Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = photothermal-induced resonance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1841 KB  
Article
Construction of Silane-Modified Diatomite-Magnetic Nanocomposite Superhydrophobic Coatings Using Multi-Scale Composite Principle
by Dan Li, Mei Wu, Rongjun Xia, Jiwen Hu and Fangzhi Huang
Coatings 2025, 15(7), 786; https://doi.org/10.3390/coatings15070786 - 3 Jul 2025
Cited by 1 | Viewed by 883
Abstract
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were [...] Read more.
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were functionalized with octyltriethoxysilane (OTS) to prepare superhydrophobic diatomite flakes (ODEM) and OFe3O4 nanoparticles. Following the multi-scale composite principle, ODEM and OFe3O4 nanoparticles were blended and crosslinked via the hydroxyl-initiated ring-opening polymerization of epoxy resin (EP), resulting in an EP/ODEM@OFe3O4 composite coating with hierarchical roughness. Microstructural characterization revealed that the micrometer-scale porous structure of ODEM and the nanoscale protrusions of OFe3O4 form a hierarchical micro–nano topography. The special topography combined with the low surface energy property leads to a contact angle of 158°. Additionally, the narrow bandgap semiconductor characteristic of OFe3O4 induces the localized surface plasmon resonance effect. This enables the coating to attain 80% light absorption across the 350–2500 nm spectrum, and rapidly heat to 45.8 °C within 60 s under 0.5 sun, thereby demonstrating excellent deicing performance. This work provides a theoretical foundation for developing environmentally tolerant superhydrophobic photothermal coatings, which exhibit significant application potential in the field of anti-icing and anti-fouling. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

17 pages, 3494 KB  
Article
Membrane-Mediated Conversion of Near-Infrared Amplitude Modulation into the Self-Mixing Signal of a Terahertz Quantum Cascade Laser
by Paolo Vezio, Andrea Ottomaniello, Leonardo Vicarelli, Mohammed Salih, Lianhe Li, Edmund Linfield, Paul Dean, Virgilio Mattoli, Alessandro Pitanti and Alessandro Tredicucci
Photonics 2025, 12(3), 273; https://doi.org/10.3390/photonics12030273 - 16 Mar 2025
Viewed by 6063
Abstract
A platform for converting near-infrared (NIR) laser power modulation into the self-mixing (SM) signal of a quantum cascade laser (QCL) operating at terahertz (THz) frequencies is introduced. This approach is based on laser feedback interferometry (LFI) with a THz QCL using a metal-coated [...] Read more.
A platform for converting near-infrared (NIR) laser power modulation into the self-mixing (SM) signal of a quantum cascade laser (QCL) operating at terahertz (THz) frequencies is introduced. This approach is based on laser feedback interferometry (LFI) with a THz QCL using a metal-coated silicon nitride trampoline membrane resonator as both the external QCL laser cavity and the mechanical coupling element of the two-laser hybrid system. We show that the membrane response can be controlled with high precision and stability both in its dynamic (i.e., piezo-electrically actuated) and static state via photothermally induced NIR laser excitation. The responsivity to nanometric external cavity variations and robustness to optical feedback of the QCL LFI apparatus allows a highly sensitive and reliable transfer of the NIR power modulation into the QCL SM voltage, with a bandwidth limited by the thermal response time of the membrane resonator. Interestingly, a dual information conversion is possible thanks to the accurate thermal tuning of the membrane resonance frequency shift and displacement. Overall, the proposed apparatus can be exploited for the precise opto-mechanical control of QCL operation with advanced applications in LFI imaging and spectroscopy and in coherent optical communication. Full article
(This article belongs to the Special Issue The Three-Decade Journey of Quantum Cascade Lasers)
Show Figures

