Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = multiferroic composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2296 KB  
Article
Magnetoelectric Effects in Bilayers of PZT and Co and Ti Substituted M-Type Hexagonal Ferrites
by Sujoy Saha, Sabita Acharya, Sidharth Menon, Rao Bidthanapally, Michael R. Page, Menka Jain and Gopalan Srinivasan
J. Compos. Sci. 2025, 9(7), 336; https://doi.org/10.3390/jcs9070336 - 27 Jun 2025
Viewed by 352
Abstract
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization [...] Read more.
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization in an applied magnetic field. The focus here is the nature of magnetoelectric (ME) interactions in the bilayers of ferroelectric PZT and Co and Ti substituted BaM and SrM. The ME coupling in the ferrite-PZT bilayers arise due to the transfer of magnetostriction-induced mechanical deformation in a magnetic field in the ferrite resulting in an induced electric field in PZT. Polycrystalline Co and Ti doped ferrites, Ba (CoTi)x Fe12−2xO19, (BCTx), and Sr (CoTi)x Fe12−2xO19 (SCTx) (x = 0–4) were found to be free of impurity phases for all x-values except for SCTx, which had a small amount of α-Fe2O3 in the X-ray diffraction patterns for x ≤ 2.0. The magnetostriction for the ferrites increased with applied filed H to a maximum value of around 2 to 6 ppm for H~5 kOe. BCTx/SCTx samples showed ferromagnetic resonance (FMR) for x = 1.5–2.0, and the estimated anisotropy field was on the order of 5 kOe. The magnetization increased with the amount of Co and Ti doping, and it decreased rapidly with x for x > 1.0. Measurements of ME coupling strengths were conducted on the bilayers of BCTx/SCTx platelets bonded to PZT. The bilayer was subjected to an AC and DC magnetic field H, and the magnetoelectric voltage coefficient (MEVC) was measured as a function of H and frequency of the AC field. For BCTx-PZT, the maximum value of MEVC at low frequency was ~5 mV/cm Oe, and a 40-fold increase at electromechanical resonance (EMR). SCTx–PZT composites also showed a similar behavior with the highest MEVC value of ~14 mV/cm Oe at low frequencies and ~200 mV/cm Oe at EMR. All the bilayers showed ME coupling for zero magnetic bias due to the magnetocrystalline anisotropy field in the ferrite that provided a built-in bias field. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

15 pages, 4184 KB  
Article
Photocatalysis of Methyl Orange (MO), Orange G (OG), Rhodamine B (RhB), Violet and Methylene Blue (MB) Under Natural Sunlight by Ba-Doped BiFeO3 Thin Films
by Abderrahmane Boughelout, Abdelmadjid Khiat and Roberto Macaluso
Materials 2025, 18(4), 887; https://doi.org/10.3390/ma18040887 - 18 Feb 2025
Viewed by 796
Abstract
We present structural, morphological, optical and photocatalytic properties of multiferroic Bi0.98Ba0.02FeO3 (BBFO2) perovskite thin films prepared by a combined sol–gel and spin-coating method. X-ray diffraction (XRD) analysis revealed that all the perovskite films consisted of the stable polycrystalline [...] Read more.
We present structural, morphological, optical and photocatalytic properties of multiferroic Bi0.98Ba0.02FeO3 (BBFO2) perovskite thin films prepared by a combined sol–gel and spin-coating method. X-ray diffraction (XRD) analysis revealed that all the perovskite films consisted of the stable polycrystalline rhombohedral phase structure (space group R3c) with a tolerance factor of 0.892. By using Rietveld refinement of diffractogram XRD data, crystallographic parameters, such as bond angle, bond length, atom position, unit cell parameters, and electron density measurements were computed. Scanning electron microscopy (SEM) allowed us to assess the homogeneous and smooth surface morphology of the films with a small degree of porosity, while chemical surface composition characterization by X-ray photoelectron spectroscopy (XPS) showed the presence of Bi, Fe, O and the doping element Ba. Absorption measurements allowed us to determine the energy band gap of the films, while photoluminescence measurements have shown the presence of oxygen vacancies, which are responsible for the enhanced photocatalytic activity of the material. Photocatalytic degradation experiments of Methylene Blue (MB), Methyl orange (MO), orange G (OG), Violet and Rhodamine B (RhB) performed on top of BBFO2 thin films under solar light showed the degradation of all pollutants in varying discoloration efficiencies, ranging from 81% (RhB) to 54% (OG), 53% (Violet), 47% (MO) and 43% (MB). Full article
(This article belongs to the Special Issue Halide Perovskite Crystal Materials and Optoelectronic Devices)
Show Figures

