Previous Issue
Volume 13, April
 
 

Actuators, Volume 13, Issue 5 (May 2024) – 16 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 1898 KiB  
Article
Design and Implementation of an L1 Adaptive Proportional Output Feedback Controller
by Deepanshu Bagati, Toufik Souanef and James F. Whidborne
Actuators 2024, 13(5), 172; https://doi.org/10.3390/act13050172 - 02 May 2024
Viewed by 227
Abstract
A new approach for output feedback L1 adaptive control based on a proportional adaptation law is presented. The effectiveness of this design is assessed in simulation and validated through real-time testing on an airfoil pitch control wind tunnel experimental rig. Experimental evaluation [...] Read more.
A new approach for output feedback L1 adaptive control based on a proportional adaptation law is presented. The effectiveness of this design is assessed in simulation and validated through real-time testing on an airfoil pitch control wind tunnel experimental rig. Experimental evaluation of the robustness of the controllers, assessed by introducing various disturbances into the control signals, shows that the adaptive control has a better performance compared to PID control, particularly in scenarios with reduced control effectiveness and time-varying disturbances. The experimental results demonstrate the efficacy of the proposed method in practical applications. Full article
(This article belongs to the Section Aircraft Actuators)
25 pages, 7615 KiB  
Article
Bidirectional Multi-Spectral Vibration Control: Insights from Automotive Engine Mounting Systems in Two-Dimensional Structures with a Damaged Vertical Active Element
by Dongwoo Hong, Hojoon Moon and Byeongil Kim
Actuators 2024, 13(5), 171; https://doi.org/10.3390/act13050171 - 01 May 2024
Viewed by 207
Abstract
Active mounting systems have become more prevalent in recent years to effectively mitigate structure-induced vibration across the automobile chassis. This trend is particularly evident in engine mounts. Considerable research has been dedicated to this approach owing to its potential to enhance the quietness [...] Read more.
Active mounting systems have become more prevalent in recent years to effectively mitigate structure-induced vibration across the automobile chassis. This trend is particularly evident in engine mounts. Considerable research has been dedicated to this approach owing to its potential to enhance the quietness and travel comfort of automobiles. However, prior research has concentrated on a limited spectrum of specific vibrations and noise control or has been restricted to vertical vibration control. This article describes the modeling, analysis, and control of a source structure employing a multidirectional active mounting system designed to closely simulate the position and direction of an actual automobile engine mount. A piezoelectric stack actuator is connected in series to an elastic (rubber) mount to form an active mount. The calculation of the secondary force required for each active mount is achieved through the application of harmonic excitation forces. The control signal can also reduce vibrations caused by destructive interference with the input signal. Furthermore, horizontal oscillations can be mitigated by manipulating the parameters via dynamic interconnections of the source structure. We specifically examined the level of vibration reduction performance in the absence of a vertical active element operation and determined whether the control is feasible. Simulation outcomes demonstrate that this active mount, which operates in both the vertical and horizontal directions, effectively mitigates excitation vibrations. Furthermore, a simulation was conducted to mitigate the vibrations caused by complex signals (AM and FM signals) and noise. This was achieved by monitoring the system response using an adaptive filter NLMS algorithm. Adaptive filter simulations demonstrate that the control efficacy degrades in response to complex signals and noise, although the overall relaxation trend remains unchanged. Full article
27 pages, 13669 KiB  
Article
Adaptive Nonsingular Fast Terminal Sliding Mode-Based Direct Yaw Moment Control for DDEV under Emergency Conditions
by Yixi Zhang, Jian Ma and Yang Zhou
Actuators 2024, 13(5), 170; https://doi.org/10.3390/act13050170 - 01 May 2024
Viewed by 230
Abstract
This paper presents an innovative three-level direct yaw moment control strategy for distributed drive electric vehicles (DDEV) under emergency conditions. The phase plane analysis is used at the supervisory level to design the stability boundary function taking into account the impact of the [...] Read more.
This paper presents an innovative three-level direct yaw moment control strategy for distributed drive electric vehicles (DDEV) under emergency conditions. The phase plane analysis is used at the supervisory level to design the stability boundary function taking into account the impact of the road adhesion coefficient. To guarantee the performance of finite-time convergence and singularity-free methods, the adaptive nonsingular fast terminal sliding mode control (ANFTSMC) is developed at the decision level to determine the extra yaw moment for tracking the intended side slip angle and yaw rate. Among this, the unstable domain in the phase plane is further separated into moderately and severely unstable according to the degree of vehicle instability, which is defined by the distance between the state phase point and the stability boundary. Meanwhile, the adaptive weight between the handling and stability is obtained. At the executive level, the quadratic programming algorithm is adopted to allocate four-wheel torque with the objective of optimal tire utilization rate. Finally, the co-simulation test is executed in both closed-loop and open-loop circumstances; according to the simulation results, the presented ANFTSMC method outperforms the SMC, and it can decrease the tracking error and improve the handling and stability. Full article
(This article belongs to the Section Actuators for Land Transport)
Show Figures

