Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Materials, Volume 10, Issue 7 (July 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Structural health monitoring often leverages on strain wave analysis for the reconstruction of [...] Read more.
View options order results:
result details:
Displaying articles 1-163
Export citation of selected articles as:
Open AccessArticle Construction of a Novel Three-Dimensional PEDOT/RVC Electrode Structure for Capacitive Deionization: Testing and Performance
Materials 2017, 10(7), 847; https://doi.org/10.3390/ma10070847
Received: 31 May 2017 / Revised: 18 July 2017 / Accepted: 18 July 2017 / Published: 24 July 2017
PDF Full-text (4154 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This article discusses the deposition of different amount of microstuctured poly(3,4-ethylenedioxythiophene) (PEDOT) on reticulated vitreous carbon (RVC) by electrochemical method to prepare three-dimensional (3D) PEDOT/RVC electrodes aimed to be used in capacitive deionization (CDI) technology. A CDI unit cell has been constructed here
[...] Read more.
This article discusses the deposition of different amount of microstuctured poly(3,4-ethylenedioxythiophene) (PEDOT) on reticulated vitreous carbon (RVC) by electrochemical method to prepare three-dimensional (3D) PEDOT/RVC electrodes aimed to be used in capacitive deionization (CDI) technology. A CDI unit cell has been constructed here in this study. The performance of CDI cell in the ion removal of NaCl onto the sites of PEDOT/RVC electrode has been systematically investigated in terms of flow-rate, applied electrical voltage, and increasing PEDOT loading on PEDOT/RVC electrodes. It is observed that the increase in flow-rate, electric voltage, and PEDOT loading up to a certain level improve the ion removal performance of electrode in the CDI cell. The result shows that these electrodes can be used effectively for desalination technology, as the electrosorption capacity/desalination performance of these electrodes is quite high compared to carbon materials. Moreover, the stability of the electrodes has been tested and it is reported that these electrodes are regenerative. The effect of increasing NaCl concentration on the electrosorption capacity has also been investigated for these electrodes. Finally, it has been shown that 1 m3 PEDOT-120 min/RVC electrodes from 75 mg/L NaCl feed solution produce 421, 978 L water per day of 20 mg/L NaCl final concentration. Full article
Figures

Graphical abstract

Open AccessArticle Quantitative Immobilization of Phthalocyanine onto Bacterial Cellulose for Construction of a High-Performance Catalytic Membrane Reactor
Materials 2017, 10(7), 846; https://doi.org/10.3390/ma10070846
Received: 4 July 2017 / Revised: 21 July 2017 / Accepted: 22 July 2017 / Published: 24 July 2017
PDF Full-text (2720 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We report the fabrication of a tetra-amino cobalt (II) phthalocyanine (CoPc)-immobilized bacterial cellulose (BC) functional nanocomposite, CoPc@BC, by quantitative immobilization of CoPc onto a BC membrane. Lab-cultured BC was oxidized by NaIO4 to generate aldehyde groups on BC for the subsequent CoPc
[...] Read more.
We report the fabrication of a tetra-amino cobalt (II) phthalocyanine (CoPc)-immobilized bacterial cellulose (BC) functional nanocomposite, CoPc@BC, by quantitative immobilization of CoPc onto a BC membrane. Lab-cultured BC was oxidized by NaIO4 to generate aldehyde groups on BC for the subsequent CoPc immobilization, the processing conditions were optimized by monitoring both the generated aldehyde content and the resulting CoPc loading. X-ray photoelectron spectroscopy (XPS) was employed to characterize the change of the element bonding environment during the functionalization processes. The CoPc@BC functional nanocomposite was utilized for the treatment of reactive red X-3B dye wastewater. The CoPc molecules in the CoPc@BC nanocomposite can function as an “antenna” to adsorb the target anionic dye molecules, the adsorption takes place both on the surface and in the interior of CoPc@BC. A catalytic membrane reactor (CMR) was assembled with the CoPc@BC nanocomposite, the performance of CMR was evaluated based on the catalytic oxidation behavior of reactive red X-3B, with H2O2 as an oxidant. Highly-reactive hydroxyl radical (OH) was involved in the catalytic oxidation process, as detected by electron paramagnetic resonance (EPR). Under optimal operating conditions of a flow rate of 6 mL/min, a reaction temperature of 50 °C, and an H2O2 concentration of 10 mmol/L, the decoloration rate of CMR was as high as 50 μmol⋅min−1⋅g−1. Full article
(This article belongs to the Section Advanced Composites)
Figures