Figure 1

13 pages, 3309 KB  
Article
Improved Ferroelectric and Magnetic Properties of Bismuth Ferrite-Based Ceramics by Introduction of Non-Isovalent Ions and Grain Engineering
by Ting Wang, Huojuan Ye, Xiaoling Wang, Yuhan Cui, Haijuan Mei, Shenhua Song, Zhenting Zhao, Meng Wang, Pitcheri Rosaiah and Qing Ma
Nanomaterials 2025, 15(3), 215; https://doi.org/10.3390/nano15030215 - 29 Jan 2025
Cited by 2 | Viewed by 1285
Abstract
Single-phase multiferroics exhibiting ferroelectricity and ferromagnetism are considered pivotal for advancing next-generation multistate memories, spintronic devices, sensors, and logic devices. In this study, the magnetic and electric characteristics of bismuth ferrite (BiFeO3) ceramics were enhanced through compositional design and grain engineering. [...] Read more.
Single-phase multiferroics exhibiting ferroelectricity and ferromagnetism are considered pivotal for advancing next-generation multistate memories, spintronic devices, sensors, and logic devices. In this study, the magnetic and electric characteristics of bismuth ferrite (BiFeO3) ceramics were enhanced through compositional design and grain engineering. BiFeO3 ceramic was co-substituted by neodymium (Nd) and niobium (Nb), two non-isovalent elements, via the spark plasma sintering process using phase-pure powder prepared via sol-gel as the precursor. The symmetry of the sintered Nd–Nb co-doped samples changed from R3c to Pnma, accompanied by a decrease in the loss tangent, grain size, and leakage current density. The reduction in the leakage current density of the co-doped samples was ~three orders of magnitude. Moreover, ferroelectric, dielectric, and magnetic properties were substantially improved. The remanent polarization and magnetization values of the optimized Nd–Nb co-doped BiFeO3 sample were 3.12 μC cm−2 and 0.15 emu g−1, respectively. The multiferroic properties were enhanced based on multiple factors such as structural distortion caused by co-doping, grain size reduction, suppression of defect charges via donor doping, space-modulated spin structure disruption, and an increase in magnetic ions. The synergistic approach of composition design and grain engineering sets a paradigm for the advancement of multiferroic materials. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

15 pages, 8902 KB  
Article
Analysis of Structural and Magnetic Phase Transitions in Multiferroic Y-Type Hexaferrite Systems by Means of Transverse Magnetic Susceptibility
by Pablo Hernández-Gómez, Óscar Bernardo and José María Muñoz
J. Compos. Sci. 2025, 9(2), 53; https://doi.org/10.3390/jcs9020053 - 23 Jan 2025
Viewed by 838
Abstract
Transverse magnetic susceptibility is an excellent tool to study singularity points as anisotropy and switching fields in different bulk and nanostructured systems, as well as phase transitions. This technique has been carried out on polycrystalline Y-type hexaferrites, with compositions Ba2−xSrx [...] Read more.
Transverse magnetic susceptibility is an excellent tool to study singularity points as anisotropy and switching fields in different bulk and nanostructured systems, as well as phase transitions. This technique has been carried out on polycrystalline Y-type hexaferrites, with compositions Ba2−xSrxCo2Fe12O22, (0.0 ≤ x ≤ 2.0), and Ba2−xSrxZn2Fe12O22, (1.3 ≤ x ≤ 1.7), promising candidates to exhibit multiferroic properties due to their noncollinear spin structure. In the Co2Y system, different behavior is observed depending on the Sr substitution rate, with a secondary maximum observed for samples with x ≥ 1.0 and different shapes in the measurement temperature range analyzed. In the Zn2Y system, several peaks related to the phase transitions that take place are observed, with certain variations depending on the degree of Ba substitution and the applied field in a more or less extended region around the ambient temperature. This type of measurement is a valuable tool to determine the bias field and temperature range of spin transitions. Full article
Show Figures