Figure 1

16 pages, 1811 KiB  
Article
A Novel Extended Unscented Kalman Filter Is Designed Using the Higher-Order Statistical Property of the Approximate Error of the System Model
by Chengyi Li and Chenglin Wen
Actuators 2024, 13(5), 169; https://doi.org/10.3390/act13050169 - 01 May 2024
Viewed by 239
Abstract
In the actual working environment, most equipment models present nonlinear characteristics. For nonlinear system filtering, filtering methods such as the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Cubature Kalman Filter (CKF) have been developed successively, all of which show good results. [...] Read more.
In the actual working environment, most equipment models present nonlinear characteristics. For nonlinear system filtering, filtering methods such as the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Cubature Kalman Filter (CKF) have been developed successively, all of which show good results. However, in the process of nonlinear system filtering, the performance of EKF decreases with an increase in the truncation error and even diverges. With improvement of the system dimension, the sampling points of UKF are relatively few and unrepresentative. In this paper, a novel high-order extended Unscented Kalman Filter (HUKF) based on an Unscented Kalman Filter is designed using the higher-order statistical properties of the approximate error. In addition, a method for calculating the approximate error of the multi-level approximation of the original function under the condition that the measurement is not rank-satisfied is proposed. The effectiveness of the filter is verified using digital simulation experiments. Full article
(This article belongs to the Special Issue From Theory to Practice: Incremental Nonlinear Control)
Show Figures

Figure 1

18 pages, 6525 KiB  
Article
Sensor-Based Identification of Singularities in Parallel Manipulators
by Jose L. Pulloquinga, Marco Ceccarelli, Vicente Mata and Angel Valera
Actuators 2024, 13(5), 168; https://doi.org/10.3390/act13050168 - 01 May 2024
Viewed by 267
Abstract
Singularities are configurations where the number of degrees of freedom of a robot changes instantaneously. In parallel manipulators, a singularity could reduce the mobility of the end-effector or produce uncontrolled motions of the mobile platform. Thus, a singularity is a critical problem for [...] Read more.
Singularities are configurations where the number of degrees of freedom of a robot changes instantaneously. In parallel manipulators, a singularity could reduce the mobility of the end-effector or produce uncontrolled motions of the mobile platform. Thus, a singularity is a critical problem for mechanical design and model-based control. This paper presents a general sensor-based method to identify singularities in the workspace of parallel manipulators with low computational cost. The proposed experimental method identifies a singularity by measuring sudden changes in the end-effector movements and huge increments in the forces applied by the actuators. This paper uses an inertial measurement unit and a 3D tracking system for measuring the end-effector movements, and current sensors for the forces exerted by the actuators. The proposed sensor-based identification of singularities is adjusted and implemented in three different robots to validate its effectiveness and feasibility for identifying singularities. The case studies are two prototypes for educational purposes—a five-bar mechanism and an L-CaPaMan parallel robot—and a four-degree-of-freedom robot for rehabilitation purposes. The tests showcase its potential as a practical solution for singularity identification in educational and industrial robots. Full article
(This article belongs to the Special Issue Advanced Robots: Design, Control and Application—2nd Edition)
Show Figures

