Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = toxic fume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 316 KiB  
Review
Aerotoxic Syndrome—Susceptibility and Recovery
by Jeremy J. Ramsden
Toxics 2025, 13(6), 420; https://doi.org/10.3390/toxics13060420 - 22 May 2025
Viewed by 488
Abstract
Significant numbers of aircrew and jet airline passengers are affected by post-flight symptoms of ill health, usually nowadays labelled “aerotoxic syndrome”. It could be inferred from a large passenger survey carried out in the Netherlands that up to 50% of flights may engender [...] Read more.
Significant numbers of aircrew and jet airline passengers are affected by post-flight symptoms of ill health, usually nowadays labelled “aerotoxic syndrome”. It could be inferred from a large passenger survey carried out in the Netherlands that up to 50% of flights may engender malaise to varying degrees, and up to 50% of the population might be susceptible to suffering from actual intoxication from the contaminants known to occur in aircraft cabin air. In-flight measurements of its composition have revealed the presence of known neurotoxins, notably tricresyl phosphate and carbon monoxide, both of which can enter the cabin air as it is bled off the main engines. This study reviews the quantitative aspects of this evidence and estimates the susceptibility of the population to neurological damage at the measured levels of contamination, its typical impacts on health, and the likelihood and timescales of post-exposure recovery. Airworthiness directives already mandate that crew and passenger compartment air must be free from harmful or hazardous vapours and gases, but uncertainty regarding the nature of these particular hazards has led to this important aspect of airworthiness having been hitherto unduly neglected. The continuing exponential growth of air passenger traffic means that cabin air contamination will eventually become a major public health hazard if effective action is not taken, some possible courses of which are discussed. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

31 pages, 4089 KiB  
Article
A Pilot Investigation of Circulating miRNA Expression in Individuals Exposed to Aluminum and Welding Fumes
by Gözde Öztan, Halim İşsever, Tuğçe İşsever, Fatma Oğuz, Sevgi Canbaz, Canan Küçükgergin and Kazım Yalçın Arga
Curr. Issues Mol. Biol. 2025, 47(5), 306; https://doi.org/10.3390/cimb47050306 - 26 Apr 2025
Viewed by 331
Abstract
The objectives of this study comprise the identification of key miRNAs and their target genes associated with severe tolerance in individuals exposed to aluminum and welding fumes, and the elucidation of the underlying regulatory mechanisms. In this study, the levels of seven miRNAs [...] Read more.
The objectives of this study comprise the identification of key miRNAs and their target genes associated with severe tolerance in individuals exposed to aluminum and welding fumes, and the elucidation of the underlying regulatory mechanisms. In this study, the levels of seven miRNAs (hsa-miR-19a-3p, hsa-miR-130b-3p, hsa-miR-25-3p, hsa-miR-363-3p, hsa-miR-92a-3p, hsa-miR-24-3p, and hsa-miR-19b-3p) were analyzed using both hsa-miR-16-5p and RNU6 (U6 snRNA) as reference miRNAs to validate normalization reliability. The qRT-PCR method was used on blood serum samples from 16 workers who were exposed to aluminum, 16 workers who were exposed to welding fumes, and 16 healthy controls who were not exposed to aluminum or welding fumes. We determined heavy metal levels from serum samples of workers exposed to aluminum and welding fumes and control groups using the ICP-OES method. The expression levels of hsa-miR-19a-3p and hsa-miR-19b-3p in aluminum-exposed and control groups were found to be statistically significant (p < 0.05). When workers exposed to welding fumes were compared with the those in the control groups, the expression levels of hsa-miR-19a-3p, hsa-miR-130b-3p, hsa-miR-92a-3p, and hsa-miR-24-3p were observed to be statistically significant (p < 0.05). This study shows that the identification of miRNAs and target genes in different biological functions and pathways plays an important role in understanding the molecular mechanisms of responses to heavy metal toxicity. We share the view that the study will make a significant contribution to the literature in that seven candidate miRNAs can be used as possible biomarkers for exposure to aluminum and welding fumes in humans. Full article
(This article belongs to the Collection Bioinformatics Approaches to Biomedicine)
Show Figures