Figure 1

14 pages, 24309 KB  
Article
The Influence of Terfenol-D Content on the Structure and Properties of Multiferroic Composites Obtained Based on PZT-Type Material and Terfenol-D
by Dariusz Bochenek, Artur Chrobak, Grzegorz Dercz, Przemysław Niemiec, Dagmara Brzezińska and Piotr Czaja
Materials 2025, 18(2), 235; https://doi.org/10.3390/ma18020235 - 8 Jan 2025
Viewed by 1126
Abstract
In this work, three composite materials based on Terfenol-D and PZT-type material were obtained with a classic sintering method using a combination of 0–3 phases, where the ferroelectric phase was doped PZT material (P) and the magnetic phase was Terfenol-D (T). The percentage [...] Read more.
In this work, three composite materials based on Terfenol-D and PZT-type material were obtained with a classic sintering method using a combination of 0–3 phases, where the ferroelectric phase was doped PZT material (P) and the magnetic phase was Terfenol-D (T). The percentage of P and T components in the composites was variable, i.e., 90% P/10% T (P90-T10), 70% P/30% T (P70-T30), and 50% P/50% T (P50-T50). Structural, microstructure, dielectric, and magnetic properties and DC electric conductivity of multiferroic composites were investigated. Chemical composition analyses and X-ray studies showed a decomposition of the composite compositions, forming additional phases, most of which contained rare earth elements and Fe. Microstructural SEM-BE (backscattering) images distinguished areas of bright intensity with a dominant ferroelectric phase and dark areas with a dominant magnetic element dominance. Despite the composition decomposition, the composite materials retained good dielectric and magnetic properties at room temperature. The highest stability of dielectric parameters was maintained by the P90-T10 composition with high values of permittivity ε = 570 at room temperature RT (εm = 7300 at the phase transition temperature Tm) and the lowest dielectric tangent loss (tanδ of 0.32 and 1.94 for RT and Tm, respectively). Increasing the Terfenol-D share in the composite causes a significant increase in dielectric tangent loss and electrical conductivity, a decrease in permittivity, and an increase in the degree of phase transition blurring. The magnetic properties for all P-T composite compositions at RT were preserved and were 0.31 emu/g, 1.60 emu/g, and 4.56 emu/g for P90-T10, P70-T30, P50-T50, respectively. For the M-H hysteresis loop at room temperature, the maximum magnetization increased from 1.17 emu/g for (P90-T10) to 15.18 emu/g for (P50-T50), while the coercive field decreased from 271.8 mT for P90-T10 to 9.7 mT for P50-T50. It is also interesting to maintain the high saturation of the M-H magnetic hysteresis loop in the composite with the lowest Terfenol-D content (P90-T10). The magnetic properties for all P-T composite compositions at room temperature were preserved and were 0.31 emu/g, 1.60 emu/g, and 4.56 emu/g for P90-T10, P70-T30, and P50-T50, respectively. For the M-H hysteresis loop at RT, the maximum magnetization increased from 1.17 emu/g for (P90-T10) to 15.18 emu/g for (P50-T50), while the coercive field decreased from 0.272 T for P90-T10 to 0.001 T for P50-T50. It is also interesting to maintain the high saturation of the M-H magnetic hysteresis loop in the composite with the lowest Terfenol-D content (P90-T10). Due to the tendency to combine with oxygen and the high electric conductivity of Terfenol-D, limiting its amount in the composite composition is appropriate. At 10% of Terfenol-D, the composite has good dielectric properties, and the magnetic parameters remain satisfactory. Full article
Show Figures