Graphical abstract

Open AccessArticle On Identification of Critical Material Attributes for Compression Behaviour of Pharmaceutical Diluent Powders
Materials 2017, 10(7), 845; https://doi.org/10.3390/ma10070845
Received: 6 April 2017 / Revised: 14 June 2017 / Accepted: 20 July 2017 / Published: 23 July 2017
PDF Full-text (3319 KB) | HTML Full-text | XML Full-text
Abstract
As one of the commonly-used solid dosage forms, pharmaceutical tablets have been widely used to deliver active drugs into the human body, satisfying patient’s therapeutic requirements. To manufacture tablets of good quality, diluent powders are generally used in formulation development to increase the
[...] Read more.
As one of the commonly-used solid dosage forms, pharmaceutical tablets have been widely used to deliver active drugs into the human body, satisfying patient’s therapeutic requirements. To manufacture tablets of good quality, diluent powders are generally used in formulation development to increase the bulk of formulations and to bind other inactive ingredients with the active pharmaceutical ingredients (APIs). For formulations of a low API dose, the drug products generally consist of a large fraction of diluent powders. Hence, the attributes of diluents become extremely important and can significantly influence the final product property. Therefore, it is essential to accurately characterise the mechanical properties of the diluents and to thoroughly understand how their mechanical properties affect the manufacturing performance and properties of the final products, which will build a sound scientific basis for formulation design and product development. In this study, a comprehensive evaluation of the mechanical properties of the widely-used pharmaceutical diluent powders, including microcrystalline cellulose (MCC) powders with different grades (i.e., Avicel PH 101, Avicel PH 102, and DG), mannitol SD 100, lactose monohydrate, and dibasic calcium phosphate, were performed. The powder compressibility was assessed with Heckel and Kawakita analyses. The material elastic recovery during decompression and in storage was investigated through monitoring the change in the dimensions of the compressed tablets over time. The powder hygroscopicity was also evaluated to examine the water absorption ability of powders from the surroundings. It was shown that the MCC tablets exhibited continuous volume expansion after ejection, which is believed to be induced by (1) water absorption from the surrounding, and (2) elastic recovery. However, mannitol tablets showed volume expansion immediately after ejection, followed by the material shrinkage in storage. It is anticipated that the expansion was induced by elastic recovery to a limited extent, while the shrinkage was primarily due to the solidification during storage. It was also found that, for all powders considered, the powder compressibility and the elastic recovery depended significantly on the particle breakage tendency: a decrease in the particle breakage tendency led to a slight decrease in the powder compressibility and a significant drop in immediate elastic recovery. This implies that the particle breakage tendency is a critical material attribute in controlling the compression behaviour of pharmaceutical powders. Full article
(This article belongs to the Special Issue Materials for Drug Delivery and Biomedical Consideration)
Figures

Figure 1

Open AccessArticle Zinc Sorption Studies on Pectin-Based Biosorbents
Materials 2017, 10(7), 844; https://doi.org/10.3390/ma10070844
Received: 3 July 2017 / Revised: 18 July 2017 / Accepted: 19 July 2017 / Published: 22 July 2017
Cited by 1 | PDF Full-text (2570 KB) | HTML Full-text | XML Full-text
Abstract
The previously-obtained and characterized hybrid pectin-based beads containing agar-agar and guar gum, as well as sole pectin beads (P, for comparison) were examined for zinc ions sorption and desorption properties. The sorption kinetics and equilibrium in the studied system was described by two
[...] Read more.
The previously-obtained and characterized hybrid pectin-based beads containing agar-agar and guar gum, as well as sole pectin beads (P, for comparison) were examined for zinc ions sorption and desorption properties. The sorption kinetics and equilibrium in the studied system was described by two kinetic models (pseudo-first- and pseudo-second-order) and two isotherms (Langmuir and Freundlich), respectively. The desorption kinetics and equilibrium was also investigated by applying various inorganic acids (nitric, hydrochloric, and sulfuric acid) of various concentrations. In the case of guar gum additive, no significant change in sorption capacity compared to sole pectin beads was observed (q: 37.0 ± 2.6 and 34.7 ± 2.0 mg/g, respectively). Addition of agar-agar significantly decreased the sorption capacity to 22.3 ± 1.0 mg/g, but stripping of zinc(II) ions from this biosorbent was complete even with very diluted acids (0.01 M). Total desorption of zinc from sole pectin and pectin-guar gum beads required acid solution of higher concentration (0.1 M). Sorption rates for all biosorbents are roughly the same and maximum sorption is achieved after 4–5 h. Obtained results and the advantage of our sorbent’s shape formation ability, make the pectin-based biosorbents interesting alternative for zinc(II) ions removal. Full article
(This article belongs to the Special Issue Sorption Materials for Environment Purification)
Figures