Figure 1

13 pages, 9604 KB  
Article
A Highly Sensitive Light-Induced Thermoelastic Spectroscopy Sensor Using a Charge Amplifier to Improve the Signal-to-Noise Ratio
by Hanxu Ma, Shunda Qiao, Ying He and Yufei Ma
Sensors 2025, 25(3), 946; https://doi.org/10.3390/s25030946 - 5 Feb 2025
Cited by 2 | Viewed by 1121
Abstract
A highly sensitive light-induced thermoelastic spectroscopy (LITES) sensor employing a charge amplifier (CA) is reported for the first time in this invited paper. CA has the merits of high input impedance and strong anti-interference ability. The usually used transimpedance amplifier (TA) and voltage [...] Read more.
A highly sensitive light-induced thermoelastic spectroscopy (LITES) sensor employing a charge amplifier (CA) is reported for the first time in this invited paper. CA has the merits of high input impedance and strong anti-interference ability. The usually used transimpedance amplifier (TA) and voltage amplifier (VA) were also studied under the same conditions for comparison. A standard commercial quartz tuning fork (QTF) with a resonant frequency of approximately 32.76 kHz was used as the photothermal signal transducer. Methane (CH4) was used as the target gas in these sensors for performance verification. Compared to the TA-LITES sensor and VA-LITES sensor, the reported CA-LITES sensor shows improvements of 1.83 times and 5.28 times in the minimum detection limit (MDL), respectively. When compared to the LITES sensor without an amplifier (WA-LITES), the MDL has a 19.96-fold improvement. After further optimizing the gain of the CA, the MDL of the CA-LITES sensor was calculated as 2.42 ppm, which further improved the performance of the MDL by 30.3 times compared to the WA-LITES. Additionally, long-term stability is analyzed using Allan deviation analysis. When the average time of the sensor system is increased to 50 s, the MDL of the CA-LITES sensor system can be improved to 0.58 ppm. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

28 pages, 3912 KB  
Review
MoS2–Plasmonic Hybrid Platforms: Next-Generation Tools for Biological Applications
by Nayra A. M. Moussa, Seungah Lee and Seong Ho Kang
Nanomaterials 2025, 15(2), 111; https://doi.org/10.3390/nano15020111 - 13 Jan 2025
Cited by 3 | Viewed by 3598
Abstract
The combination of molybdenum disulfide (MoS2) with plasmonic nanomaterials has opened up new possibilities in biological applications by combining MoS2’s biocompatibility and high surface area with the optical sensitivity of plasmonic metals. These MoS2–plasmonic hybrid systems hold [...] Read more.
The combination of molybdenum disulfide (MoS2) with plasmonic nanomaterials has opened up new possibilities in biological applications by combining MoS2’s biocompatibility and high surface area with the optical sensitivity of plasmonic metals. These MoS2–plasmonic hybrid systems hold great promise in areas such as biosensing, bioimaging, and phototherapy, where their complementary properties facilitate improved detection, real-time visualization, and targeted therapeutic interventions. MoS2’s adjustable optical features, combined with the plasmon resonance of noble metals such as gold and silver, enhance signal amplification, enabling detailed imaging and selective photothermal or photodynamic therapies while minimizing effects on healthy tissue. This review explores various synthesis strategies for MoS2–plasmonic hybrids, including seed-mediated growth, in situ deposition, and heterojunction formation, which enable tailored configurations optimized for specific biological applications. The primary focus areas include highly sensitive biosensors for detecting cancer and infectious disease biomarkers, high-resolution imaging of cellular dynamics, and the development of phototherapy methods that allow for accurate tumor ablation through light-induced thermal and reactive oxygen species generation. Despite the promising advancements of MoS2–plasmonic hybrids, translating these platforms into clinical practice requires overcoming considerable challenges, such as synthesis reproducibility, toxicity, stability in physiological conditions, targeted delivery, and scalable manufacturing. Addressing these challenges is essential for realizing their potential as next-generation tools in diagnostics and targeted therapies. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