Figure 1

20 pages, 16668 KiB  
Article
Inflammatory Responses to Zn/Cu-Containing Welding Fume in Human Alveolar Epithelial and Macrophage Cell Lines, with MIP-1β/CCL4 as a Much More Sensitive Macrophage Activation Marker than IL-8 and TNF-α
by Jan Steffens, Katharina Kuth, Thomas Kraus, Wolfgang Dott, Sabrina Michael and Ralf Baumann
Int. J. Mol. Sci. 2025, 26(8), 3843; https://doi.org/10.3390/ijms26083843 - 18 Apr 2025
Viewed by 311
Abstract
Zinc (Zn)- and copper (Cu)-containing welding fumes elevate inflammatory markers (CRP, TNF-α, IL-6, IL-8) in healthy individuals and welders. Zn- and Cu-containing nanoparticles are toxic to human macrophages. Therefore, ZnO exposure limits are under discussion. In this study, the effects of Zn/Cu-containing welding [...] Read more.
Zinc (Zn)- and copper (Cu)-containing welding fumes elevate inflammatory markers (CRP, TNF-α, IL-6, IL-8) in healthy individuals and welders. Zn- and Cu-containing nanoparticles are toxic to human macrophages. Therefore, ZnO exposure limits are under discussion. In this study, the effects of Zn/Cu-containing welding fume suspensions on A549 alveolar epithelial cells (exposure concentrations: 0.01/0.1/1/10/100 µg/mL) and THP-1 macrophages (additionally 0.001 µg/mL) were investigated over a period of 48 h. Effects on apoptosis, cytotoxicity, genotoxicity, superoxide dismutase (SOD) activity, and cytokine levels (IL-6, IL-8, MIP-1β/CCL4, TNF-α) were evaluated. Welding fume exposure increased SOD activity, and it increased Annexin-V binding and cytotoxicity effects starting at 10 µg/mL in A549 cells and particularly in THP-1 macrophages. A549 cells showed increased IL-6 at 10 and 100 µg/mL, and significant IL-8 release occurred at 10 µg/mL for A549 and 0.1 µg/mL for macrophages. Exposed macrophages released TNF-α at 1 µg/mL after 24 and 48 h and MIP-1β/CCL4 at 0.01 µg/mL after 6 h and at 0.001 µg/mL after 48 h. No genotoxic effects were detected. MIP-1β/CCL4 is a sensitive new biomarker for human macrophages exposed to Zn/Cu-containing welding fumes. The findings suggest that Zn/Cu particles affect lung cells already at doses below current occupational thresholds. Full article
(This article belongs to the Special Issue Macrophages in Human Diseases and Their Treatment)
Show Figures

Figure 1

19 pages, 9734 KiB  
Article
A Life Cycle Assessment of HDPE Plastic Milk Bottle Waste Within Concrete Composites and Their Potential in Residential Building and Construction Applications
by Robert Haigh
Urban Sci. 2025, 9(4), 116; https://doi.org/10.3390/urbansci9040116 - 7 Apr 2025
Viewed by 524
Abstract
Plastic waste management remains a significant global challenge, with limited recycling opportunities contributing to its status as one of the highest waste producers. In Australia, the recovery rate for plastic waste is 12.5%, resulting in a high percentage of plastics being landfilled. Common [...] Read more.
Plastic waste management remains a significant global challenge, with limited recycling opportunities contributing to its status as one of the highest waste producers. In Australia, the recovery rate for plastic waste is 12.5%, resulting in a high percentage of plastics being landfilled. Common disposal methods, such as incineration and landfilling, are environmentally damaging, with incineration emitting harmful gases and landfilling causing contamination. Recycling, while preferable, faces difficulties due to contamination and infrastructure challenges. However, alternative solutions, such as integrating waste plastic into concrete, present an opportunity to both reduce plastic waste and enhance the economic value of recycled materials. This study evaluates the potential of waste plastic milk bottles (PMBs) in residential concrete by assessing their mechanical strength, environmental impact, and variability in greenhouse gas (GHG) emissions. This study demonstrated that replacing up to 10% of cement with silica fume-modified plastic milk bottle (SFPMB) waste granules maintained comparable compressive strength to traditional concrete. The addition of metakaolin to the SFPMB mix design (SFMKPMB) further improved the material’s strength by 28%. Life cycle assessment (LCA) results revealed reductions in global warming potential (GWP), human toxicity potential (HTP), and fossil depletion potential (FDP), with SFMKPMB showing the greatest environmental savings. A Monte Carlo simulation evaluated variability factors, revealing that additional transportation and energy requirements increased GHG emissions, though the SFMKPMB mix ultimately resulted in the lowest overall material GHG emissions. This study demonstrates the complexity of assessing “green” materials and highlights how material variability and energy use can influence the sustainability of waste-derived composites. Despite challenges, incorporating waste plastics into concrete offers a promising strategy for mitigating landfill waste and reducing environmental impacts, especially as renewable energy adoption increases. Full article
Show Figures