Figure 1

Open AccessArticle Anti-Inflammatory, Immunomodulatory, and Tissue Repair Activity on Human Keratinocytes by Green Innovative Nanocomposites
Materials 2017, 10(7), 843; https://doi.org/10.3390/ma10070843
Received: 13 June 2017 / Revised: 10 July 2017 / Accepted: 18 July 2017 / Published: 22 July 2017
Cited by 1 | PDF Full-text (4182 KB) | HTML Full-text | XML Full-text
Abstract
The use of raw materials obtained by waste and processed through innovative industrial methodologies has generated an industry of about a trillion dollars in a short time, and in the near future will provide resources and services for the conservation and sustainable use
[...] Read more.
The use of raw materials obtained by waste and processed through innovative industrial methodologies has generated an industry of about a trillion dollars in a short time, and in the near future will provide resources and services for the conservation and sustainable use of natural resources in order to ensure a better and fairer welfare for the human race. The production of nano-fiber chitin non-woven tissue is in accordance with the Organization for Economic Co-operation and Development (OECD) and European Union (EU) bio-economic programs: 100% biodegradable, ecological, and therefore useful in decreasing dependence on fossil fuel resources. The aim of our study is the evaluation of different formulations of a non-woven tissue obtained from electrospinning of a mixture of nanochitin fibrils, lignin, and poly (ethylene) oxide (PEO) on the restoration of damaged tissues. Wound repair is a complex process that involves epithelial and immune cells and includes the induction of metalloproteinases, inflammatory mediators, and angiogenic factors. Our in vitro results have shown that all of the realized chitin nanofibrils-bio-lignin non-woven tissues tested as nontoxic for human keratinocytes (HaCat) cells. Furthermore, the bio-composites that included bio-lignin at 0.1% have been able to modulate the expression of pro-inflammatory cytokines (Tumor Necrosis Factor-α, IL-1α, and IL8), lipopolysaccharide (LPS)-induced, and matrix metalloproteinases (MMPs) and human beta-defensin 2 (HBD-2) expression in HaCat cells, suggesting an anti-inflammatory and immunomodulatory role. Taken together, our results suggest that our chitin nanofibrils-bio-lignin non-woven tissue represents a skin-friendly tool that is able to favor a correct and fast wound repair. Full article
Figures

Figure 1

Open AccessArticle Interaction of Shear and Rayleigh–Lamb Waves with Notches and Voids in Plate Waveguides
Materials 2017, 10(7), 841; https://doi.org/10.3390/ma10070841
Received: 19 May 2017 / Revised: 29 June 2017 / Accepted: 18 July 2017 / Published: 21 July 2017
PDF Full-text (1700 KB) | HTML Full-text | XML Full-text
Abstract
This paper investigates the interaction of different shear- and Rayleigh–Lamb-guided waves in plates with a discontinuity such as a notch or an internal void. The problem was solved numerically using a finite element model and by exploiting an analytical solution obtainable for the
[...] Read more.
This paper investigates the interaction of different shear- and Rayleigh–Lamb-guided waves in plates with a discontinuity such as a notch or an internal void. The problem was solved numerically using a finite element model and by exploiting an analytical solution obtainable for the double sharp changes of the cross-section that served as a reference. We aimed to elucidate the relation between the size and shape of the discontinuity and the reflection and transmission coefficients of the scattered field. Different sizes and profiles of the discontinuity were considered, with the shapes ranging from step changes of the height to ellipses, both symmetric and nonsymmetric. Regimes related to low and high values of the product frequency multiplied by the height of the plate were investigated. These showed how the mode conversion was related to the symmetry between the incident mode and the discontinuity, and to the actual existence of multiple propagating modes. The analysis presented was motivated by the need to set up procedures that exploit propagating waves not only to detect the presence of a notch, but also to characterize its size and shape. Full article
(This article belongs to the Special Issue Structural Health Monitoring for Aerospace Applications 2017)
Figures