56 pages, 5775 KB  
Review
Gold Nanoparticles in Nanomedicine: Unique Properties and Therapeutic Potential
by Furkan Eker, Emir Akdaşçi, Hatice Duman, Mikhael Bechelany and Sercan Karav
Nanomaterials 2024, 14(22), 1854; https://doi.org/10.3390/nano14221854 - 20 Nov 2024
Cited by 24 | Viewed by 7552
Abstract
Gold nanoparticles (NPs) have demonstrated significance in several important fields, including drug delivery and anticancer research, due to their unique properties. Gold NPs possess significant optical characteristics that enhance their application in biosensor development for diagnosis, in photothermal and photodynamic therapies for anticancer [...] Read more.
Gold nanoparticles (NPs) have demonstrated significance in several important fields, including drug delivery and anticancer research, due to their unique properties. Gold NPs possess significant optical characteristics that enhance their application in biosensor development for diagnosis, in photothermal and photodynamic therapies for anticancer treatment, and in targeted drug delivery and bioimaging. The broad surface modification possibilities of gold NPs have been utilized in the delivery of various molecules, including nucleic acids, drugs, and proteins. Moreover, gold NPs possess strong localized surface plasmon resonance (LSPR) properties, facilitating their use in surface-enhanced Raman scattering for precise and efficient biomolecule detection. These optical properties are extensively utilized in anticancer research. Both photothermal and photodynamic therapies show significant results in anticancer treatments using gold NPs. Additionally, the properties of gold NPs demonstrate potential in other biological areas, particularly in antimicrobial activity. In addition to delivering antigens, peptides, and antibiotics to enhance antimicrobial activity, gold NPs can penetrate cell membranes and induce apoptosis through various intracellular mechanisms. Among other types of metal NPs, gold NPs show more tolerable toxicity capacity, supporting their application in wide-ranging areas. Gold NPs hold a special position in nanomaterial research, offering limited toxicity and unique properties. This review aims to address recently highlighted applications and the current status of gold NP research and to discuss their future in nanomedicine. Full article
Show Figures

Figure 1

33 pages, 5391 KB  
Review
Micro-Nanoparticle Characterization: Establishing Underpinnings for Proper Identification and Nanotechnology-Enabled Remediation
by Wesley Allen Williams and Shyam Aravamudhan
Polymers 2024, 16(19), 2837; https://doi.org/10.3390/polym16192837 - 8 Oct 2024
Cited by 5 | Viewed by 2988
Abstract
Microplastics (MPLs) and nanoplastics (NPLs) are smaller particles derived from larger plastic material, polymerization, or refuse. In context to environmental health, they are separated into the industrially-created “primary” category or the degradation derivative “secondary” category where the particles exhibit different physiochemical characteristics that [...] Read more.
Microplastics (MPLs) and nanoplastics (NPLs) are smaller particles derived from larger plastic material, polymerization, or refuse. In context to environmental health, they are separated into the industrially-created “primary” category or the degradation derivative “secondary” category where the particles exhibit different physiochemical characteristics that attenuate their toxicities. However, some particle types are more well documented in terms of their fate in the environment and potential toxicological effects (secondary) versus their industrial fabrication and chemical characterization (primary). Fourier Transform Infrared Spectroscopy (FTIR/µ-FTIR), Raman/µ-Raman, Proton Nuclear Magnetic Resonance (H-NMR), Curie Point-Gas Chromatography-Mass Spectrometry (CP-gc-MS), Induced Coupled Plasma-Mass Spectrometry (ICP-MS), Nanoparticle Tracking Analysis (NTA), Field Flow Fractionation-Multiple Angle Light Scattering (FFF-MALS), Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Differential Mobility Particle [Sizing] (DMPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Scanning Transmission X-ray Microspectroscopy (STXM) are reviewed as part of a suite of characterization methods for physiochemical ascertainment and distinguishment. In addition, Optical-Photothermal Infrared Microspectroscopy (O-PTIR), Z-Stack Confocal Microscopy, Mueller Matrix Polarimetry, and Digital Holography (DH) are touched upon as a suite of cutting-edge modes of characterization. Organizations, like the water treatment or waste management industry, and those in groups that bring awareness to this issue, which are in direct contact with the hydrosphere, can utilize these techniques in order to sense and remediate this plastic polymer pollution. The primary goal of this review paper is to highlight the extent of plastic pollution in the environment as well as introduce its effect on the biodiversity of the planet while underscoring current characterization techniques in this field of research. The secondary goal involves illustrating current and theoretical avenues in which future research needs to address and optimize MPL/NPL remediation, utilizing nanotechnology, before this sleeping giant of a problem awakens. Full article
(This article belongs to the Special Issue Micro- and Nanoplastics Engineering and Design for Research)
Show Figures