Figure 1

20 pages, 11782 KiB  
Article
Development of a Universal Adaptive Control Algorithm for an Unknown MIMO System Using Recursive Least Squares and Parameter Self-Tuning
by Hanbyeol La and Kwangseok Oh
Actuators 2024, 13(5), 167; https://doi.org/10.3390/act13050167 - 01 May 2024
Viewed by 225
Abstract
This study proposes a universal adaptive control algorithm for an unknown multi-input multi-output (MIMO) system using recursive least squares (RLS) and parameter self-tuning. The issue of adjusting the control and system parameters in response to changes in the platform was discussed. The development [...] Read more.
This study proposes a universal adaptive control algorithm for an unknown multi-input multi-output (MIMO) system using recursive least squares (RLS) and parameter self-tuning. The issue of adjusting the control and system parameters in response to changes in the platform was discussed. The development of a control algorithm that can consistently achieve reliable and robust control performance in various systems is important. This study aimed to develop a control algorithm that can track the reference value for any unknown MIMO system. For the controller design, an nth-order differential error dynamic model was designed, and an RLS with a scale factor was used to estimate the coefficients of the error dynamics. In the current scenario, the numbers of control inputs and error states in the error dynamics were assumed to be equal. It was designed such that the control input is derived based on the Lyapunov stability concept using the estimated coefficients. The scale factor in the RLS and injection term in the control input based on the sliding-mode approach were computed using a self-tuning methodology. The performance of the proposed universal adaptive control algorithm was evaluated using an actual DC motor and CarMaker (version 8.1.1) software tests under various scenarios. Full article
(This article belongs to the Special Issue Actuators in 2024)
Show Figures

Figure 1

20 pages, 5583 KiB  
Article
Synchronization Control with Dynamics Compensation for Three-Axis Parallel Motion Platform
by Zhiwei Zhou, Jian Gao and Lanyu Zhang
Actuators 2024, 13(5), 166; https://doi.org/10.3390/act13050166 - 01 May 2024
Viewed by 239
Abstract
The three-axis parallel motion platform (TAPMP) with a common stator has low motion inertia, enabling highly precise and high-speed motion over a large range of strokes. The primary challenge faced by the TAPMP lies in the mutual pulling exerted between the common stator [...] Read more.
The three-axis parallel motion platform (TAPMP) with a common stator has low motion inertia, enabling highly precise and high-speed motion over a large range of strokes. The primary challenge faced by the TAPMP lies in the mutual pulling exerted between the common stator motors during motion. The driving forces generated by the motors are closely associated with their synchronization motion, a connection often overlooked in the design of existing controllers. To address this issue, this paper presents a novel synchronization controller with dynamics compensation (SC–DC) to achieve motion synchronization between the three motors, ultimately enhancing the platform’s tracking accuracy in task space. In this SC–DC method, the synchronization error of the common stator motors is introduced to represent the synchronized motion relationship between adjacent motors, and a dynamic feedforward control is adopted to compensate for the motor’s driving force. The stability of the proposed controller is analyzed using Lyapunov theory, demonstrating the convergence of both the tracking error and synchronization error. Trajectory tracking simulations and experimental studies are conducted on the TAPMP. The results show that, compared to the augmented proportional-derivative controller with dynamic compensation, the proposed controller significantly reduces both the MAE of the tracking error and synchronization error on the q1 motor by 71.88% and 73.02%, respectively, demonstrating its performance advantages in trajectory tracking and synchronization. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
Show Figures