Figure 1

Open AccessArticle Synthesis of Bioactive Chlorogenic Acid-Silica Hybrid Materials via the Sol–Gel Route and Evaluation of Their Biocompatibility
Materials 2017, 10(7), 840; https://doi.org/10.3390/ma10070840
Received: 14 June 2017 / Revised: 11 July 2017 / Accepted: 17 July 2017 / Published: 21 July 2017
Cited by 2 | PDF Full-text (6595 KB) | HTML Full-text | XML Full-text
Abstract
Natural phenol compounds are gaining a great deal of attention because of their potential use as prophylactic and therapeutic agents in many diseases, as well as in applied science for their preventing role in oxidation deterioration. With the aim to synthetize new phenol-based
[...] Read more.
Natural phenol compounds are gaining a great deal of attention because of their potential use as prophylactic and therapeutic agents in many diseases, as well as in applied science for their preventing role in oxidation deterioration. With the aim to synthetize new phenol-based materials, the sol–gel method was used to embed different content of the phenolic antioxidant chlorogenic acid (CGA) within silica matrices to obtain organic-inorganic hybrid materials. Fourier transform infrared (FTIR) measurements were used to characterize the prepared materials. The new materials were screened for their bioactivity and antioxidant potential. To this latter purpose, direct DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) methods were applied: radical scavenging capability appeared strongly dependent on the phenol amount in investigated hybrids, and became pronounced, mainly toward the ABTS radical cation, when materials with CGA content equal to 15 wt% and 20 wt% were analyzed. The in vitro biocompatibility of the synthetized materials was estimated by using the MTT assay towards fibroblast NIH 3T3 cells, human keratinocyte HaCaT cells, and the neuroblastoma SH-SY5Y cell line. As cell viability and morphology of tested cell lines seemed to be unaffected by new materials, the attenuated total reflectance (ATR)-FTIR method was applied to deeply measure the effects of the hybrids in the three different cell lines. Full article
(This article belongs to the Special Issue Sol-Gel Chemistry Applied to Materials Science)
Figures