Figure 1

22 pages, 12709 KiB  
Article
Synergistic Reduction in Asphalt VOC Emissions by Hydrochloric Acid-Modified Zeolite and LDHs
by Haowei Zhao, Anqi Chen, Shaopeng Wu, Haiqin Xu, Huan Wang and Yang Lv
Materials 2024, 17(22), 5664; https://doi.org/10.3390/ma17225664 - 20 Nov 2024
Viewed by 850
Abstract
Asphalt releases a large number of irritating fumes during construction and use, which is a serious emission pollution that not only damages the atmospheric environment but also produces highly toxic and carcinogenic volatile organic compounds (VOCs), posing a health risk to human beings. [...] Read more.
Asphalt releases a large number of irritating fumes during construction and use, which is a serious emission pollution that not only damages the atmospheric environment but also produces highly toxic and carcinogenic volatile organic compounds (VOCs), posing a health risk to human beings. In this study, a compound-doped modified bitumen for reducing VOC emission was prepared by using zeolite as the main adsorbent material, modified by hydrochloric acid, and LDHs as a synergistic adsorbent material. By determining its basic and rheological properties, the results show that the compounding of LDHs and HCL-modified zeolite added to asphalt can improve the high-temperature performance of asphalt binder, but at the same time, the anti-fatigue property will be decreased. By GC-MS experimental analysis, a total of 72.2% fewer volatile organic compounds (VOCs) were released by the compound modified asphalt compound than by virgin asphalt, which resulted in a significant reduction in asphalt fume emissions. It shows that the asphalt VOC molecules are well adsorbed by the porous adsorption of LDHs and zeolite materials, and it is also found experimentally that they inhibit the emission of VOCs through the blocking and adsorption effects. This study provides a scientific basis for inhibiting the emission of VOCs during asphalt pavement construction. Full article
Show Figures

Figure 1

24 pages, 15506 KiB  
Article
Stabilization and Solidification of Beryllium Waste: Influence of the Cement Composition on the Corrosion of Be Metal
by Richard Laflotte, Céline Cau Dit Coumes, Jérémy Haas, David Rodrigues, Céline Cannes, Sylvie Delpech and Murielle Rivenet
Materials 2024, 17(22), 5401; https://doi.org/10.3390/ma17225401 - 5 Nov 2024
Viewed by 1343
Abstract
Beryllium metal is used as neutron moderator and reflector or multiplier in certain types of fission or fusion reactors. Dismantling of these reactors will produce radioactive beryllium waste, classified as low- or intermediate-level waste, that will need to be stabilised and solidified before [...] Read more.
Beryllium metal is used as neutron moderator and reflector or multiplier in certain types of fission or fusion reactors. Dismantling of these reactors will produce radioactive beryllium waste, classified as low- or intermediate-level waste, that will need to be stabilised and solidified before being sent to disposal. The cementation process is under consideration because it may offer a good compromise between simplicity of implementation, cost, and quality of the final cemented wasteform. Nevertheless, knowledge of the corrosion behaviour of Be metal in a cement-based matrix is still limited, partly due to the high toxicity of Be that complicates testing. This study thus investigates Be corrosion in cement suspensions using potentiometry, voltammetry, and electrochemical impedance spectroscopy. Among the five different investigated systems (Portland cement blended without or with 40 wt.% silica fume, calcium sulfoaluminate clinker blended without or with 15% anhydrite, and calcium aluminate cement), Portland cement blended with 40% silica fume and calcium sulfoaluminate cement comprising 15% anhydrite are the most effective in mitigating beryllium corrosion. They allow reduction in the corrosion current by factors of 4 and 50, respectively, as compared to Portland cement. Full article
Show Figures