Figure 1

10 pages, 2620 KB  
Article
Laser-Assisted Photo-Thermal Reaction for Ultrafast Synthesis of Single-Walled Carbon Nanotube/Copper Nanoparticles Hybrid Films as Flexible Electrodes
by Mi-Jeong Kim and Hee Jin Jeong
Nanomaterials 2024, 14(17), 1454; https://doi.org/10.3390/nano14171454 - 6 Sep 2024
Cited by 2 | Viewed by 1994
Abstract
The hybridization of single-walled carbon nanotubes (SWCNTs) and Cu nanoparticles offers a promising strategy for creating highly conductive and mechanically stable fillers for flexible printed electronics. In this study, we report the ultrafast synthesis of SWCNT/Cu hybrid nanostructures and the fabrication of flexible [...] Read more.
The hybridization of single-walled carbon nanotubes (SWCNTs) and Cu nanoparticles offers a promising strategy for creating highly conductive and mechanically stable fillers for flexible printed electronics. In this study, we report the ultrafast synthesis of SWCNT/Cu hybrid nanostructures and the fabrication of flexible electrodes under ambient conditions through a laser-induced photo-thermal reaction. Thermal energy generated from the nonradiative relaxation of the π-plasmon resonance of SWCNTs was utilized to reduce the Cu-complex (known as a metal–organic decomposition ink) into Cu nanoparticles. We systematically investigated the effects of SWCNT concentration and output laser power on the structural and electrical properties of the SWCNT/Cu hybrid electrodes. The SWCNT/Cu electrodes achieved a minimum electrical resistivity of 46 μohm·cm, comparable to that of the metal-based printed electrodes. Mechanical bending tests demonstrated that the SWCNT/Cu electrodes were highly stable and durable, with no significant deformation observed even after 1000 bending cycles. Additionally, the electrodes showed rapid temperature increases and stable Joule heating performance, reaching temperatures of nearly 80 °C at an applied voltage of less than 3.5 V. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