Figure 1

Open AccessArticle The Microstructural Characterization of Multiferroic LaFeO3-YMnO3 Multilayers Grown on (001)- and (111)-SrTiO3 Substrates by Transmission Electron Microscopy
Materials 2017, 10(7), 839; https://doi.org/10.3390/ma10070839
Received: 31 May 2017 / Revised: 15 July 2017 / Accepted: 17 July 2017 / Published: 21 July 2017
PDF Full-text (21827 KB) | HTML Full-text | XML Full-text
Abstract
The microstructure of multiferroic LaFeO3-YMnO3 (LFO-YMO) multilayers grown on (001)- and (111)-SrTiO3 substrates is characterized by the transmission electron microscopy (TEM). Detailed TEM characterization reveals that LFO-YMO multilayers grown on both substrates have clear layer-by-layer morphology and distinct chemical-composition
[...] Read more.
The microstructure of multiferroic LaFeO3-YMnO3 (LFO-YMO) multilayers grown on (001)- and (111)-SrTiO3 substrates is characterized by the transmission electron microscopy (TEM). Detailed TEM characterization reveals that LFO-YMO multilayers grown on both substrates have clear layer-by-layer morphology and distinct chemical-composition layered structure. The most notable feature is that LFO-YMO multilayers grown on (001)-SrTiO3 substrate have three types of domains, while those on (111)-SrTiO3 have only one. The multi-/twin- domain structure can be qualitatively explained by the lattice mismatch in this system. The details of the domain structure of LFO-YMO multilayers are crucial to understanding their magnetic properties. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Influences of Thermal Treatment on the Dielectric Performances of Polystyrene Composites Reinforced by Graphene Nanoplatelets
Materials 2017, 10(7), 838; https://doi.org/10.3390/ma10070838
Received: 27 June 2017 / Revised: 14 July 2017 / Accepted: 18 July 2017 / Published: 21 July 2017
PDF Full-text (3039 KB) | HTML Full-text | XML Full-text
Abstract
Dielectric properties of composites near percolation threshold (fc) are often sensitive to thermal treatments, and the annealing temperature is usually associated with a polymer’s rheological properties. In this study, the influences of the thermal treatment on dielectric properties are investigated
[...] Read more.
Dielectric properties of composites near percolation threshold (fc) are often sensitive to thermal treatments, and the annealing temperature is usually associated with a polymer’s rheological properties. In this study, the influences of the thermal treatment on dielectric properties are investigated for the polystyrene (PS) matrix composite reinforced by graphene nanoplatelets (GNP) fillers near fc. It can be found that the thermal treatment can not only increase the dielectric constant, but also decrease the dielectric loss for the PS/GNP composite. This interesting phenomenon possibly happens in the interfacial region of PS/GNP with the thickness about 4–6 nm according to the electron energy-loss spectroscopy (EELS) results. The free volumes around the interface can be easily altered by the movement of polymeric segments after annealing at the glass transition temperature. Full article
(This article belongs to the Special Issue Polymers for Film Capacitors)
Figures

Figure 1

Open AccessArticle Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation
Materials 2017, 10(7), 837; https://doi.org/10.3390/ma10070837
Received: 11 June 2017 / Revised: 9 July 2017 / Accepted: 14 July 2017 / Published: 21 July 2017
Cited by 2 | PDF Full-text (6805 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this work, efficient mixed organic cation and mixed halide (MA0.7FA0.3Pb(I0.9Br0.1)3) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film
[...] Read more.
In this work, efficient mixed organic cation and mixed halide (MA0.7FA0.3Pb(I0.9Br0.1)3) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film quality for the annealing condition at 100 °C for 30 min. The corresponding device exhibits an optimized PCE of 16.76% with VOC of 1.02 V, JSC of 21.55 mA/cm2 and FF of 76.27%. More importantly, the mixed lead halide perovskite MA0.7FA0.3Pb(I0.9Br0.1)3 can significantly increase the thermal stability of perovskite film. After being heated at 80 °C for 24 h, the PCE of the MA0.7FA0.3Pb(I0.9Br0.1)3 device still remains at 70.00% of its initial value, which is much better than the control MAPbI3 device, where only 46.50% of its initial value could be preserved. We also successfully fabricated high-performance flexible mixed lead halide perovskite solar cells based on PEN substrates. Full article
(This article belongs to the Section Energy Materials)
Figures

Figure 1

Open AccessReview Surface Plasmon Resonance or Biocompatibility—Key Properties for Determining the Applicability of Noble Metal Nanoparticles
Materials 2017, 10(7), 836; https://doi.org/10.3390/ma10070836
Received: 6 June 2017 / Revised: 6 July 2017 / Accepted: 10 July 2017 / Published: 21 July 2017
Cited by 1 | PDF Full-text (8641 KB) | HTML Full-text | XML Full-text
Abstract
Metal and in particular noble metal nanoparticles represent a very special class of materials which can be applied as prepared or as composite materials. In most of the cases, two main properties are exploited in a vast number of publications: biocompatibility and surface
[...] Read more.
Metal and in particular noble metal nanoparticles represent a very special class of materials which can be applied as prepared or as composite materials. In most of the cases, two main properties are exploited in a vast number of publications: biocompatibility and surface plasmon resonance (SPR). For instance, these two important properties are exploitable in plasmonic diagnostics, bioactive glasses/glass ceramics and catalysis. The most frequently applied noble metal nanoparticle that is universally applicable in all the previously mentioned research areas is gold, although in the case of bioactive glasses/glass ceramics, silver and copper nanoparticles are more frequently applied. The composite partners/supports/matrix/scaffolds for these nanoparticles can vary depending on the chosen application (biopolymers, semiconductor-based composites: TiO2, WO3, Bi2WO6, biomaterials: SiO2 or P2O5-based glasses and glass ceramics, polymers: polyvinyl alcohol (PVA), Gelatin, polyethylene glycol (PEG), polylactic acid (PLA), etc.). The scientific works on these materials’ applicability and the development of new approaches will be targeted in the present review, focusing in several cases on the functioning mechanism and on the role of the noble metal. Full article
Figures

