques for Fouling Resistance Estimation of Shell and Tube Heat Exchanger: Cascaded Forward and Recurrent Models
by Ikram Kouidri, Abdennasser Dahmani, Furizal Furizal, Alfian Ma’arif, Ahmed A. Mostfa, Abdeltif Amrane, Lotfi Mouni and Abdel-Nasser Sharkawy
Eng 2025, 6(5), 85; https://doi.org/10.3390/eng6050085 - 24 Apr 2025
Viewed by 440
Abstract
Heat exchangers play a crucial role in transferring heat between two mediums, directly impacting energy efficiency, product quality, and operational safety in industrial systems. This study presents a novel approach for fouling resistance estimation using two artificial intelligence models, the cascaded forward network [...] Read more.
Heat exchangers play a crucial role in transferring heat between two mediums, directly impacting energy efficiency, product quality, and operational safety in industrial systems. This study presents a novel approach for fouling resistance estimation using two artificial intelligence models, the cascaded forward network (CFN) and the recurrent neural network (RN), with a minimal set of six input parameters. The proposed models utilize temperature and flow sensor data from heat exchangers to predict fouling resistance. The training process is optimized using the Levenberg–Marquardt (LM) algorithm, ensuring rapid convergence and high accuracy. Model performance is assessed based on mean squared error (MSE), regression values (R), and statistical error analysis. The results demonstrate that both models achieve high accuracy in predicting fouling resistance, with the CFN model outperforming the RN model. The CFN model achieves an MSE of 1.54 × 10−8, significantly lower than the RN model (MSE = 3.05 × 10−8), resulting in a 49.5% improvement in accuracy. Additionally, statistical analysis, including error histograms and correlation analysis, further confirms the robustness of the proposed models. Compared to traditional methods, the proposed AI-based models reduce computational complexity while maintaining superior accuracy. This study highlights the potential of AI in predictive maintenance and industrial optimization, paving the way for future enhancements in intelligent fouling estimation systems. Full article
(This article belongs to the Special Issue Artificial Intelligence for Engineering Applications)
Show Figures

Figure 1

17 pages, 2151 KiB  
Article
Clonal Variation in Growth, Physiology and Ultrastructure of Populus alba L. Seedlings Under NaCl Stress
by Mejda Abassi, Mohammed S. Lamhamedi, Ali Albouchi, Damase Khasa and Zoubeir Bejaoui
Forests 2025, 16(5), 721; https://doi.org/10.3390/f16050721 - 23 Apr 2025
Viewed by 179
Abstract
Afforestation and reforestation (A/R) of non-agricultural and marginal saline lands by promoting fast-growing and salinity-tolerant woody species are crucial strategies to overcome land degradation and vegetation cover scarcity. To obtain basic information before using Populus alba clones in such degraded areas, morpho-physiological and [...] Read more.
Afforestation and reforestation (A/R) of non-agricultural and marginal saline lands by promoting fast-growing and salinity-tolerant woody species are crucial strategies to overcome land degradation and vegetation cover scarcity. To obtain basic information before using Populus alba clones in such degraded areas, morpho-physiological and cellular responses to salt stress were investigated. The experiment was conducted in a nursery where cuttings of three P. alba clones (MA-104, MA-195 and OG) were grown for 90 days in 100 mM NaCl versus a non-saline control. A global approach highlighting clonal differences in terms of dry mass production and plant physiological performance was achieved by comparing plant water status, gas exchange, ionic selectivity, osmotic adjustment and chloroplast ultrastructure under the two treatments. Dry mass production and eco-physiological processes were reduced in response to salt stress, with substantial clonal variation. Clone MA-104 exhibited salinity-tolerant behaviour in contrast to clone MA-195 and OG’s medium or sensitive behaviour towards the stress. Tolerance mechanisms may be attributed to enhanced stomatal control and osmotic adjustment, thereby enabling the maintenance of turgor in plants subjected to salt stress. The chloroplast ultrastructure also showed modifications that are often involved in adaptation to salinity stress. Full article
(This article belongs to the Special Issue Physiological Mechanisms of Plant Responses to Environmental Stress)
Show Figures

Figure 1

33 pages, 2237 KiB  
Review
Fructooligosaccharides: A Comprehensive Review on Their Microbial Source, Functional Benefits, Production Technology, and Market Prospects
by Giancarlo Souza Dias, Ana Carolina Vieira, Gabriel Baioni e Silva, Nicole Favero Simões, Thais S. Milessi, Larissa Santos Saraiva, Michelle da Cunha Abreu Xavier, Andreza Aparecida Longati, Maria Filomena Andrade Rodrigues, Sergio Fernandes, Elda Sabino da Silva, Alfredo Eduardo Maiorano, Sergio Andres Villalba Morales, Rodrigo Correa Basso and Rafael Firmani Perna
Processes 2025, 13(4), 1252; https://doi.org/10.3390/pr13041252 - 21 Apr 2025
Viewed by 396
Abstract
Fructooligosaccharides (FOSs) are carbohydrates of high nutritional value with various prebiotic properties. Optimizing their production process is of significant interest for expanding commercial-scale production. This review discusses the properties and potential applications of FOSs, addressing production challenges and providing an economic market analysis. [...] Read more.
Fructooligosaccharides (FOSs) are carbohydrates of high nutritional value with various prebiotic properties. Optimizing their production process is of significant interest for expanding commercial-scale production. This review discusses the properties and potential applications of FOSs, addressing production challenges and providing an economic market analysis. Bibliometric analysis of data concerning the functional properties, production, purification, and applications of FOSs revealed an over 87% increase in the number of worldwide publications from 2012 to 2022, rising from 88 to 165. Furthermore, contributions from ninety-three countries were identified up to 2024, with Brazil ranking first, with 326 publications. Furthermore, Aureobasidium sp. and Aspergillus sp. have shown the best results for FOS production, with reported conversion in the order of 0.66 g FOS/g sucrose. Nevertheless, the formation of by-products or co-products requiring separation from the medium remains a challenge. Activated carbon, cation exchange resins, and zeolites are highlighted as key adsorbents, with the adsorption process achieving FOS purity exceeding 90%. Furthermore, membrane technology is identified as a more efficient and promising separation method. Addressing these limitations will facilitate the further expansion of the growing global FOS market, promoting a sustainable approach and their integration with biorefineries, which can enable the development of a wider range of value-added products. Full article
Show Figures

Figure 1

Back to TopTop