13 pages, 10058 KB  
Article
Hot Electrons Induced by Localized Surface Plasmon Resonance in Ag/g-C3N4 Schottky Junction for Photothermal Catalytic CO2 Reduction
by Peng Jiang, Kun Wang, Wenrui Liu, Yuhang Song, Runtian Zheng, Lihua Chen and Baolian Su
Polymers 2024, 16(16), 2317; https://doi.org/10.3390/polym16162317 - 16 Aug 2024
Cited by 7 | Viewed by 2449
Abstract
Converting carbon dioxide (CO2) into high-value-added chemicals using solar energy is a promising approach to reducing carbon dioxide emissions; however, single photocatalysts suffer from quick the recombination of photogenerated electron–hole pairs and poor photoredox ability. Herein, silver (Ag) nanoparticles featuring with [...] Read more.
Converting carbon dioxide (CO2) into high-value-added chemicals using solar energy is a promising approach to reducing carbon dioxide emissions; however, single photocatalysts suffer from quick the recombination of photogenerated electron–hole pairs and poor photoredox ability. Herein, silver (Ag) nanoparticles featuring with localized surface plasmon resonance (LSPR) are combined with g-C3N4 to form a Schottky junction for photothermal catalytic CO2 reduction. The Ag/g-C3N4 exhibits higher photocatalytic CO2 reduction activity under UV-vis light; the CH4 and CO evolution rates are 10.44 and 88.79 µmol·h−1·g−1, respectively. Enhanced photocatalytic CO2 reduction performances are attributed to efficient hot electron transfer in the Ag/g-C3N4 Schottky junction. LSPR-induced hot electrons from Ag nanoparticles improve the local reaction temperature and promote the separation and transfer of photogenerated electron–hole pairs. The charge carrier transfer route was investigated by in situ irradiated X-ray photoelectron spectroscopy (XPS). The three-dimensional finite-difference time-domain (3D-FDTD) method verified the strong electromagnetic field at the interface between Ag and g-C3N4. The photothermal catalytic CO2 reduction pathway of Ag/g-C3N4 was investigated using in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS). This study examines hot electron transfer in the Ag/g-C3N4 Schottky junction and provides a feasible way to design a plasmonic metal/polymer semiconductor Schottky junction for photothermal catalytic CO2 reduction. Full article
(This article belongs to the Special Issue Advances in Photoelectric Functional Polymer Materials)
Show Figures

Figure 1

25 pages, 5683 KB  
Review
Noble Metal Nanoparticle-Based Photothermal Therapy: Development and Application in Effective Cancer Therapy
by Shujie Yu, Guoyu Xia, Nan Yang, Longlong Yuan, Jianmin Li, Qingluo Wang, Dingyang Li, Lijun Ding, Zhongxiong Fan and Jinyao Li
Int. J. Mol. Sci. 2024, 25(11), 5632; https://doi.org/10.3390/ijms25115632 - 22 May 2024
Cited by 40 | Viewed by 6891
Abstract
Photothermal therapy (PTT) is a promising cancer therapy modality with significant advantages such as precise targeting, convenient drug delivery, better efficacy, and minimal adverse effects. Photothermal therapy effectively absorbs the photothermal transducers in the near-infrared region (NIR), which induces the photothermal effect to [...] Read more.
Photothermal therapy (PTT) is a promising cancer therapy modality with significant advantages such as precise targeting, convenient drug delivery, better efficacy, and minimal adverse effects. Photothermal therapy effectively absorbs the photothermal transducers in the near-infrared region (NIR), which induces the photothermal effect to work. Although PTT has a better role in tumor therapy, it also suffers from low photothermal conversion efficiency, biosafety, and incomplete tumor elimination. Therefore, the use of nanomaterials themselves as photosensitizers, the targeted modification of nanomaterials to improve targeting efficiency, or the combined use of nanomaterials with other therapies can improve the therapeutic effects and reduce side effects. Notably, noble metal nanomaterials have attracted much attention in PTT because they have strong surface plasmon resonance and an effective absorbance light at specific near-infrared wavelengths. Therefore, they can be used as excellent photosensitizers to mediate photothermal conversion and improve its efficiency. This paper provides a comprehensive review of the key role played by noble metal nanomaterials in tumor photothermal therapy. It also describes the major challenges encountered during the implementation of photothermal therapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

12 pages, 2838 KB  
Article
Correlation between Plasmonic and Thermal Properties of Metallic Nanoparticles
by Inès Abid, Javier González-Colsa, Christophe Naveaux, Andreea Campu, Célia Arib, Monica Focsan, Pablo Albella, Mathieu Edely and Marc Lamy de La Chapelle
Nanomaterials 2024, 14(10), 820; https://doi.org/10.3390/nano14100820 - 7 May 2024
Cited by 3 | Viewed by 2922
Abstract
Here, we investigate the correlation between the heat generated by gold nanoparticles, in particular nanospheres and nanobipyramids, and their plasmonic response manifested by the presence of Localized Surface Plasmon Resonances (LSPRs). Using a tunable laser and a thermal camera, we measure the temperature [...] Read more.
Here, we investigate the correlation between the heat generated by gold nanoparticles, in particular nanospheres and nanobipyramids, and their plasmonic response manifested by the presence of Localized Surface Plasmon Resonances (LSPRs). Using a tunable laser and a thermal camera, we measure the temperature increase induced by colloidal nanoparticles in an aqueous solution as a function of the excitation wavelength in the optical regime. We demonstrate that the photothermal performances of the nanoparticles are strongly related not only to their plasmonic properties but also to the size and shape of the nanoparticles. The contribution of the longitudinal and transversal modes in gold nanobipyramids is also analyzed in terms of heat generation. These results will guide us to design appropriate nanoparticles to act as efficient heat nanosources. Full article
Show Figures