Graphical abstract

Open AccessArticle Investigation of the Quasi-Brittle Failure of Alashan Granite Viewed from Laboratory Experiments and Grain-Based Discrete Element Modeling
Materials 2017, 10(7), 835; https://doi.org/10.3390/ma10070835
Received: 26 June 2017 / Revised: 14 July 2017 / Accepted: 17 July 2017 / Published: 21 July 2017
PDF Full-text (26171 KB) | HTML Full-text | XML Full-text
Abstract
Granite is a typical crystalline material, often used as a building material, but also a candidate host rock for the repository of high-level radioactive waste. The petrographic texture—including mineral constituents, grain shape, size, and distribution—controls the fracture initiation, propagation, and coalescence within granitic
[...] Read more.
Granite is a typical crystalline material, often used as a building material, but also a candidate host rock for the repository of high-level radioactive waste. The petrographic texture—including mineral constituents, grain shape, size, and distribution—controls the fracture initiation, propagation, and coalescence within granitic rocks. In this paper, experimental laboratory tests and numerical simulations of a grain-based approach in two-dimensional Particle Flow Code (PFC2D) were conducted on the mechanical strength and failure behavior of Alashan granite, in which the grain-like structure of granitic rock was considered. The microparameters for simulating Alashan granite were calibrated based on real laboratory strength values and strain-stress curves. The unconfined uniaxial compressive test and Brazilian indirect tensile test were performed using a grain-based approach to examine and discuss the influence of mineral grain size and distribution on the strength and patterns of microcracks in granitic rocks. The results show it is possible to reproduce the uniaxial compressive strength (UCS) and uniaxial tensile strength (UTS) of Alashan granite using the grain-based approach in PFC2D, and the average mineral size has a positive relationship with the UCS and UTS. During the modeling, most of the generated microcracks were tensile cracks. Moreover, the ratio of the different types of generated microcracks is related to the average grain size. When the average grain size in numerical models is increased, the ratio of the number of intragrain tensile cracks to the number of intergrain tensile cracks increases, and the UCS of rock samples also increases with this ratio. However, the variation in grain size distribution does not have a significant influence on the likelihood of generated microcracks. Full article
(This article belongs to the Special Issue The Brittle Failure of Different Materials)
Figures

Figure 1

Open AccessArticle Improvement of Cr-Co-Mo Membrane Surface Used as Barrier for Bone Regeneration through UV Photofunctionalization: An In Vitro Study
Materials 2017, 10(7), 825; https://doi.org/10.3390/ma10070825
Received: 15 June 2017 / Revised: 5 July 2017 / Accepted: 11 July 2017 / Published: 21 July 2017
Cited by 2 | PDF Full-text (2920 KB) | HTML Full-text | XML Full-text
Abstract
Although there are several studies of the ultraviolet (UV) light-mediated photofunctionalization of titanium for use as implant material, the underlying mechanism is not fully understood. However, the results of in vitro and in vivo studies are very encouraging. The use of UV photofunctionalization
[...] Read more.
Although there are several studies of the ultraviolet (UV) light-mediated photofunctionalization of titanium for use as implant material, the underlying mechanism is not fully understood. However, the results of in vitro and in vivo studies are very encouraging. The use of UV photofunctionalization as a surface treatment on other implant materials, as the Cr-Co-Mo alloy, has not been explored in depth. Using sandblasted Cr-Co-Mo discs, the surface photofunctionalization was studied for ultraviolet A (UVA, 365 nm) and ultraviolet C (UVC, 254 nm), and the surfaces were evaluated for their ability to sustain hydroxyapatite crystal growth through incubation in simulated body fluid for a seven-day period. The variation of the pre- and post-irradiation contact angle and surface composition was determined through the quantification of the weight percentage of Ca and P crystals by the EDAX ZAF method (EDS). Statistically significant differences (p < 0.05) were found for samples irradiated with UVA over 48 h, corresponding with hydrophilic surfaces, and the same result was found for samples exposed to 3 h of UVC. Superhydrophilic surfaces were found in samples irradiated for 12, 24 and 48 h with UVC. The decrease in the carbon content is related with the increase in the surface content of Ca and P, and vice versa over the Cr-Co-Mo surfaces. Full article
(This article belongs to the Section Biomaterials)
Figures