Figure 1

13 pages, 3024 KB  
Article
Phase Composition, Surface Morphology, and Dielectric Properties of Poly(Vinylidene Fluoride)–Cobalt Ferrite Composite Films Depending on Thickness
by Pavel A. Vorontsov, Vitalii D. Salnikov, Valerii V. Savin, Stanislav A. Vorontsov, Alexander S. Omelyanchik, Petr V. Shvets, Larissa V. Panina, Petr A. Ershov and Valeria V. Rodionova
Crystals 2025, 15(1), 47; https://doi.org/10.3390/cryst15010047 - 31 Dec 2024
Cited by 1 | Viewed by 1012
Abstract
This study investigates the effect of polyvinylidene fluoride–CoFe2O4 (PVDF-CFO) composite film thickness on their supramolecular structure, phase composition, and dielectric properties. The composites were synthesized from PVDF with CFO nanoparticles using the Dr. Blade method to obtain film thicknesses ranging [...] Read more.
This study investigates the effect of polyvinylidene fluoride–CoFe2O4 (PVDF-CFO) composite film thickness on their supramolecular structure, phase composition, and dielectric properties. The composites were synthesized from PVDF with CFO nanoparticles using the Dr. Blade method to obtain film thicknesses ranging from 15 to 58 μm. The data obtained show that the thinner film (15 μm) has a higher β-phase content compared to the thicker films (58 μm), as confirmed by FTIR and Raman spectroscopy. Scanning electron microscopy (SEM) showed that increasing film thickness within the studied range leads to the development of larger spherulitic structures and increased porosity. Atomic force microscopy (AFM) analysis also showed that thicker films have higher tensile strength due to their larger cross-sectional area, while thinner films exhibit lower elasticity. A more uniform microstructure and an increased electroactive phase in thin films result in increased permittivity, which is critical for PVDF-based sensors and energy devices. Full article
(This article belongs to the Special Issue Polymorphism in Crystals (2nd Edition))
Show Figures

Graphical abstract

16 pages, 2915 KB  
Article
Phase Relations in the Pseudo-Binary BiFeO3–EuFeO3 System in the Subsolidus Region Derived from X-Ray Diffraction Data—A Machine Learning Approach
by Vasile-Adrian Surdu and Romuald Győrgy
Inorganics 2024, 12(12), 314; https://doi.org/10.3390/inorganics12120314 - 4 Dec 2024
Viewed by 1183
Abstract
BiFeO3 and EuFeO3 are some of the most studied ferrites and part of the larger category of multiferroic and magnetic compounds. The instabilities reported for BiFeO3 that hinder its use in practical applications can be overcome by substitution with rare-earth [...] Read more.
BiFeO3 and EuFeO3 are some of the most studied ferrites and part of the larger category of multiferroic and magnetic compounds. The instabilities reported for BiFeO3 that hinder its use in practical applications can be overcome by substitution with rare-earth ions, such as Eu3+, on the Bi3+ site. This paper reports on the phase relations in the BiFeO3-EuFeO3 pseudo-binary system, which were not established previously. Solid-state reactions were employed to prepare different compositions according to the nominal formula Bi1−xEuxFeO3 (where x = 0, 0.05, 0.10, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1). Phase equilibria were studied at different temperatures between 800 and 1200 °C from X-ray diffraction (XRD) data. The analysis of the XRD patterns by machine learning approaches revealed eight defined clusters and four unclustered points. The validation test showed that most of the points could belong to several clusters and thus, traditional identification was employed. Phase identification and quantification by traditional approaches revealed six crystallization zones on the diagram. Although the machine learning approach offers speed in the process of classification of XRD patterns, validation by the traditional method was necessary for the construction of the phase diagram with high accuracy. Full article
Show Figures