Figure 1

18 pages, 7198 KiB  
Article
Study on Dynamics of Overrunning Spring Clutches and Suppression Methods for Their Abnormal Noise
by Jie Zhou, Zhehang Qiu, Huijuan Zhang and Jianming Zhan
Actuators 2024, 13(5), 165; https://doi.org/10.3390/act13050165 - 01 May 2024
Viewed by 268
Abstract
Overrunning spring clutches are widely used as essential transmission devices, and the occurrence of abnormal noise can lead to a decline in their performance. This study investigates the dynamic aspects of abnormal noise in engineering applications, including its causes, influencing factors, and suppression [...] Read more.
Overrunning spring clutches are widely used as essential transmission devices, and the occurrence of abnormal noise can lead to a decline in their performance. This study investigates the dynamic aspects of abnormal noise in engineering applications, including its causes, influencing factors, and suppression methods. Audio processing algorithms are employed to analyze the audio associated with abnormal noise, and the Fourier Motion Blur algorithm is applied to process video images of the springs. By combining the motion blur curve with the noise spectrum curve, the source of the abnormal noise is identified as friction-induced vibrations in the spring. Theoretical modeling and calculations are carried out from a dynamic perspective to validate that the phenomenon of abnormal noise in the clutch is a result of self-excited friction vibration caused by the stick–slip phenomenon. Based on theoretical analysis and practical engineering, surface texturing is added to the center shaft of the spring seat, optimizing the system as an overdamped system to suppress self-vibration. Utilizing CFD simulation analysis, the simulation results are used to improve the texturing parameters and further optimize the texturing shape, resulting in an optimal parallelogram surface texture structure. Experimental validation confirms that the improved overrunning spring clutch completely eliminates abnormal noise during overrunning operation. Therefore, this paper contributes to the understanding of the dynamic issues associated with abnormal noise in overrunning spring clutches, confirming that the mechanism for abnormal noise generation is friction-induced self-excitation vibration, and demonstrating that surface texture optimization methods effectively suppress the occurrence of abnormal noise. Full article
(This article belongs to the Special Issue Nonlinear Active Vibration Control)
Show Figures

Figure 1

29 pages, 7167 KiB  
Article
A Tube-Based Model Predictive Control for Path Tracking of Autonomous Articulated Vehicle
by Taeyeon Lee and Yonghwan Jeong
Actuators 2024, 13(5), 164; https://doi.org/10.3390/act13050164 - 01 May 2024
Viewed by 235
Abstract
This paper presents tube-based Model Predictive Control (MPC) for the path and velocity tracking of an autonomous articulated vehicle. The target platform of this study is an autonomous articulated vehicle with a non-steerable axle. Consequently, the articulation angle and wheel torque input are [...] Read more.
This paper presents tube-based Model Predictive Control (MPC) for the path and velocity tracking of an autonomous articulated vehicle. The target platform of this study is an autonomous articulated vehicle with a non-steerable axle. Consequently, the articulation angle and wheel torque input are determined by the tube-based MPC. The proposed MPC aims to achieve two objectives: minimizing path tracking error and enhancing robustness to disturbances. Furthermore, the lateral stability of the autonomous articulated vehicle is considered to reflect its dynamic characteristics. The vehicle model for the MPC is formulated using local linearization to minimize modeling errors. The reference state is determined using a virtual controller based on the linear quadratic regulator to provide the optimal reference for the MPC solver. The proposed algorithm was evaluated through a simulation study with base algorithms under noise injection into the sensor signal. Simulation results demonstrate that the proposed algorithm achieved the smallest path tracking error, compared to the base algorithms. Additionally, the proposed algorithm demonstrated robustness to external noise for multiple signals. Full article
(This article belongs to the Special Issue Integrated Intelligent Vehicle Dynamics and Control)
Show Figures