Graphical abstract

17 pages, 4357 KiB  
Article
Biocompatibility Analysis of Bio-Based and Synthetic Silica Nanoparticles during Early Zebrafish Development
by Cinzia Bragato, Roberta Mazzotta, Andrea Persico, Rossella Bengalli, Mariana Ornelas, Filipa Gomes, Patrizia Bonfanti and Paride Mantecca
Int. J. Mol. Sci. 2024, 25(10), 5530; https://doi.org/10.3390/ijms25105530 - 18 May 2024
Cited by 4 | Viewed by 2193
Abstract
During the twenty-first century, engineered nanomaterials (ENMs) have attracted rising interest, globally revolutionizing all industrial sectors. The expanding world population and the implementation of new global policies are increasingly pushing society toward a bioeconomy, focused on fostering the adoption of bio-based nanomaterials that [...] Read more.
During the twenty-first century, engineered nanomaterials (ENMs) have attracted rising interest, globally revolutionizing all industrial sectors. The expanding world population and the implementation of new global policies are increasingly pushing society toward a bioeconomy, focused on fostering the adoption of bio-based nanomaterials that are functional, cost-effective, and potentially secure to be implied in different areas, the medical field included. This research was focused on silica nanoparticles (SiO2-NPs) of bio-based and synthetic origin. SiO2-NPs are composed of silicon dioxide, the most abundant compound on Earth. Due to their characteristics and biocompatibility, they are widely used in many applications, including the food industry, synthetic processes, medical diagnosis, and drug delivery. Using zebrafish embryos as in vivo models, we evaluated the effects of amorphous silica bio-based NPs from rice husk (SiO2-RHSK NPs) compared to commercial hydrophilic fumed silica NPs (SiO2-Aerosil200). We evaluated the outcomes of embryo exposure to both nanoparticles (NPs) at the histochemical and molecular levels to assess their safety profile, including developmental toxicity, neurotoxicity, and pro-inflammatory potential. The results showed differences between the two silica NPs, highlighting that bio-based SiO2-RHSK NPs do not significantly affect neutrophils, macrophages, or other innate immune system cells. Full article
(This article belongs to the Special Issue Zebrafish Model for Toxicological and Pharmacological Research)
Show Figures