Figure 1

Open AccessArticle Biological Degradation of Chinese Fir with Trametes Versicolor (L.) Lloyd
Materials 2017, 10(7), 834; https://doi.org/10.3390/ma10070834
Received: 1 May 2017 / Revised: 22 June 2017 / Accepted: 17 July 2017 / Published: 20 July 2017
PDF Full-text (2669 KB) | HTML Full-text | XML Full-text
Abstract
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) has been an important afforestation species in northeast China. It has obvious defects of buckling and cracking easily, which are caused by its chemical components. Trametes versicolor (L.) Lloyd, a white-rot fungus, can decompose the cellulose,
[...] Read more.
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) has been an important afforestation species in northeast China. It has obvious defects of buckling and cracking easily, which are caused by its chemical components. Trametes versicolor (L.) Lloyd, a white-rot fungus, can decompose the cellulose, hemicellulose, and lignin in the wood. White-rot fungus was used to biologically degrade Chinese fir wood. The effects of different degradation time on the Chinese fir wood’s mechanical properties, micromorphology, chemical components, and crystallinity were studied. The results showed that the heartwood of Chinese fir was more durable than the sapwood and the durability class of Chinese fir was III. Trametes versicolor (L.) Lloyd had a greater influence on the mechanical properties (especially with respect to the modulus of elasticity (MOE)) for the sapwood. Trametes versicolor (L.) Lloyd degraded Chinese fir and colonized the lumen of various wood cell types in Chinese fir, penetrated cell walls via pits, caused erosion troughs and bore holes, and removed all cell layers. The ability of white-rot fungus to change the chemical composition mass fraction for Chinese fir was: hemicellulose > lignin > cellulose. The durability of the chemical compositions was: lignin > cellulose > hemicellulose. The crystallinity of the cellulose decreased and the mean size of the ordered (crystalline) domains increased after being treated by white-rot fungus. Full article
Figures

Figure 1

Open AccessArticle Effect of the Ultrasonic Surface Rolling Process on the Fretting Fatigue Behavior of Ti-6Al-4V Alloy
Materials 2017, 10(7), 833; https://doi.org/10.3390/ma10070833
Received: 11 May 2017 / Revised: 15 July 2017 / Accepted: 17 July 2017 / Published: 20 July 2017
PDF Full-text (13243 KB) | HTML Full-text | XML Full-text
Abstract
The effect of the ultrasonic surface rolling process (USRP) on the rotary bending fretting fatigue (FF) of Ti-6Al-4V alloy was investigated. The reason for the USRP’s ability to improve the FF resistance of Ti-6Al-4V alloy was studied. The results revealed that the USRP
[...] Read more.
The effect of the ultrasonic surface rolling process (USRP) on the rotary bending fretting fatigue (FF) of Ti-6Al-4V alloy was investigated. The reason for the USRP’s ability to improve the FF resistance of Ti-6Al-4V alloy was studied. The results revealed that the USRP induced a compressive residual stress field with a depth of 530 μm and a maximum residual stress of −930 MPa. Moreover, the surface micro-hardness of the USRP sample was significantly higher than that of the untreated base material (BM) sample, and the USRP yielded a 72.7% increase in the FF limit of the alloy. These further enhanced fatigue properties contributed mainly to the compressive residual stress field with large numerical value and deep distribution, which could effectively suppress FF crack initiation and early propagation. The USRP-induced surface work-hardening had only a minor impact on the FF resistance. Full article
Figures

Figure 1

Back to Top