Figure 1

22 pages, 7670 KB  
Article
Structural, Magnetic, and Dielectric Properties of Laser-Ablated CoFe2O4/BaTiO3 Bilayers Deposited over Highly Doped Si(100)
by João Oliveira, Bruna M. Silva, Tiago Rebelo, Pedro V. Rodrigues, Rosa M. F. Baptista, Manuel J. L. F. Rodrigues, Michael Belsley, Neenu Lekshmi, João P. Araújo, Jorge A. Mendes, Francis Leonard Deepak and Bernardo G. Almeida
Materials 2024, 17(23), 5707; https://doi.org/10.3390/ma17235707 - 22 Nov 2024
Cited by 1 | Viewed by 1154
Abstract
Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO3 (BTO) and CoFe2O4 (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO3 layer thickness (50–220 nm) on the films’ [...] Read more.
Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO3 (BTO) and CoFe2O4 (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO3 layer thickness (50–220 nm) on the films’ structural, magnetic, and dielectric properties. The dense, polycrystalline films exhibited a tetragonal BaTiO3 phase and a cubic spinel CoFe2O4 layer. Structural analysis revealed compression of the CoFe2O4 unit cell along the growth direction, while the BaTiO3 layer showed a tetragonal distortion, more pronounced in thinner BTO layers. These strain effects, attributed to the mechanical interaction between both layers, induced strain-dependent wasp-waisted behavior in the films’ magnetic hysteresis cycles. The strain effects gradually relaxed with increasing BaTiO3 thickness. Raman spectroscopy and second harmonic generation studies confirmed BTO’s non-centrosymmetric ferroelectric structure at room temperature. The displayed dielectric permittivity dispersion was modeled using the Havriliak–Negami function combined with a conductivity term. This analysis yielded relaxation times, DC conductivities, and activation energies. The observed BTO relaxation time behavior, indicative of small-polaron transport, changed significantly at the BTO ferroelectric Curie temperature (Tc), presenting activation energies Eτ in the 0.1–0.3 eV range for T < Tc and Eτ > 0.3 eV for T > Tc. The BTO thickness-dependent Tc behavior exhibited critical exponents ν ~ 0.82 consistent with the 3D random Ising universality class, suggesting local disorder and inhomogeneities in the films. This was attributed to the composite structure of BTO grains, comprising an inner bulk-like structure, a gradient strained layer, and a disordered surface layer. DC conductivity analysis indicated that CoFe2O4 conduction primarily occurred through hopping in octahedral sites. These findings provide crucial insights into the dynamic dielectric behavior of multiferroic bilayer thin films at the nanoscale, enhancing their potential for application in emerging Si electronics-compatible magneto-electric technologies. Full article
Show Figures

Graphical abstract

16 pages, 6192 KB  
Article
Study on the Microstructure and Performance of the Multi-Field Composite-Assisted Laser Cladding of Nickel-Based Tungsten Carbide Coatings
by Shihui Chen, Hong Wang, Xu Huang, Shuaishuai Qin and Xinxin Hu
Metals 2024, 14(10), 1188; https://doi.org/10.3390/met14101188 - 18 Oct 2024
Cited by 1 | Viewed by 1248
Abstract
Improving the hardness and wear resistance of die cutting tools is an important issue in the study of the service life of die cutting equipment. Using laser cladding technology, nickel-based composite coatings with varying BiFeO3 contents were prepared on a 45 steel [...] Read more.
Improving the hardness and wear resistance of die cutting tools is an important issue in the study of the service life of die cutting equipment. Using laser cladding technology, nickel-based composite coatings with varying BiFeO3 contents were prepared on a 45 steel substrate, because BiFeO3 can have an effect on the dilution rate and microstructure of the sample; morover BiFeO3 is a new type of multiferroic material with certain magneto-electric coupling effects which can be prepared for the study of added magnetic fields. The microstructure and morphology were characterized to determine the optimal BiFeO3 content. Based on the optimal addition of BiFeO3, a comparative analysis was conducted to investigate the effect of different magnetic field strengths under a composite energy field on the microstructure, hardness, and wear resistance of Ni-based WC cladding layers. The results show that the optimal addition of BiFeO3 was 5 wt%. At this concentration, there were no significant porosity defects in the coating, and the dilution rate was appropriate (4.77%). Additionally, the interface bonding strength was also increased. With optimal BiFeO3 addition, stirring with different magnetic field strengths was applied to the cladding layer, and the results show that the aspect ratio of the cladding layer gradually increased with increasing the alternating magnetic field strength. When the magnetic field strength in the composite energy field was 40 mT, the microstructure was fine and uniform, the hardness of the cladding layer reached the highest level, about 925.2 HV1.0, the wear resistance was also the best, the friction coefficient of the cladding layer was about 0.54, and the width of the wear mark was about 0.53 mm. Full article
Show Figures