Figure 1

18 pages, 3949 KiB  
Article
Protective Effects of Dietary Vitamin D3, Turmeric Powder, and Their Combination against Gasoline Intoxication in Rats
by Gulfira A. Yestemirova, Zura B. Yessimsiitova and Michael Danilenko
Pharmaceuticals 2024, 17(5), 619; https://doi.org/10.3390/ph17050619 - 10 May 2024
Viewed by 1983
Abstract
The inhalation of gasoline vapors (GV) is associated with developing various pathologies. Particularly, oil refinery and gas station workers are at a greater risk of developing lung cancer, kidney cancer, bladder cancer, and hematological disorders, including acute myeloid leukemia. Therefore, preventing the harmful [...] Read more.
The inhalation of gasoline vapors (GV) is associated with developing various pathologies. Particularly, oil refinery and gas station workers are at a greater risk of developing lung cancer, kidney cancer, bladder cancer, and hematological disorders, including acute myeloid leukemia. Therefore, preventing the harmful effects of GV and alleviating their consequences appear to be important and timely issues. In this study, we investigated the potential of vitamin D3, turmeric powder, and their combination to ameliorate the toxicity of gasoline fumes in rats. Separate groups of animals fed with a standard rodent diet, with or without the supplementation of vitamin D3 (750 IU/kg body weight) and/or turmeric powder (0.5%, w/w, in food), were untreated or treated with GV (11.5 ± 1.3 cm3/h/m3/day) for 30, 60, or 90 days. Changes in the body weight were monitored weekly. Histological, biochemical, and hematological parameters were determined at the end of each treatment period. While the exposure of rats to GV resulted in a time-dependent reduction in body weight, supplementation with vitamin D3, but not with turmeric root powder or their combination, partially prevented weight loss. Macroscopical and histological analyses showed pronounced time-dependent changes in the organs and tissues of GV-treated rats. These included alveolar wall collapse in the lungs, the destruction of the lobular structure and hepatocytolysis in the liver, the shrinkage and fragmentation of glomeruli in the kidneys, and the disorganization of the lymphoid follicles in the spleen. However, co-treatment with the nutritional supplements tested, especially vitamin D3, noticeably alleviated the above conditions. This was accompanied by a significant improvement in the blood chemistry and hematological parameters. Collectively, our results demonstrate that the harmful effects of environmental exposure to GV can be reduced upon supplementation of vitamin D3. The fact that the protective activity of vitamin D3 alone was higher than that of turmeric root powder or the combined treatment suggests that combinations of these supplements may not always be more beneficial than each agent applied separately. Full article
Show Figures

Figure 1

14 pages, 4479 KiB  
Article
Study on Flowability Enhancement and Performance Testing of Ultrafine Dry Powder Fire Extinguishing Agents Based on Application Requirements
by Guangbin Lu, Junchao Zhao, Yanting Zhou, Yangyang Fu, Song Lu and Heping Zhang
Fire 2024, 7(4), 146; https://doi.org/10.3390/fire7040146 - 18 Apr 2024
Cited by 3 | Viewed by 2157
Abstract
Flowability greatly affects the application of ultrafine dry powder fire extinguishing systems, while hydrophobicity and acute inhalation toxicity are concerns for fire extinguishing agents. In the present study, we examined the impact of hydrophobic fumed silica on the hydrophobicity and flow properties of [...] Read more.
Flowability greatly affects the application of ultrafine dry powder fire extinguishing systems, while hydrophobicity and acute inhalation toxicity are concerns for fire extinguishing agents. In the present study, we examined the impact of hydrophobic fumed silica on the hydrophobicity and flow properties of ammonium dihydrogen phosphate as the base. Our findings revealed that incorporating 6 wt.% of hydrophobic fumed silica resulted in optimal flowability, accompanied by a hydrophobicity angle of 126.48°. The excessive inclusion of hydrophobic fumed silica impeded powder flow within the ammonium dihydrogen phosphate particles. Furthermore, the investigations indicated that the incorporation of a small quantity of bentonite (0.5 wt.%) amongst the three functional additives—bentonite, magnesium stearate, and perlite—offered further enhancements in powder flowability. In fire extinguishing experiments’ total flooding conditions (1 m3), the designed UDPA exhibited a minimum required extinguishing concentration of merely 41.5 g/m3, which is better than the publicly reported value. Moreover, observations on the well-being of mice subjected to nearly three times the extinguishing concentration at 60 s, 10 min, and 3 days, respectively, demonstrated the absence of acute inhalation toxicity associated with the designed UDPA. Collectively, the developed ultrafine dry powder fire extinguishing agent displayed promising performance and possesses broad applicability. Full article
(This article belongs to the Special Issue Advances in New Energy Materials and Fire Safety)
Show Figures