Figure 1

17 pages, 4478 KiB  
Article
Research on Damping Hole Optimization of Hydro-Pneumatic Suspension for Mining Trucks under Variable Load Conditions
by Wenfeng Zhu, Zenglu Zhao, Xingtong Zhou, Xuepeng Cao, Min Ye, Chuqing Cao and Mohammad Manjur Alam
Actuators 2024, 13(5), 163; https://doi.org/10.3390/act13050163 - 01 May 2024
Viewed by 254
Abstract
The hydro-pneumatic suspension, known for enhancing vehicle ride comfort and stability, finds widespread use in engineering vehicles. Presently, the majority of mining trucks employ hydro-pneumatic suspension with a fixed damping hole, underscoring the critical importance of selecting appropriate damping hole parameters. Initially, an [...] Read more.
The hydro-pneumatic suspension, known for enhancing vehicle ride comfort and stability, finds widespread use in engineering vehicles. Presently, the majority of mining trucks employ hydro-pneumatic suspension with a fixed damping hole, underscoring the critical importance of selecting appropriate damping hole parameters. Initially, an equilibrium mathematical model of the ¼ hydro-pneumatic suspension is established, and the influencing factors of the damping characteristics are analyzed. Subsequently, the simulation model and experimental bench for the hydro-pneumatic suspension are constructed. Sinusoidal signals with different frequencies and amplitudes serve as the excitation signals to analyze the variation trend of the force on the rod with displacement changes. The simulation and experimental results demonstrate a high degree of consistency, validating the rationality and validity of the simulation model. Building upon this foundation, various damping apertures are then selected to study the damping characteristics of the hydro-pneumatic suspension. The research indicates that as the damping aperture increases, the setting time of the hydro-pneumatic suspension system after excitation extends, accompanied by a decrease in the acceleration overshoot. As a result, a comprehensive evaluation index is developed, considering various factors, such as different weight setting times and peak longitudinal accelerations to assess the ride comfort of the suspension. This approach is then employed to determine the optimal damping aperture under both full-load and no-load conditions. The findings of this research offer valuable insights for the development of adaptive variable damping hydraulic suspensions, especially under variable load conditions. Full article
(This article belongs to the Section Actuators for Land Transport)
Show Figures

Figure 1

18 pages, 5949 KiB  
Article
Defect Diagnosis of Rigid Catenary System Based on Pantograph Vibration Performance
by Mengying Tan, Haishangyang Li and Lei Nie
Actuators 2024, 13(5), 162; https://doi.org/10.3390/act13050162 - 28 Apr 2024
Viewed by 270
Abstract
The condition of a catenary is significant to ensure a high current collection quality. Owing to the dynamic interaction between the pantograph and the catenary system, the vibration of the pantograph can be used to analyze the condition of the catenary system. Therefore, [...] Read more.
The condition of a catenary is significant to ensure a high current collection quality. Owing to the dynamic interaction between the pantograph and the catenary system, the vibration of the pantograph can be used to analyze the condition of the catenary system. Therefore, we developed a novel diagnosis system based on the correlation between catenary defects and pantograph vibration. The proposed system is capable of detecting the type and location of commonly encountered defects in rigid support catenary systems. Catenary positioning coefficient and enhanced sample entropy methods were proposed for the extraction of defect features, and subsequently, linear discriminate analysis was used to diagnose the type and location of the catenary defects. Finally, the proposed defect detection and diagnosis system was applied to a commercial metro line, and the results verified the reliability and effectiveness of this diagnosis system. Full article
Show Figures

Figure 1

15 pages, 6390 KiB  
Article
Improving Speed Characteristics of High-Torque-Density Motors for Physical Human–Robot Interaction Using an Independent Three-Phase Winding Structure
by Junghwan Park and Handdeut Chang
Actuators 2024, 13(5), 161; https://doi.org/10.3390/act13050161 - 27 Apr 2024
Viewed by 219
Abstract
Recently, due to the decrease in labor force, increase in labor costs, and the desire for improved quality of life, research on robots has been actively conducted to address these issues. However, it is currently difficult to find robots that physically interact with [...] Read more.
Recently, due to the decrease in labor force, increase in labor costs, and the desire for improved quality of life, research on robots has been actively conducted to address these issues. However, it is currently difficult to find robots that physically interact with humans. The reason is that the actuators of robots do not have a high torque density on their own. To solve this problem, high-torque-density motors, such as proprioceptive actuators, are being researched. However, the torque density is still insufficient for physical interaction with humans, so a motor with higher torque density has been developed. However, high-torque-density motors have the disadvantage of lower speed characteristics due to increased Back EMF levels. Therefore, to address the deterioration of speed characteristics in the developed motor, we applied the independent three-phase winding structure to improve the speed characteristics. Consequently, through comparison with the Y-Connection and D-Connection, we propose the most suitable winding structure for high-torque-density motors intended for physical interaction with humans. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