Figure 1

12 pages, 4406 KB  
Article
Applications of Cu2+-Loaded Silica Nanoparticles to Photothermal Therapy and Tumor-Specific Fluorescence Imaging
by Ji-Ho Park, Yejin Sung, SeongHoon Jo, Seung Ho Lee, Ju Hee Ryu, In-Cheol Sun and Cheol-Hee Ahn
J. Funct. Biomater. 2024, 15(4), 81; https://doi.org/10.3390/jfb15040081 - 25 Mar 2024
Cited by 6 | Viewed by 2805
Abstract
Copper-based nanomaterials have been employed as therapeutic agents for cancer therapy and diagnosis. Nevertheless, persistent challenges, such as cellular toxicity, non-uniform sizes, and low photothermal efficiency, often constrain their applications. In this study, we present Cu2+-loaded silica nanoparticles fabricated through the [...] Read more.
Copper-based nanomaterials have been employed as therapeutic agents for cancer therapy and diagnosis. Nevertheless, persistent challenges, such as cellular toxicity, non-uniform sizes, and low photothermal efficiency, often constrain their applications. In this study, we present Cu2+-loaded silica nanoparticles fabricated through the chelation of Cu2+ ions by silanol groups. The integration of Cu2+ ions into uniformly sized silica nanoparticles imparts a photothermal therapy effect. Additionally, the amine functionalization of the silica coating facilitates the chemical conjugation of tumor-specific fluorescence probes. These probes are strategically designed to remain in an ‘off’ state through the Förster resonance energy transfer mechanism until exposed to cysteine enzymes in cancer cells, inducing the recovery of their fluorescence. Consequently, our Cu2+-loaded silica nanoparticles demonstrate an efficient photothermal therapy effect and selectively enable cancer imaging. Full article
(This article belongs to the Special Issue Biomaterials in Medical Diagnosis and Treatment)
Show Figures

Figure 1

17 pages, 6409 KB  
Article
Size Dependence of Gold Nanorods for Efficient and Rapid Photothermal Therapy
by Wei Zhou, Yanhua Yao, Hailing Qin, Xiaobo Xing, Zongbao Li, Min Ouyang and Haihua Fan
Int. J. Mol. Sci. 2024, 25(4), 2018; https://doi.org/10.3390/ijms25042018 - 7 Feb 2024
Cited by 8 | Viewed by 3460
Abstract
In recent years, gold nanomaterials have become a hot topic in photothermal tumor therapy due to their unique surface plasmon resonance characteristics. The effectiveness of photothermal therapy is highly dependent on the shape and size of gold nanoparticles. In this work, we investigate [...] Read more.
In recent years, gold nanomaterials have become a hot topic in photothermal tumor therapy due to their unique surface plasmon resonance characteristics. The effectiveness of photothermal therapy is highly dependent on the shape and size of gold nanoparticles. In this work, we investigate the photothermal therapeutic effects of four different sizes of gold nanorods (GNRs). The results show that the uptake of short GNRs with aspect ratios 3.3–3.5 by cells is higher than that of GNRs with aspect ratios 4–5.5. Using a laser with single pulse energy as low as 28 pJ laser for 20 s can induce the death of liver cancer cells co-cultured with short GNRs. Long GNRs required twice the energy to achieve the same therapeutic effect. The dual-temperature model is used to simulate the photothermal response of intracellular clusters irradiated by a laser. It is found that small GNRs are easier to compact because of their morphological characteristics, and the electromagnetic coupling between GNRs is better, which increases the internal field enhancement, resulting in higher local temperature. Compared with a single GNR, GNR clusters are less dependent on polarization and wavelength, which is more conducive to the flexible selection of excitation laser sources. Full article
(This article belongs to the Special Issue Functional Optical Nano/Micromaterials 2.0)
Show Figures