Figure 1

21 pages, 5559 KiB  
Article
Oral Excretion Kinetics of Food-Additive Silicon Dioxides and Their Effect on In Vivo Macrophage Activation
by Ri-Ye Kwon, Su-Min Youn and Soo-Jin Choi
Int. J. Mol. Sci. 2024, 25(3), 1614; https://doi.org/10.3390/ijms25031614 - 28 Jan 2024
Cited by 1 | Viewed by 1991
Abstract
A food additive, silicon dioxide (SiO2) is commonly used in the food industry as an anti-caking agent. The presence of nanoparticles (NPs) in commercial food-grade SiO2 has raised concerns regarding their potential toxicity related to nano size. While recent studies [...] Read more.
A food additive, silicon dioxide (SiO2) is commonly used in the food industry as an anti-caking agent. The presence of nanoparticles (NPs) in commercial food-grade SiO2 has raised concerns regarding their potential toxicity related to nano size. While recent studies have demonstrated the oral absorption and tissue distribution of food-additive SiO2 particles, limited information is available about their excretion behaviors and potential impact on macrophage activation. In this study, the excretion kinetics of two differently manufactured (fumed and precipitated) SiO2 particles were evaluated following repeated oral administration to rats for 28 d. The excretion fate of their intact particles, decomposed forms, or ionic forms was investigated in feces and urine, respectively. Monocyte uptake, Kupffer cell activation, and cytokine release were assessed after the oral administration of SiO2 particles. Additionally, their intracellular fates were determined in Raw 264.7 cells. The results revealed that the majority of SiO2 particles were not absorbed but directly excreted via feces in intact particle forms. Only a small portion of SiO2 was eliminated via urine, predominantly in the form of bioconverted silicic acid and slightly decomposed ionic forms. SiO2 particles were mainly present in particle forms inside cells, followed by ionic and silicic acid forms, indicating their slow conversion into silicic acid after cellular uptake. No effects of the manufacturing method were observed on excretion and fates. Moreover, no in vivo monocyte uptake, Kupffer cell polarization, or cytokine release were induced by orally administered SiO2 particles. These finding contribute to understanding the oral toxicokinetics of food-additive SiO2 and provide valuable insights into its potential toxicity. Full article
(This article belongs to the Special Issue Nanotoxicology and Nanosafety 4.0)
Show Figures

Figure 1

13 pages, 1964 KiB  
Article
In Vitro Profiling of Toxicity Effects of Different Environmental Factors on Skin Cells
by Minghui Fu, Yingxin Yang, Xiaolan Zhang, Bingli Lei, Tian Chen and Yuanqi Chen
Toxics 2024, 12(2), 108; https://doi.org/10.3390/toxics12020108 - 27 Jan 2024
Cited by 2 | Viewed by 2407
Abstract
The skin is constantly exposed to a variety of environmental threats. Therefore, the influence of environmental factors on skin damage has always been a matter of concern. This study aimed to investigate the cytotoxic effects of different environmental factors, including cooking oil fumes [...] Read more.
The skin is constantly exposed to a variety of environmental threats. Therefore, the influence of environmental factors on skin damage has always been a matter of concern. This study aimed to investigate the cytotoxic effects of different environmental factors, including cooking oil fumes (COFs), haze (PM2.5), and cigarette smoke (CS), on epidermal HaCaT cells and dermal fibroblast (FB) cells. Cell viability, intracellular reactive oxygen species (ROS) generation, inflammatory cytokine levels, and collagen mRNA expression were used as toxicity endpoints. Additionally, the effects of ozone (O3) on cell viability and release of inflammatory cytokines in 3D epidermal cells were also examined. The results showed that the organic extracts of CS, COFs, and PM2.5 significantly inhibited the viability of HaCaT and FB cells at higher exposure concentrations. These extracts also increased intracellular ROS levels in FB cells. Furthermore, they significantly promoted the release of inflammatory cytokines, such as IL-1α and TNF-α, in HaCaT cells and down-regulated the mRNA expression of collagen I, III, IV, and VII in FB cells. Comparatively, SC organic extracts exhibited stronger cytotoxicity to skin cells compared to PM2.5 and COFs. Additionally, O3 at all test concentrations significantly inhibited the viability of 3D epidermal cells in a concentration-dependent manner and markedly increased the levels of TNF-α and IL-1α in 3D epidermal cells. These findings emphasize the potential cytotoxicity of COFs, PM2.5, CS, and O3 to skin cells, which may lead to skin damage; therefore, we should pay attention to these environmental factors and take appropriate measures to protect the skin from their harmful effects. Full article
(This article belongs to the Special Issue Toxicity and Human Health Assessment of Air Pollutants)
Show Figures