14 pages, 2707 KiB  
Article
Improved Information Fusion for Agricultural Machinery Navigation Based on Context-Constrained Kalman Filter and Dual-Antenna RTK
by Bingbo Cui, Jianxin Zhang, Xinhua Wei, Xinyu Cui, Zeyu Sun, Yan Zhao and Yufei Liu
Actuators 2024, 13(5), 160; https://doi.org/10.3390/act13050160 - 25 Apr 2024
Viewed by 313
Abstract
Automatic navigation based on dual-antenna real-time kinematic (RTK) positioning has been widely employed for unmanned agricultural machinery, whereas GNSS inevitably suffers from signal blocking and electromagnetic interference. In order to improve the reliability of an RTK-based navigation system in a GNSS-challenged environment, an [...] Read more.
Automatic navigation based on dual-antenna real-time kinematic (RTK) positioning has been widely employed for unmanned agricultural machinery, whereas GNSS inevitably suffers from signal blocking and electromagnetic interference. In order to improve the reliability of an RTK-based navigation system in a GNSS-challenged environment, an integrated navigation system is preferred for autonomous navigation, which increases the complexity and cost of the navigation system. The information fusion of integrated navigation has been dominated by Kalman filter (KF) for several decades, but the KF cannot assimilate the known knowledge of the navigation context efficiently. In this paper, the geometric characteristics of the straight path and path-tracking error were employed to formulate the constraint measurement model, which suppresses the position error in the case of RTK-degraded scenarios. The pseudo-measurements were then imported into the KF framework, and the smoothed navigation state was generated as a byproduct, which improves the reliability of the RTK positioning without external sensors. The experiment result of the mobile vehicle automatic navigation indicates that the tracking error-constrained KF (EC-KF) outperforms the trajectory-constrained KF (TC-KF) and KF when the RTK system outputs a float or single-point position (SPP) solution. In the case where the duration of the SPP solution was 20 s, the positioning errors of the EC-KF and TC-KF were reduced by 38.50% and 24.04%, respectively, compared with those of the KF. Full article
(This article belongs to the Topic Advances in Mobile Robotics Navigation, 2nd Volume)
Show Figures

Figure 1

16 pages, 18082 KiB  
Article
Research on Maximum Power Control of Direct-Drive Wave Power Generation Device Based on BP Neural Network PID Method
by Xinyu Fan and Hao Meng
Actuators 2024, 13(5), 159; https://doi.org/10.3390/act13050159 - 24 Apr 2024
Viewed by 326
Abstract
Ocean wave energy is a new type of clean energy. To improve the power generation and wave energy conversion efficiency of the direct-drive wave power generation system, by addressing the issue of large output errors and poor system stability commonly associated with the [...] Read more.
Ocean wave energy is a new type of clean energy. To improve the power generation and wave energy conversion efficiency of the direct-drive wave power generation system, by addressing the issue of large output errors and poor system stability commonly associated with the currently used PID (proportional, integral, and derivative) control methods, this paper proposes a maximum power control method based on BP (back propagation) neural network PID control. Combined with Kalman filtering, this method not only achieves maximum power tracking but also reduces output ripple and tracking error, thereby enhancing the system’s control quality. This study uses a permanent magnet linear generator as the power generation device, establishes a system dynamics model, and predicts the main frequency of irregular waves through the Fast Fourier Transform method. It designs a desired current tracking curve that meets the maximum power strategy. On this basis, a comparative analysis of the control accuracy and stability of three control methods is conducted. The simulation results show that the BP neural network PID control method improves power generation and exhibits better accuracy and stability. Full article
(This article belongs to the Special Issue Actuators in 2024)
Show Figures