Figure 1

15 pages, 6149 KB  
Article
Effect of Bismuth Ferrite Nanoparticles on Physicochemical Properties of Polyvinylidene Fluoride-Based Nanocomposites
by Denis Petrukhin, Vitalii Salnikov, Aleksey Nikitin, Ibtissame Sidane, Sawssen Slimani, Stefano Alberti, Davide Peddis, Alexander Omelyanchik and Valeria Rodionova
J. Compos. Sci. 2024, 8(8), 329; https://doi.org/10.3390/jcs8080329 - 20 Aug 2024
Cited by 4 | Viewed by 2594
Abstract
Bismuth ferrite (BiFeO3, BFO) is one of the few single-phase crystalline compounds exhibiting strong multiferroic properties at room temperature, which makes it promising for use in various fields of science and technology. The remarkable characteristics of BFO at the nanoscale position [...] Read more.
Bismuth ferrite (BiFeO3, BFO) is one of the few single-phase crystalline compounds exhibiting strong multiferroic properties at room temperature, which makes it promising for use in various fields of science and technology. The remarkable characteristics of BFO at the nanoscale position it as a compelling candidate for enhancing the functionalities of polymeric nanocomposite materials. In this study, we explore the fabrication of polyvinylidene fluoride (PVDF) nanocomposites with a variable content of BFO nanopowders (0, 5, 10, 15, 20, and 25 wt%) by solution casting in the form of thin films with the thickness of ~60 µm. Our findings reveal that the presence of BFO nanoparticles slightly facilitates the formation of β- and γ-phases of PVDF, known for their enhanced piezoelectric properties, thereby potentially expanding the utility of PVDF-based materials in sensors, actuators, and energy harvesting devices. On the other hand, the increase in filler concentration leads to enlarged spherulite diameter and porosity of PVDF, as well as an increase in filler content above 20 wt% resulting in a decrease in the degree of crystallinity. The structural changes in the surface were found to increase the hydrophobicity of the nanocomposite surface. Magnetometry indicates that the magnetic properties of nanocomposite are influenced by the BFO nanoparticle content with the saturation magnetization at ~295 K ranging from ~0.08 emu/g to ~0.8 emu/g for samples with the lowest and higher BFO content, respectively. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Graphical abstract

9 pages, 2044 KB  
Article
Preparation and Characterization of BXFO High-Entropy Oxides
by Saba Aziz, Anna Grazia Monteduro, Ritu Rawat, Silvia Rizzato, Angelo Leo, Shahid Khalid and Giuseppe Maruccio
Magnetochemistry 2024, 10(8), 60; https://doi.org/10.3390/magnetochemistry10080060 - 15 Aug 2024
Viewed by 1645
Abstract
Increasing demand for functional materials crucial for advancing new technologies has motivated significant scientific and industrial research efforts. High-entropy materials (HEMs), with tunable properties, are gaining attention for their use in high-frequency transformers, microwave devices, multiferroics, and high-density magnetic memory components. The initial [...] Read more.
Increasing demand for functional materials crucial for advancing new technologies has motivated significant scientific and industrial research efforts. High-entropy materials (HEMs), with tunable properties, are gaining attention for their use in high-frequency transformers, microwave devices, multiferroics, and high-density magnetic memory components. The initial exploration of HEMs started with high-entropy alloys (HASs), such as CrMnFeCoNi, CuCoNiCrAlxFe, and AlCoCrTiZn and paved the way for a multitude of HEM variations, including oxides, oxyfluorides, borides, carbides, nitrides, sulfides, and phosphides. In this study, we fabricated the high-entropy oxide (HEO) compound Bi0.5La0.1In0.1Y0.1Nd0.1Gd0.1FeO3 through the solid-state synthesis method. Magnetic measurements at 300 K show ferromagnetic behavior with significant coercivity. At the same time, this novel composition exhibits excellent dielectric properties and shows potential for electronic applications demonstrating that a high-entropy approach can expand the compositional range of rare earth multiferroics and improve the multifunctional properties in multiferroic applications. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