Figure 1

17 pages, 5884 KiB  
Article
The Influence of Manganese Slag on the Properties of Ultra-High-Performance Concrete
by Wenyu Xu, Jia Yu and Hui Wang
Materials 2024, 17(2), 497; https://doi.org/10.3390/ma17020497 - 20 Jan 2024
Cited by 1 | Viewed by 1782
Abstract
Manganese slag (MS) is a kind of chemical waste, which may pollute the environment if conventional handling methods (stacking and landfill) are applied. Ultra-high-performance concrete (UHPC)—with considerably high compactness and strength—can be used not only as a special concrete material, but also to [...] Read more.
Manganese slag (MS) is a kind of chemical waste, which may pollute the environment if conventional handling methods (stacking and landfill) are applied. Ultra-high-performance concrete (UHPC)—with considerably high compactness and strength—can be used not only as a special concrete material, but also to solidify the toxic substances in solid waste. This study proposes the addition of MS to UHPC, where the mass ratio of MS varies from 0% to 40% in the total mass of MS and silica fume. The effects of MS on the fluidity, plastic viscosity, and yield shear stress are investigated, and the flexural strength, compressive strength, and dry shrinkage rate of UHPC with MS are measured. X-ray diffraction (XRD) spectrum and energy spectrum analysis (EDS) diagrams are obtained to analyze the performance mechanism of the UHPC. A rheological study confirms that the slump flow increases with the increasing rate of 0–14.3%, while the yield shear stress and plastic viscosity decrease with the rates of 0–29.6% and 0–22.2%, respectively. The initial setting time increases with the mass ratio of MS by 0–14.3%, and MS has a positive effect on the flexural and compressive strengths of UHPC. In the early curing stage (less than 14 days), the increasing rate in the specimens increases with the curing age; meanwhile, when the curing age reaches 14 days or higher, the increasing rate decreases with increasing curing age. The compactness of UHPC is increased by adding MS. Furthermore, MS can increase the elements of Al and decrease crystals of Ca(OH)2 and calcium silicate hydrate in UHPC. Full article
Show Figures

Figure 1

22 pages, 1973 KiB  
Article
Chemical Ecology, Detection and Identification of Subterranean Termites Based on Electronic-Nose Volatile Emissions Analysis
by Alphus Dan Wilson and Lisa Beth Forse
Environments 2024, 11(1), 15; https://doi.org/10.3390/environments11010015 - 13 Jan 2024
Cited by 3 | Viewed by 3256
Abstract
The effective monitoring and identification of existing subterranean termite populations within coarse woody debris and infested wood in service depend on accurate detection. These insects are often concealed within logs, wooden support structures, walls, and floorboards of buildings. In the absence of external [...] Read more.
The effective monitoring and identification of existing subterranean termite populations within coarse woody debris and infested wood in service depend on accurate detection. These insects are often concealed within logs, wooden support structures, walls, and floorboards of buildings. In the absence of external mud tubes, termite infestations normally must be discovered through the destructive exploration of wooden structures to reveal the physical presence of these insect pests. Subterranean termite species are difficult to identify due to similarities in morphological features, but they may be readily distinguished by differences in volatile emissions from which they are divided into chemotaxonomic groups. Consequently, a more effective and nondestructive approach for detection and identification is to take advantage of unique species-specific emissions of volatile organic compounds (VOCs) from termite bodies which easily pass through wooden structures, allowing for detection without physical damage to wood and avoiding expensive DNA analysis. Electronic aroma detection analyses were conducted with an Aromascan A32S electronic-nose (e-nose) instrument, fitted with a 32-sensor conducting polymer (CP) sensor array, for discrimination between four common subterranean termite species based on differences in volatile emissions. Principal component analysis (PCA) of whole-body volatiles effectively distinguished between four termite species with the first two principal components accounting for more than 98% of sample variance (p < 0.01). Unique electronic aroma signature patterns (smellprints) were produced from e-nose sensor array outputs that allowed for the effective identification of termite species based on distinct differences in volatile metabolites released from their bodies. The e-nose methods were determined to be an improved means for rapidly detecting and monitoring termite species in wood. The method is cheaper than conventional detection methods and allows for the timelier discovery of species-specific termite infestations necessary for better management. The e-nose capability of detecting the Formosan termite in indoor living spaces was particularly significant due to the production of naphthalene, a volatile hazardous gas causing many adverse human health effects in enclosed environments. Full article
Show Figures