Figure 1

42 pages, 25962 KiB  
Article
An Ice Protection System Based on Phased Piezoelectric Transducers
by Salvatore Ameduri, Antonio Concilio, Angela Brindisi and Bernardino Galasso
Actuators 2024, 13(5), 158; https://doi.org/10.3390/act13050158 - 24 Apr 2024
Viewed by 297
Abstract
This study focuses on a system constituted of two piezoelectric transducers installed on a slat representative element, with ice protection purposes. The waves generated by these actuators can cause, in fact, shear actions between the slat panel and the ice accretion, with the [...] Read more.
This study focuses on a system constituted of two piezoelectric transducers installed on a slat representative element, with ice protection purposes. The waves generated by these actuators can cause, in fact, shear actions between the slat panel and the ice accretion, with the final effect of breaking and detaching it. A property of the system is, however, the possibility of regulating the phase between the excitation signals of the two transducers. This capability can be exploited to produce local advantageous wave interference with a consequent amplification of the shear actions. Benefits can be obtained in terms of: (1) reduction of needed power; (2) recovery of signal intensity losses due to distance, geometric, and mechanic discontinuities; (3) recovery of non-optimal functionality due to off-design conditions. The work starts with an overview of the impact of the ice on the aeronautic and other sectors. Then, attention is paid to the systems currently used to protect aircraft, with a specific focus on ultrasounds generated by piezoelectric transducers. The concept proposed in this work is then presented, illustrating the main components and the working modality. On this basis and considering the specific nature of the physical phenomenon, the modeling approach was defined and implemented. At first, the impact of some critical parameters, such as the temperature and the thickness of the ice, was investigated. Then, the impact of the phase delay parameter was considered, estimating the increase of magnitude potentially reachable by means of optimal tuning. Finally, a preliminary experimental campaign was organized and a comparison with the numerical predictions was performed. Full article
(This article belongs to the Special Issue Actuators in 2024)
Show Figures

Figure 1

26 pages, 8567 KiB  
Article
On the Relative Kinematics and Control of Dual-Arm Cutting Robots for a Coal Mine
by Peng Liu, Haochen Zhou, Xinzhou Qiao and Yan Zhu
Actuators 2024, 13(5), 157; https://doi.org/10.3390/act13050157 - 24 Apr 2024
Viewed by 292
Abstract
There is an unbalanced problem in the traditional laneway excavation process for coal mining because the laneway excavation and support are at the same position in space but they are separated in time, consequently leading to problems of low efficiency in laneway excavation. [...] Read more.
There is an unbalanced problem in the traditional laneway excavation process for coal mining because the laneway excavation and support are at the same position in space but they are separated in time, consequently leading to problems of low efficiency in laneway excavation. To overcome these problems, an advanced dual-arm tunneling robotic system for a coal mine is developed that can achieve the synchronous operation of excavation and the permanent support of laneways to efficiently complete excavation tasks for large-sized cross-section laneways. A dual-arm cutting robot (DACR) has an important influence on the forming quality and excavation efficiency of large-sized cross-section laneways. As a result, the relative kinematics, workspace, and control of dual-arm cutting robots are investigated in this research. First, a relative kinematic model of the DACR is established, and a closed-loop control strategy for the robot is proposed based on the relative kinematics. Second, an associated workspace (AW) for the DACR is presented and generated, which can provide a reference for the cutting trajectory planning of a DACR. Finally, the relative kinematics, closed-loop kinematic controller, and associated workspace generation algorithm are verified through simulation results. Full article
(This article belongs to the Special Issue Advanced Robots: Design, Control and Application—2nd Edition)
Show Figures

Figure 1

Previous Issue
Back to TopTop