15 pages, 13354 KB  
Article
Designing Multifunctional Multiferroic Composites for Advanced Electronic Applications
by Lilian Nunes Pereira, Julio Cesar Agreira Pastoril, Gustavo Sanguino Dias, Ivair Aparecido dos Santos, Ruyan Guo, Amar S. Bhalla and Luiz Fernando Cotica
Electronics 2024, 13(12), 2266; https://doi.org/10.3390/electronics13122266 - 9 Jun 2024
Cited by 5 | Viewed by 1223
Abstract
This paper presents a novel approach for the fabrication of magnetoelectric composites aimed at enhancing cross-coupling between electrical and magnetic phases for potential applications in intelligent sensors and electronic components. Unlike previous methodologies known for their complexity and expense, our method offers a [...] Read more.
This paper presents a novel approach for the fabrication of magnetoelectric composites aimed at enhancing cross-coupling between electrical and magnetic phases for potential applications in intelligent sensors and electronic components. Unlike previous methodologies known for their complexity and expense, our method offers a simple and cost-effective assembly process conducted at room temperature, preserving the original properties of the components and avoiding undesired phases. The composites, composed of PZT fibers, cobalt (CoFe2O4), and a polymeric resin, demonstrate the uniform distribution of PZT-5A fibers within the cobalt matrix, as demonstrated by scanning electron microscopy. Detailed morphological analyses reveal the interface characteristics crucial for determining overall performance. Dielectric measurements indicate stable behaviors, particularly when PZT-5A fibers are properly poled, showcasing potential applications in sensors or medical devices. Furthermore, H-dependence studies illustrate strong magnetoelectric interactions, suggesting promising avenues for enhancing coupling efficiency. Overall, this study lays the basic work for future optimization of composite composition and exploration of its long-term stability, offering valuable insights into the potential applications of magnetoelectric composites in various technological domains. Full article
(This article belongs to the Special Issue Advanced Materials for Intelligent Electronics)
Show Figures

Figure 1

14 pages, 5043 KB  
Article
Charge Storage Properties of Ferrimagnetic BaFe12O19 and Polypyrrole–BaFe12O19 Composites
by Silin Chen and Igor Zhitomirsky
Molecules 2024, 29(9), 1979; https://doi.org/10.3390/molecules29091979 - 25 Apr 2024
Cited by 1 | Viewed by 1309
Abstract
This investigation is motivated by an interest in multiferroic BaFe12O19 (BFO), which combines advanced ferrimagnetic and ferroelectric properties at room temperature and exhibits interesting magnetoelectric phenomena. The ferroelectric charge storage properties of BFO are limited due to high coercivity, low [...] Read more.
This investigation is motivated by an interest in multiferroic BaFe12O19 (BFO), which combines advanced ferrimagnetic and ferroelectric properties at room temperature and exhibits interesting magnetoelectric phenomena. The ferroelectric charge storage properties of BFO are limited due to high coercivity, low dielectric constant, and high dielectric losses. We report the pseudocapacitive behavior of BFO, which allows superior charge storage compared to the ferroelectric charge storage mechanism. The BFO electrodes show a remarkably high capacitance of 1.34 F cm−2 in a neutral Na2SO4 electrolyte. The charging mechanism is discussed. The capacitive behavior is linked to the beneficial effect of high-energy ball milling (HEBM) and the use of an efficient dispersant, which facilitates charge transfer. Another approach is based on the use of conductive polypyrrole (PPy) for the fabrication of PPy-BFO composites. The choice of new polyaromatic dopants with a high charge-to-mass ratio plays a crucial role in achieving a high capacitance of 4.66 F cm−2 for pure PPy electrodes. The composite PPy-BFO (50/50) electrodes show a capacitance of 3.39 F cm−2, low impedance, reduced charge transfer resistance, enhanced capacitance retention at fast charging rates, and good cyclic stability due to the beneficial effect of advanced dopants, HEBM, and synergy of the contribution of PPy and BFO. Full article
Show Figures