Figure 1

13 pages, 650 KiB  
Article
Composition of Fumes and Its Influence on the General Toxicity and Applicability of Mining Explosives
by Andrzej Biessikirski, Michał Dworzak and Michał Twardosz
Mining 2023, 3(4), 605-617; https://doi.org/10.3390/mining3040033 - 16 Oct 2023
Cited by 5 | Viewed by 3250
Abstract
The admissible concentrations of toxic fumes, which appear after blasting works in open pits and underground mine excavations, are presented in this paper. Fumes were examined according to the national standard, which was designed according to European regulations. Fumes that are taken under [...] Read more.
The admissible concentrations of toxic fumes, which appear after blasting works in open pits and underground mine excavations, are presented in this paper. Fumes were examined according to the national standard, which was designed according to European regulations. Fumes that are taken under consideration according to the European standard are carbon monoxide (CO) and nitrate oxides (NOx). The afterburning effect was not included. Analysis showed inconclusive results of possible explosive applicability in countries that are applying the general toxicity index (toxicity coefficient may vary between countries from 5 to 10) instead of the recommended European regulation. Based on the obtained results, it was concluded that the most environmentally friendly explosives are emulsion explosives. Moreover, the ammonium nitrate prill diameter has not significantly affected the fumes’ concentration; however, it significantly influences the velocity of detonation. Full article
Show Figures

Figure 1

15 pages, 1564 KiB  
Article
A Preliminary Study on the Use of Highly Aromatic Pyrolysis Oils Coming from Plastic Waste as Alternative Liquid Fuels
by Asier Asueta, Laura Fulgencio-Medrano, Rafael Miguel-Fernández, Jon Leivar, Izotz Amundarain, Ana Iruskieta, Sixto Arnaiz, Jose Ignacio Gutiérrez-Ortiz and Alexander Lopez-Urionabarrenechea
Materials 2023, 16(18), 6306; https://doi.org/10.3390/ma16186306 - 20 Sep 2023
Cited by 3 | Viewed by 1791
Abstract
In this work, the low-temperature pyrolysis of a real plastic mixture sample collected at a WEEE-authorised recycling facility has been investigated. The sample was pyrolysed in a batch reactor in different temperature and residence time conditions and auto-generated pressure by following a factorial [...] Read more.
In this work, the low-temperature pyrolysis of a real plastic mixture sample collected at a WEEE-authorised recycling facility has been investigated. The sample was pyrolysed in a batch reactor in different temperature and residence time conditions and auto-generated pressure by following a factorial design, with the objective of maximising the liquid (oil) fraction. Furthermore, the main polymers constituting the real sample were also pyrolysed in order to understand their role in the generation of oil. The pyrolysis oils were characterised and compared with commercial fuel oil number 6. The results showed that in comparison to commercial fuel oil, pyrolysis oils coming from WEEE plastic waste had similar heating values, were lighter and less viscous and presented similar toxicity profiles in fumes of combustion. Full article
(This article belongs to the Special Issue Plastic Waste Management for Environmental Protection)
Show Figures

Figure 1

Back to TopTop