Figure 1

21 pages, 5037 KB  
Review
Recent Studies on Metal-Embedded Silica Nanoparticles for Biological Applications
by Hye-Seong Cho, Mi Suk Noh, Yoon-Hee Kim, Jayoung Namgung, Kwanghee Yoo, Min-Sup Shin, Cho-Hee Yang, Young Jun Kim, Seung-Ju Yu, Hyejin Chang, Won Yeop Rho and Bong-Hyun Jun
Nanomaterials 2024, 14(3), 268; https://doi.org/10.3390/nano14030268 - 26 Jan 2024
Cited by 14 | Viewed by 4491
Abstract
Recently, silica nanoparticles (NPs) have attracted considerable attention as biocompatible and stable templates for embedding noble metals. Noble-metal-embedded silica NPs utilize the exceptional optical properties of novel metals while overcoming the limitations of individual novel metal NPs. In addition, the structure of metal-embedded [...] Read more.
Recently, silica nanoparticles (NPs) have attracted considerable attention as biocompatible and stable templates for embedding noble metals. Noble-metal-embedded silica NPs utilize the exceptional optical properties of novel metals while overcoming the limitations of individual novel metal NPs. In addition, the structure of metal-embedded silica NPs decorated with small metal NPs around the silica core results in strong signal enhancement in localized surface plasmon resonance and surface-enhanced Raman scattering. This review summarizes recent studies on metal-embedded silica NPs, focusing on their unique designs and applications. The characteristics of the metal-embedded silica NPs depend on the type and structure of the embedded metals. Based on this progress, metal-embedded silica NPs are currently utilized in various spectroscopic applications, serving as nanozymes, detection and imaging probes, drug carriers, photothermal inducers, and bioactivation molecule screening identifiers. Owing to their versatile roles, metal-embedded silica NPs are expected to be applied in various fields, such as biology and medicine, in the future. Full article
(This article belongs to the Special Issue Synthesis and Application of Optical Nanomaterials)
Show Figures