Figure 1

19 pages, 32716 KB  
Article
Magnetoelectric Properties of Multiferroic Composites Based on BaTiO3 and Nickel-Zinc Ferrite Material
by Dariusz Bochenek, Przemysław Niemiec, Dagmara Brzezińska, Grzegorz Dercz, Grzegorz Ziółkowski, Elżbieta Jartych, Jakub Grotel and Jan Suchanicz
Materials 2024, 17(8), 1905; https://doi.org/10.3390/ma17081905 - 19 Apr 2024
Cited by 8 | Viewed by 1896
Abstract
The purpose of the present study was to learn the morphological, structural, ferroelectric, dielectric, electromechanical, magnetoelectric, and magnetic properties, and DC conductivity of BaTiO3-Ni0.64Zn0.36Fe2O4 (BT-F) multiferroic composites compacted via the free sintering method. The [...] Read more.
The purpose of the present study was to learn the morphological, structural, ferroelectric, dielectric, electromechanical, magnetoelectric, and magnetic properties, and DC conductivity of BaTiO3-Ni0.64Zn0.36Fe2O4 (BT-F) multiferroic composites compacted via the free sintering method. The influence of the ferrite content in ceramic composite materials on the functional properties is investigated and discussed. X-ray diffraction studies confirmed the presence of two main phases of the composite, with strong reflections originating from BaTiO3 and weak peaks originating from nickel-zinc ferrite. BT-F ceramic composites have been shown to exhibit multiferroism at room temperature. All studied compositions have high permittivity values and low dielectric loss, while the ferroelectric properties of the BT component are maintained at a high level. On the other hand, magnetic properties depend on the amount of the ferrite phase and are the strongest for the composition with 15 wt.% of F (magnetization at RT is 4.12 emu/g). The magnetoelectric coupling between BT and F phases confirmed by the lock-in technique is the largest for 15 wt.% ferrite. In the present work, the process conditions of the free sintering method for obtaining BT-F multiferroic composite with good electrical and magnetic properties (in one material) were optimized. An improved set of multifunctional properties allows the expansion of the possibilities of using multiferroic composites in microelectronics. Full article
Show Figures

Figure 1

13 pages, 2788 KB  
Article
Low-Frequency Resonant Magnetoelectric Effect in a Piezopolymer-Magnetoactive Elastomer Layered Structure at Different Magnetization Geometries
by Dmitrii V. Savelev, Dmitri A. Burdin, Leonid Y. Fetisov, Yuri K. Fetisov, Nikolai S. Perov and Liudmila A. Makarova
Polymers 2024, 16(7), 928; https://doi.org/10.3390/polym16070928 - 28 Mar 2024
Cited by 2 | Viewed by 1441
Abstract
The search for novel materials with enhanced characteristics for the advancement of flexible electronic devices and energy harvesting devices is currently a significant concern. Multiferroics are a prominent example of energy conversion materials. The magnetoelectric conversion in a flexible composite based on a [...] Read more.
The search for novel materials with enhanced characteristics for the advancement of flexible electronic devices and energy harvesting devices is currently a significant concern. Multiferroics are a prominent example of energy conversion materials. The magnetoelectric conversion in a flexible composite based on a piezopolymer layer and a magnetic elastomer layer was investigated. The study focused on investigating the dynamic magnetoelectric effect in various configurations of external alternating and constant homogeneous magnetic fields (L-T and T-T configurations). The T-T geometry exhibited a two orders of magnitude higher coefficient of the magnetoelectric effect compared to the L-T geometry. Mechanisms of structure bending in both geometries were proposed and discussed. A theory was put forward to explain the change in the resonance frequency in a uniform external field. A giant value of frequency tuning in a magnetic field of up to 362% was demonstrated; one of the highest values of the magnetoelectric effect yet recorded in polymer multiferroics was observed, reaching up to 134.3 V/(Oe∙cm). Full article
(This article belongs to the Special Issue Magnetic Polymer Materials)
Show Figures

Figure 1

Back to TopTop