Figure 1

19 pages, 4477 KB  
Article
Laser-Induced Intracellular Delivery: Exploiting Gold-Coated Spiky Polymeric Nanoparticles and Gold Nanorods under Near-Infrared Pulses for Single-Cell Nano-Photon-Poration
by Ashish Kumar, Bishal Kumar Nahak, Pallavi Gupta, Tuhin Subhra Santra and Fan-Gang Tseng
Micromachines 2024, 15(2), 168; https://doi.org/10.3390/mi15020168 - 23 Jan 2024
Cited by 5 | Viewed by 3351
Abstract
This study explores the potential of laser-induced nano-photon-poration as a non-invasive technique for the intracellular delivery of micro/macromolecules at the single-cell level. This research proposes the utilization of gold-coated spiky polymeric nanoparticles (Au-PNPs) and gold nanorods (GNRs) to achieve efficient intracellular micro/macromolecule delivery [...] Read more.
This study explores the potential of laser-induced nano-photon-poration as a non-invasive technique for the intracellular delivery of micro/macromolecules at the single-cell level. This research proposes the utilization of gold-coated spiky polymeric nanoparticles (Au-PNPs) and gold nanorods (GNRs) to achieve efficient intracellular micro/macromolecule delivery at the single-cell level. By shifting the operating wavelength towards the near-infrared (NIR) range, the intracellular delivery efficiency and viability of Au-PNP-mediated photon-poration are compared to those using GNR-mediated intracellular delivery. Employing Au-PNPs as mediators in conjunction with nanosecond-pulsed lasers, a highly efficient intracellular delivery, while preserving high cell viability, is demonstrated. Laser pulses directed at Au-PNPs generate over a hundred hot spots per particle through plasmon resonance, facilitating the formation of photothermal vapor nanobubbles (PVNBs). These PVNBs create transient pores, enabling the gentle transfer of cargo from the extracellular to the intracellular milieu, without inducing deleterious effects in the cells. The optimization of wavelengths in the NIR region, coupled with low laser fluence (27 mJ/cm2) and nanoparticle concentrations (34 µg/mL), achieves outstanding delivery efficiencies (96%) and maintains high cell viability (up to 99%) across the various cell types, including cancer and neuronal cells. Importantly, sustained high cell viability (90–95%) is observed even 48 h post laser exposure. This innovative development holds considerable promise for diverse applications, encompassing drug delivery, gene therapy, and regenerative medicine. This study underscores the efficiency and versatility of the proposed technique, positioning it as a valuable tool for advancing intracellular delivery strategies in biomedical applications. Full article
(This article belongs to the Special Issue Biosensors for Biomedical and Environmental Applications, Volume 2)
Show Figures

Figure 1

14 pages, 3760 KB  
Article
Synthesis of Multifunctional Mn3O4-Ag2S Janus Nanoparticles for Enhanced T1-Magnetic Resonance Imaging and Photo-Induced Tumor Therapy
by Yuguang Lu, Yuling Wu, Zhe Tang, Yike Hou, Mingyue Cui, Shuqi Huang, Binghua Long, Zhangsen Yu, Muhammad Zubair Iqbal and Xiangdong Kong
Sensors 2023, 23(21), 8930; https://doi.org/10.3390/s23218930 - 2 Nov 2023
Cited by 4 | Viewed by 2378
Abstract
The global burden of cancer is increasing rapidly, and nanomedicine offers promising prospects for enhancing the life expectancy of cancer patients. Janus nanoparticles (JNPs) have garnered considerable attention due to their asymmetric geometry, enabling multifunctionality in drug delivery and theranostics. However, achieving precise [...] Read more.
The global burden of cancer is increasing rapidly, and nanomedicine offers promising prospects for enhancing the life expectancy of cancer patients. Janus nanoparticles (JNPs) have garnered considerable attention due to their asymmetric geometry, enabling multifunctionality in drug delivery and theranostics. However, achieving precise control over the self-assembly of JNPs in solution at the nanoscale level poses significant challenges. Herein, a low-temperature reversed-phase microemulsion system was used to obtain homogenous Mn3O4-Ag2S JNPs, which showed significant potential in cancer theranostics. Structural characterization revealed that the Ag2S (5–10 nm) part was uniformly deposited on a specific surface of Mn3O4 to form a Mn3O4-Ag2S Janus morphology. Compared to the single-component Mn3O4 and Ag2S particles, the fabricated Mn3O4-Ag2S JNPs exhibited satisfactory biocompatibility and therapeutic performance. Novel diagnostic and therapeutic nanoplatforms can be guided using the magnetic component in JNPs, which is revealed as an excellent T1 contrast enhancement agent in magnetic resonance imaging (MRI) with multiple functions, such as photo-induced regulation of the tumor microenvironment via producing reactive oxygen species and second near-infrared region (NIR-II) photothermal excitation for in vitro tumor-killing effects. The prime antibacterial and promising theranostics results demonstrate the extensive potential of the designed photo-responsive Mn3O4-Ag2S JNPs for biomedical applications. Full article
(This article belongs to the Special Issue Advances in Functional Nanocomposite Materials for Bioapplications)
Show Figures

Figure 1

Back to TopTop